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Abstract Nonnegative matrix factorization (NMF) is the problem of approximating
a given nonnegative matrix by the product of two nonnegative matrices. The multi-
plicative updates proposed by Lee and Seung are widely used as efficient computa-
tional methods for NMF. However, the global convergence of these updates is not
formally guaranteed because they are not defined for all pairs of nonnegative matri-
ces. In this paper, we consider slightly modified versions of the original multiplicative
updates and study their global convergence properties. The only difference between
the modified updates and the original ones is that the former do not allow variables
to take values less than a user-specified positive constant. Using Zangwill’s global
convergence theorem, we prove that any sequence of solutions generated by either of
those modified updates has at least one convergent subsequence and the limit of any
convergent subsequence is a stationary point of the corresponding optimization prob-
lem. Furthermore, we propose algorithms based on the modified updates that always
stop within a finite number of iterations.
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1 Introduction

Nonnegative matrix factorization (NMF) [16,17] is the problem of approximating a
given large nonnegative matrix V by the product WH of two flat nonnegative ma-
trices W and H. If we consider the columns of V as data vectors, the columns of
W and those of H are interpreted as a set of nonnegative basis vectors and a set of
nonnegative coefficient vectors, respectively. Each data vector is thus reproduced ap-
proximately by a linear combination of the basis vectors with coefficients stored in
the corresponding column of H. In this sense, NMF can generate a reduced repre-
sentation of the original data. Moreover, the basis vectors often represent parts of the
object because of the nonnegativity constraints [16]. This is a significant difference
between NMF and other factorization methods such as principal component analysis.
So far, NMF has been successfully applied to various problems in machine learning,
signal processing and so on [2,5,7,15,16,20,22,25].

Usually, NMF is formulated as a constrained optimization problem in which the
approximation error has to be minimized with respect to W and H subject to the
nonnegativity of these matrices. Lee and Seung [17] considered the cases where
the approximation error is measured by the Euclidean distance and the I-divergence,
and proposed iterative methods called the multiplicative updates. These updates are
widely used as simple and efficient computational methods for NMF because of the
following three advantages. First, the updates do not contain parameters like the step
size in gradient decent methods, and therefore parameter tuning is not needed. Sec-
ond, nonnegativity of the matrices Wk and H¥, the solution after k iterations, is auto-
matically satisfied if the initial matrices W° and H are chosen to be positive. Third,
implementation is easy because the update formulae are very simple.

However, the multiplicative updates of Lee and Seung have a serious drawback
that their global convergence is not guaranteed theoretically. By global convergence,
we mean that, for any initial solution, the sequence of solutions contains at least one
convergent subsequence and the limit of any convergent subsequence is a station-
ary point of the corresponding optimization problem. The main difficulty in proving
global convergence is that the updates, which are expressed in the form of a fraction,
are not defined for all pairs of nonnegative matrices. Hence the convergence analy-
sis of the multiplicative updates and their variants is an important research issue in
NMEF, and many authors have addressed this problem so far [1,10,12,18]. Finesso
and Spreij [10] studied convergence properties of the multiplicative update based on
the I-divergence minimization and proved, under the assumption that W* is normal-
ized after each update so that its Frobenius norm becomes one, that the sequences
of W* and WXH* always converge. However, their result does not guarantee conver-
gence of the sequence of H*. Lin [18] considered the case of the Euclidean distance
minimization and showed that some modifications to the original multiplicative up-
date can make it well-defined and globally convergent. However, since Lin’s modified
update is not multiplicative but additive in some cases, this result cannot be directly
applied to the original update. Recently, Badeau et al. [1] studied local stability of a
generalized multiplicative update, which includes the multiplicative updates of Lee
and Seung as special cases, using Lyapunov’s stability theory and showed that the
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local optimal solution of the corresponding optimization problem is asymptotically
stable if one of two matrices W* and H* is fixed for all k.

The objective of this paper is to show that a slight modification can guarantee
global convergence of the multiplicative updates of Lee and Seung [17]. Our at-
tention is focused on the modification proposed by Gillis and Glineur [12]. Their
update, which is a modified version of the Euclidean distance-based multiplicative
update of Lee and Seung [17], returns a user-specified positive constant if the orig-
inal update returns a value less than the constant. Note that unlike the updates of
Lin [18] and Finesso and Spreij [10], normalization procedure is not involved. Gillis
and Glineur proved that their modified multiplicative update decreases the objective
function monotonically and that if a sequence of solutions generated by the update has
a limit point then it is necessarily a stationary point of the corresponding optimization
problem [12]. However, this does not imply global convergence of the update.

In this paper, we consider not only the Euclidean distance-based multiplicative
update but also the I-divergence-based one, and prove that their global convergence
is guaranteed if they are modified as described by Gillis and Glineur [12]. Our proof
is based on Zangwill’s global convergence theorem [28, p.91] which is a fundamen-
tal result in optimization theory and has played important roles in the convergence
analysis of many algorithms in machine learning [21,23,26]. We also propose two
algorithms based on the modified updates. They always stop within a finite number
of iterations after finding an approximate stationary point of the optimization prob-
lem.

There are many other approaches that attempt to solve NMF optimization prob-
lems. For example, some authors modified the multiplicative updates of Lee and Se-
ung by adding a small positive constant to the denominators so that they are defined
for all nonnegative matrices [3,18]. Also, some authors proposed to apply different
optimization techniques to NMF optimization problems [3,7,19]. Furthermore, some
authors derived a variety of multiplicative updates by considering various types of
divergence between V and WH [1,6,9,27]. Although these updates are potentially
superior in some cases, we will not consider them in this paper.

The rest of this paper is organized as follows. In Section 2, we introduce briefly
the NMF optimization problems and the multiplicative updates of Lee and Seung. In
Section 3, the modified multiplicative updates based on the idea of Gillis and Glineur
are first introduced and then convergence theorems for these updates are presented. In
addition, algorithms based on the modified multiplicative updates are proposed and
their finite termination is proved. In Section 4, the convergence theorems in Section
3 are proved using Zangwill’s global convergence theorem. Finally, in Section 5, we
conclude the paper with a brief summary.

Part of this paper (Theorem 1 in Section 3) was presented in the authors’ con-
ference paper [14]. However, no rigorous proof was given there because of space
limitation. In this paper, not only Theorem 1 but also some new results (Theorems 2,
3 and 4) are presented with their complete proofs.
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Fig. 1 Nonnegative matrix factorization. A given nonnegative matrix V' is approximated by the product of
two nonnegative matrices W and H. The j-th column of V is approximated by the linear combination of
the columns of W where coefficients are the elements of the j-th column of H.

2 Nonnegative matrix factorization and multiplicative updates

Given a nonnegative matrix V € R’7”" where R, denotes the set of nonnegative real
numbers, and a positive integer r < min(n,m), NMF is the problem of finding two
nonnegative matrices W € R"*" and H € R’ such that V is approximately equal to
WH (see Fig.1). Throughout thlS paper, we assume the following.

Assumption 1 Each row and column of V has at least one nonzero element.

Let us consider each column of V as a data vector. If the value of r is sufficiently
small, a compact expression for the original data can be obtained through NMF be-
cause the total number of elements in the factor matrices W and H is less than that of
the original matrix V. Moreover, the columns of W are regarded as a kind of basis for
the space spanned by the columns of V because each data vector can be approximated
by a linear combination of the columns of W (see Fig. 1).

Lee and Seung [17] employed the Euclidean distance and the I-divergence for
the approximation error between V and WH, and formulated NMF as two types of
optimization problems. In the former case, the problem is expressed as

minimize fg(W,H)= ||V —WH|?

subjectto W >0, H > 0, M

where || - || represents the Frobenius norm, that is,

IV —wH|? = ZZ i — (WH)ij)?,
i=1j=

and the inequality W > O (resp. H > 0) means that all elements of the matrix W (resp.
H) are nonnegative. In the latter case, the problem is expressed as

minimize fp(W,H)=D(V||WH)

subjectto W >0, H >0, 2)

where D(+||) is defined by

n m

piviwi) =3, 3 {won i v v}

i=1j=1
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It is difficult in both cases to find a global optimal solution because the objective
functions fg(W,H) and fp(W,H) are not convex. In fact, NP-hardness of NMF was
proved by Vavasis [24]. Therefore, we have to take the second best way, that is, we
try to find a local optimal solution instead of a global one. For this purpose, Lee and
Seung [17] proposed the update rule

HH gk (WHTV);
aj aj ((Wk)TWka)aj ? 3
WhH — k VH)ia
ia T Tia (WkHKHL(HKD)TY,
for the optimization problem (1), and the update rule
HH gk Yi WiVii/ (WhHY);;
aj — aj n k )
i=1 VVia (4)
k+1 k27=1Ht]z<jHVf//(WkaH)U
VVia = W/i(l m Hk+1 b
j=1""aj

for the optimization problem (2), where k represents the iteration count!. The updates
like (3) and (4) are called the multiplicative updates because the new estimate is
given by the product of the current estimate and some factor. An advantage of these
multiplicative updates is that, unlike conventional gradient descent methods, there
are no parameters to tune. Another advantage is that positiveness of W* and H* is
guaranteed for all k under Assumption 1 if the initial matrices W° and H® are chosen
to be positive [19]. For these reasons, the multiplicative updates (3) and (4) are widely
used as simple and effective methods for finding local optimal solutions of (1) and

2).

3 Modified multiplicative updates and their global convergence

The most serious drawback of the multiplicative update rules described by (3) and (4)
is that the right-hand sides are not defined for all nonnegative matrices W* and H* (or
H**1). For example, in the case of Euclidean distance, we cannot obtain H**! by the
update rule (3) when H* = 0, because the denominator of the first equation vanishes.

As mentioned in Section 2, WX and H* are positive for all & if the initial matrices
WO and H® are chosen to be positive. Hence the updates can be performed infinitely
many times. However, even though the sequence {(W*, H*)}7_ converges, it is not
guaranteed that both limy_,., W* and limy_,. H* are positive. This means that the
update rules may not be defined at limy_,..(W*, H*), which makes it difficult to prove
their global convergence using known results such as Zangwill’s global convergence
theorem [28, p.91].

In this section, we introduce slightly modified versions of the update rules (3) and
(4) which are based on the idea of Gillis and Glineur [12], and present convergence

! Although it is not explicitly written in their original paper [17] which of H* and H**! is used for the
computation of W1, we consider the latter case throughout this paper as in [18].
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theorems. We also propose two algorithms based on the modified updates and prove
their finite termination.

3.1 Euclidean distance

In order to prevent elements of matrices WX and H* from vanishing, Gillis and
Glineur [12] have proposed to modify the update rule (3) as

Wk TV B
H(fjH = max <Hk M,e) ,

k+1
1 _ k (VEHT) )i
sza max (VVM(Wka+1(Hk+1)) €5

where € is any positive constant specified by the user. Each update in (5) returns the
positive constant € if the corresponding original update in (3) returns a value less than
€. This is the only difference between these two update rules. With the modification
of the update rule from (3) to (5), we have to modify also the optimization problem
(1) as follows:

®)

minimize fg(W,H)= ||V —WH|?
subjectto Wy, > €, H,; > €, Vi,a,j.
The feasible region of this optimization problem is denoted by X, that is,

(6)

X = {(W7H>|"Vm Z 87 Haj 2 87 Vi7aaj}'

Karush-Kuhn-Tucker (KKT) conditions [4] for the problem (6) are expressed as fol-
lows:?

Wie>e, VYia, 7

Hy>e, Va,j, @®)
(Vwfe(W,H))i >0, Via, )
(Vufe(W,H))aj >0, Va,j, (10)
(Vwfe(W,H));q(€ — VVm):O, Vi,a, (11D
(Vi fe(W,H))aj(€ —Haj) =0, Va,j, (12)

where

Vi fa(W,H) = 2(WH —V)H"
Vufe(W,H) = 2WT (WH —V).

Therefore, a necessary condition for a point (W,H) to be a local optimal solution
of (6) is that the conditions (7)—(12) are satisfied. Hereafter, we call a point (W,H) a
stationary point of (6) if it satisfies (7)—(12), and denote the set of all stationary points
of (6) by Sg.

The global convergence property of the modified update rule (5) is stated as fol-
lows.

2 The conditions (7)—(12) are derived by eliminating Lagrange multipliers in the original KKT condi-
tions.
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Theorem 1 Let {(W* H*)}7_, be any sequence generated by the modified update
rule (5) with the initial point (WO H) € X. Then (W*,H¥) € X holds for all positive
integers k. Moreover, the sequence has at least one convergent subsequence and the
limit of any convergent subsequence is a stationary point of the optimization problem

(6).

Proof of Theorem 1 will be given in the next section.

By making use of Theorem 1, we can immediately construct an algorithm that
terminates within a finite number of iterations. To do so, we relax the conditions
9)-(12) as

(Vwfe(W,H));q > =01, Vi,a, (13)
(Vufe(W,H))aj > =61, Vj,a, (14)
Wia —€ < & if (Vwfe(W,H))ia > 61, Via, 15)
H,j—e<& if (Vuafe(W,H))4j> b1, Va,j, (16)

where 6; and &, are any positive constants specified by the user, and employ these
relaxed conditions as a stopping criterion. Let Sg be the set of all (W, H) € X satisfy-
ing (13)—(16). Then the proposed algorithm is described as follows:

Algorithm 1

Input: V e R, reN,£>0,6,>0,8 >0

Step 1: Choose (W%, H®) € X and set k = 0.

Step 2: Find (W**!, H**1) by the update rule (5).

Step 3: If (WKt! g 1) € §g then return W**! and H*¥*!. Otherwise add 1 to k and
go to Step 2.

Theorem 2 For any positive constants €, 8, and &,, Algorithm 1 stops within a finite
number of iterations.

Proof Let {(Wk ,H*)}% | be any convergent subsequence of the sequence {(W*, H*)}7
generated by the modified update rule (5), and (W,H) € X be the limit of the subse-
quence. Then, by Theorem 1, (W, H) satisfies

(Vw fe(W,H))ia 2 0, Vi.a,
(Vafe(W,H))aj 20, Va,j,
(Vw fe(W,H))ia(€ —Wia) =0, Vi,a,
(Vufe(W,H))aj(e —Hyj) =0, Va,j.
Recall that Vy fg(W,H) and Vg fs(W, H) are continuous for all (W,H) € X. For all
(i,a) such that (Vy fi(W,H));, = 0, there exists a positive integer L}, such that

|(Vw fe(WR HY))i < 8y, VI L,

For all (i,a) such that (Vy fg(W,H))ia > 0, there exists a positive integer L}, such
that
(Vi fe(WH H )iy > —8) and Wy —e< &, VI>L]

uanr
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because W;, = € holds. For all (a, j) such that (Vg fg(W,H)),; = 0, there exists a
positive integer Li ; such that

|(Vw fe(WH HY))i < 8y, VI> L,

a-*

For all (a, j) such that (Vg fe(W,H))a; > 0, there exists a positive integer L2 j such
that
k

(Vufe(W, H))yj > =8, and H)! —e <&, VI>Ly,
because I-_Iaj = & holds. From these considerations, we immediately see that there
exists a positive integer L such that the stopping criterion of Algorithm 1 is satisfied
for all (W% H*) with [ > L. This means that Algorithm 1 always stops within a finite
number of iteration. O

3.2 I-divergence

As in the case of Euclidean distance, we modify the update rule (4) as

n WEVE /(WEHF);;
k+1 k =i=1""ia"ij 1
Haj+ = max <Haj T WE JE
= a
u H (17)

m HkJer"/(Wka_H)“
=1 j 1y )
Wi — max | Wi =/ €
ia ia m Hk ) ’
v=141av

where € is any positive constant specified by the user. The modified update rule cor-
responds to modifying the optimization problem (2) as follows:

minimize fp(W,H)=D(V|WH)

subjectto W, > €, H,; > €, Vi,a,j. (18)

The feasible region of this optimization problem is X as in the case of (6). KKT
conditions for the problem (18) are expressed as follows:?

Wiu > €, Vi,a, (19)

H,; > €, Va,j, (20)
(VWfD(W,H)),-a >0, Vi,a, 21

(Vi fo(W,H))aj >0, Va,j, (22)
(VWfD(W, H))ia(e—W;) =0, Via, (23)
(Vi fo(W,H))aj(€ —Haj) =0, Va,j, (24)

where

o o ~ VijH,j
(VWfD(WvH))m ]; {H‘U (WH),']'} ’

3 The conditions (19)—(24) are derived by eliminating Lagrange multipliers in the original KKT condi-
tions.
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(Vo W)y = ¥ {Wa— e}

Therefore, a necessary condition for a point (W, H) to be a local optimal solution of
(18) is that the conditions (19)—(24) are satisfied. Hereafter, we call a point (W, H)
a stationary point of (18) if it satisfies (19)—(24), and denote the set of all stationary
points of (18) by Sp.

The global convergence property of the modified update rule (17) is stated as
follows.

Theorem 3 Let {(Wk7Hk)},;'°:0 be any sequence generated by the modified update
rule (17) with the initial point (W, H®) € X. Then (WX H*) € X holds for all positive
integers k. Moreover, the sequence has at least one convergent subsequence and the
limit of any convergent subsequence is a stationary point of the optimization problem
(18).

Proof of Theorem 3 will be given in the next section.
By making use of Theorem 3, we can easily construct an algorithm that terminates
within a finite number of iterations. To do so, we relax the conditions (21)—(24) as

(Vwfo(W,H))iu > —61, Vi,a, (25)
(Vafo(W,H))aj > =81, Va,j, (26)
Wia —€ < & if (Vwfp(W,H))ia > 61, Vi,a, (27)
Hyj—€ <& if (Vufo(W,H))sj > 01, Va,j, (28)

where 6; and &, are any positive constants specified by the user, and employ these
relaxed conditions as a stopping criterion. Let Sp be the set of all (W, H) € X satisfy-
ing (25)—(28). Then the proposed algorithm is described as follows:

Algorithm 2

Input: Ve R, reN,€>0,8; >0,8 >0

Step 1: Choose (W, H®) € X and set k = 0.

Step 2: Find (W**!, H*1) by the update rule (17).

Step 3: If (W1 H**1) € §p then return W*+! and H*!. Otherwise add 1 to k and
go to Step 2.

Theorem 4 For any positive constants €, 8 and &,, Algorithm 2 stops within a finite
number of iterations.

We omit the proof of Theorem 4 because it is almost same as the proof of Theo-
rem 2.

3.3 Related works

The modified update rule (5) was first proposed by Gillis and Glineur [12], as stated
above. They proved not only that fg(W*, H*) is nonincreasing under (5) but also that
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if a sequence of solutions generated by (5) has a limit point then it is necessarily a
stationary point of the optimization problem (6), but these facts are not sufficient to
prove global convergence of (5). As a matter of fact, we cannot rule out, for exam-
ple, the existence of a sequence {(W*, H*)}%_ such that fg(W*, HY) takes the same
value for all k£ and the sequence visits a finite number of distinct points periodically.
However, on the other hand, in another paper [13], they showed through numerical
experiments that (5) works better than the original update rule (3) in some cases. This
indicates that (5) is important not only from a theoretical point of view but also in
practice.

Lin [18] proposed a modified version of (3) and proved that any sequence {(W*, H*)}_,
generated by the modified rule has at least one convergent subsequence and their lim-
its are stationary points of the optimization problem (1). However, Lin’s update rule
considerably differs from the original one because of many extra operations. In par-
ticular, in the case where (Vp fe(W*, H¥)),; is negative and Hé‘j is less than a user-
specified small positive constant, Lin’s update rule is not multiplicative but additive.
Also, the matrix W* must be normalized after each update in order to guarantee that
the sequence {(W* ,Hk)};’:() is in a bounded set. In contrast, the normalization is
not required in the modified update rule (5). Nevertheless, the boundedness of the
sequence {(WX H¥)}7_, generated by (5) is guaranteed as shown in the next section.

Finesso and Spreij [10] studied the convergence properties of the multiplicative
update (4) by interpreting it as an alternating minimization procedure [8]. Under the
assumption that the matrix W* is normalized after each update, they proved that any
sequence {(WK H¥)}_, generated by (4) satisfies the following properties: 1) W*

converges to a nonnegative matrix. 2) For each triple (i,a, j), Wz];HZf ; converges to

a nonnegative number. 3) For each pair (a, j), H, ff ; converges to a nonnegative num-
ber if limg_ye0 Y1 ; Wl]; > 0 [10, Theorem 6.1]. However, they said nothing about the
convergence of H 5 f for the case where limy_;e, Y7 Wiy, = 0.

Badeau et al. [1] studied the local stability of a generalized multiplicative update,
which includes (3) and (4) as special cases, using Lyapunov’s stability theory and
showed that the local optimal solution of the corresponding optimization problem is
asymptotically stable if one of two factor matrices W and H is fixed to a nonnegative
constant matrix.

4 Proofs of Theorems 1 and 3

We will prove Theorems 1 and 3 in this section. The first parts of these theorems ap-
parently follow from the update rules (5) and (17). In order to prove the second parts,
we make use of Zangwill’s global convergence theorem [28, p.91], which is a funda-
mental result in optimization theory. Let A be a point-to-point mapping* from X into
itself and S be a subset of X. Then Zangwill’s global convergence theorem claims the
following: if the mapping A satisfies the following three conditions then, for any ini-
tial point (W9, H®) € X, the sequence {(WX,H¥)}7_, generated by A contains at least

4 Although A is assumed to be a point-to-set mapping in the original version of Zangwill’s global
convergence theorem, we consider in this paper its special case where A is a point-to-point mapping.
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one convergent subsequence and the limit of any convergent subsequence belongs to
S.

1. All points in the sequence {(W*,H¥)}_ belong to a compact set in X.
2. There is a function z : X — R satisfying the following two conditions.
(a) If (W,H) ¢ S then z(A(W,H)) < z(W,H).
(b) If (W,H) € S then z(A(W,H)) < z(W,H).
3. The mapping A is continuous in X \ S.
In the following, we will first prove Theorem 1 by showing that these conditions
are satisfied when the mapping A is defined by (5) and S is set to Sg. We will next
prove Theorem 2 by showing that these conditions are satisfied when the mapping A
is defined by (17) and S is set to Sp.

4.1 Proof of Theorem 1

Let us rewrite (5) as
Hk+1 :Al(Wk,Hk),
Wk+l :Az(Wk Hk+l)
or, more simply,
(Wk+1 ,Hk_H) :A(Wk,Hk) ,
where the mapping A is defined by
A(WaH) = (AZ(W7A1 (W7H))7Al (W7H)) .

Let us also set S = Sg. Since the mapping A is continuous in X, the third condition of
Zangwill’s global convergence theorem is satisfied. We will thus show in the follow-
ing that A also satisfies the remaining two conditions.

The following lemma guarantees that the first condition is satisfied.

Lemma 1 For any initial point (W°,H®) € X, the sequence {(W*,H*)}%_, gener-
ated by the mapping A belongs to a compact set in X.

Proof Let (W,H) be any point in X. Then we have

) (WTV)aj . rioi WiaVij
YWIWH)a; Y (WIW) aHy
) Z;l:] VViaVij
TXi1 (T WiaWa ) Hy,
_ Haj Z?:] VViaVij
P WiaHaj+ X1 g2a(L1y WiaWa ) Hij
Z?:l WiaVij
;l:] W,%, + Z,’:L#a(ZLl WiaWil)(Hlj/Haj)
er‘l:] VViaVij
L Wa

=H,
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Yio (Wia/ ZZ:lWﬁa) Vij
JEm e
_V 1V

ey/n

from which the inequality

VISV
=17
(Ay(W,H))4j < max !

VI

=

holds for any pair (a, j). Note that the right-hand side is a constant which depends on
neither W nor H. Similarly, we have

/ )
vHT). ijl‘/‘.
W VH Jia  VEZUH

(WHHT)iq ev/m

from which the inequality

/ ".le.Z
(As(W,H))ig <max | Y—— " ¢

e/

holds for any pair (i,a). Note that the right-hand side is a constant which depends
on neither W nor H. Hence A(W, H) belongs to a compact set in X. This means that,
for any initial point (W% H°) € X, the sequence {(W*,H*)}%_ generated by the
mapping A belongs to a compact set in X. O

The last step is to prove that the second condition of Zangwill’s global conver-
gence theorem is also satisfied. To do this, we first need to introducg two auxiliary
functions for fg. Let (W,H) be any point in X. Let the function gJ! : [€,00)" x
[€,00)™ — R be defined by

a r m A
gt (H.H) = fsW.H)+ Y Y gt ;(Haj H'),
a=1 j=1

where the function ggvaj : [g,00) X [€,00)" — R is defined by

; s WIWH'),;
il (Hag, H) = 2007 OV V)5~ )+ 2 P 112 09)
aj

Similarly, let the function hg 2 [£,00)"7 X [€,00)"*" — R be defined by

WE W W) = fsW,0)+ Y Y Wl (Wi, W), (30)

i=la=1
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where the function h]’;’ia i [£,00) X [€,00)"*" — R is defined by

(W'HAT),,

hEza(VViaaW/) = 2((W/ﬂ - V)I:IT)ia(u/ia - VVILZ) + w!
ia

(Wia = Wi)*

The functions glvg and hIE{ are essentially the same as the auxiliary functions consid-
ered by Lee and Seung [17], though mathematical expressions are slightly different.
However, note that the domains of gg/ and hg are restricted to [€,00)"*" X [g,c0) >/
and [€,00)"*" x [€,00)"*" respectively, in the present paper. This is an important dif-
ference between our functions and theirs.

In the following, we give five lemmas which are needed to prove that the sec-
ond condition of Zangwill’s global convergence theorem is satisfied. Although some
of them can be immediately obtained from some of the results given by Lee and
Seung [17], we will provide proofs for all lemmas in order to make this paper self-
contained.

Lemma 2 For any W € [g,00)"", the function gy satisfies the following two condi-
tions:

gl (H,H) = fa(W,H), VH € [g,0)™", 31

gF (H.H') > fo(W,H), VH,H' € [e,o2)"". (32)
Also, for any H € [€,0)™™, the function hlg satisfies the following two conditions:

W (W, W) = fa(W,H), YW € [g,00)"",

W (WW') > fa(W,H), YW,W' € [g,00)""".

Proof We prove only the first part because the second one can be proved in the same
way. Since ggvaj (Haj,H) = 0holds for all H € [€,00)"" and indices a and j, the first
condition (31) is satisfied. To see that the second condition (32) is also satisfied, we
first rewrite fE(VAV7H ) using the Taylor series expansion as

feW,H) = fa(W,H)+ Y Y 20W (WH' =V))aj(Haj — Hy))
a=1 j=1

m

=

-
M\

+ Y (W'W)ay(Haj — Hy ) (Hy; — Hy ).
a=1b=1 j=1
Then we have
o m ror H..—H . Hb‘—H/-
A aj J b
sttt = £ £ 5w (B ) (B0 o
j=la=1b=1 aj bj
where 0
Mgy = 8 (W' WH')ojHy; — (W'W) pHo i Hy (34)

and &, represents the Kronecker’s delta. We next show that the matrices M () =
[MzEZ?] (j =1,2,...,m) are positive semi-definite for all W € [g,00)"" and H' €
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[€,00)™ 1If this is true, the right-hand side of (33) is nonnegative for all H,H' €
[€,00)"™ Since the right-hand side of (34) can be rewritten as

X r
Mt(,i) = 8 Y, (WI'W)uH};Hy; — (WTW) o H, Hy

1=
_ {Z;Al,l;ég(WTW)alH;jH;j, ifa=b
7(WTW)abH(;jHll,j, if a ;é b,

the matrix M) satisfies

. r .
M@= Y MY a=12,..r,
I=1l#a

which means that M/ is real, symmetric and diagonally dominant with positive di-
agonal elements. Therefore, M ) (j=1,2,...,m) are positive semi-definite. O

Lemma 3 Let (W,H) be any point in X. Then ggv (H,H), which is considered as a
function of H, is strictly convex in [€,0)"™™. Also, ki (W,W), which is considered as
a function of W, is strictly convex in [€,00)" ",

Proof The second-order partial derivatives of gg/ (H,H) are given by

0 /] WIWH),; . . ,
Pl (H,A) [ Wi i (q,j) = (. )
ZOENVT »
OH,joHy 0, otherwise,,

where (a, j), (d',j') € {1,2,...,r} x{1,2,...,m}. Since (W' WH),;/H,;is a positive

constant, gy (H,H) is strictly convex in [€,0)"". The second part can be proved in
the same way. a

Lemma 4 Let (W,H) be any point in X. The optimization problem

minimize g¥ (H,H) (35)
subjectto Hyj > €, Va,j

has a unique optimal solution which is given by Al(W,I-AI ). Also, the optimization
problem
minimize h(W,W) (36)
subject to Wy, > €, Vi,a
has a unique optimal solution which is given by Ax(W, H).

Proof 1t suffices for us to show that for any pair (a, j), the optimization problem

minimize g}, i(Hq i H)

. 37
subject to H,; > €
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has a unique optimal solution which is given by (A;(W,H)),; and that for any pair
(i,a), the optimization problem

A

minimize hEm( W) (38)
subject to W, > ¢

has a unique optimal solution which is given by (A2(W,H)),;. In the following, we
consider only the first part because the second part can be proved similarly. Since
gg; (Ha i, H) is strictly convex in [€,), the equation dgg/a (Ha ivH)/dH,; = 0 has at
most one solution in [g,00). By solving this equation, we have

. (Wly
Ha] H ( )fl/
TWIWH)

Let the right-side hand be denoted by H 2 Which is a nonnegative number. If H;; L >e
then Hy; is apparently the optlmal solution of (37). If H,; < € then € is the optlmal

solutlon of (37) because gEa j(Haj, H) is strictly monotone 1ncreas1ng in [€,00). There-
fore the optimal solution of (37) is identical with (A (W,H));. O

Lemma 5 The inequality fg(A(W,H)) < fg(W,H) holds for all (W,H) € X.
Proof By Lemmas 2 and 4, we have

oW, A1 (W, A)) < g (A1 (W, ), 0) < gf (H,0) = fu(W,H), Y(W,0) € X
and

fo(Aa(W,H),A) < W (Ay(W,H),W) < (W, W) = fu(W,H), V(W,H) €X.
From these two inequalities, we have

fe(AW,H)) = fe(A2(W,A1(W,H)), A (

g >
A
i
=
=
=
B
A
=
=
=

which completes the proof. O
Lemma 6 (W,H) € Sg if and only if H and W are the optimal solutions of (35) and
(36), respectively.

Proof 1t suffices for us to show that (W,H) € Sg if and only if H,; is the optimal
solution of (37) for any pair (a, j) and W, is the optimal solution of (38) for any pair
(i,a). By the definition (29) of g}, ;(Ha;, H ), we have

8gg’aj(Haj7ﬂ)
OH,;

= (Vafe(W,H))4,
H,

aj=Haj

Since g]V;Va ]-(Ha j7I-AI ) is strictly convex in [€,00), the necessary and sufficient condition
for A, ; to be the optimal solution of (37) is given by

. =0,if H; > ¢
(VHfE(W,H))aj{ > 0. if H{fe
— Y, aj —
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which is equivalent to the set of conditions (8) and (10). By the definition (30) of
hgia ("Via, W), we have

Ontl (Wiy, W o
Ohiy(Wia, W) = (Vwfe(W,H))ia, Via.
oWy, .

Wia=W,

Hence the necessary and sufficient condition for W to be the optimal solution of (36)
is given by

ooy [ =00 Wu>e
(VWfE(W7H))ld { > 0’ if ‘;Via —e Vl,th

which is equivalent to the set of conditions (7) and (9). a

From Lemmas 4-6, we derive the following lemma which claims that the second
condition of Zangwill’s global convergence theorem is satisfied by setting z = fg.

Lemma 7 Let (W,H) be any point in X. If (W,H) € Sg then AW, H) = (W,H).
Otherwise fg(A(W,H)) < fe(W,H). That is, Sg is identical with the set of fixed
points of the mapping A.

Proof We first consider the case where (W,H) € Sg. By Lemma 6, H and W are
unique optimal solutions of (35) and (36), respectively. By Lemma 4, this implies
A1(W,H) = H and Ay(W,H) = W. Therefore, we have

A(WJ:I) = (Az(W,A](W,FI)),A1<W,PI>) = (AZ(W7[:I)aﬁ) = (WJ:I)

We next consider the case where (W,FI ) & Sg. In this case, by Lemma 6, at least one
of the following statements must be false: 1) H is the unique optimal solution of (35).
2) W is the unique optimal solution of (36). Suppose that the statement 1) does not
hold true. Then, by Lemma 4, we have gl‘g/ (A (W,H),H) < gé’ (H,H) which implies
that the second inequality of (39) holds as a strict inequality. Therefore, f(A(W,H))
is strictly less than fg(W,H). Suppose next that the statement 1) holds true but 2) does
not. Then, by Lemma 4, we have A; (W,H) = H and hg (A (W, H),W) < hg(W,W).
From these facts and (39), we have

~ A

Je(AW,H)) = fe(A(W,A (W, H)),A1(W,H)) = fe(Ay(W,H),H) < fe(W.H).

Therefore, fr(A(W,H)) is strictly less than fg(W,H). O

4.2 Proof of Theorem 3
As in the proof of Theorem 1, let us rewrite (17) as

Hk+1 :A] (Wk,Hk) \
Wk+1 :Az(Wk,Hk+1),
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or, more simply,
(Wk+1 ,Hk+1) ZA(Wk,Hk) ,

where the mapping A is defined by
A(WaH) = (A2(W7Al (W7H))7Al (W7H)) .

Let us also set S = Sp. Since the mapping A is continuous in X, the third condi-
tion of Zangwill’s global convergence theorem is satisfied. We will thus show in the
following that A also satisfies the remaining two conditions.

The following lemma guarantees that the first condition is satisfied.

Lemma 8 For any initial point (W°,H®) € X, the sequence {(W*,H*)}7_, gener-
ated by the mapping A belongs to a compact set in X.

Proof Let (W,H) be any point in X. Then we have
Yy WidVij/(WH)i; WiaVij
i1 Wia B a]Z et Wua X WiH,
R- WiaVij
’ ,ZT Yot WaaWiaHaj + X1y 1o WirHij)
WiaVij
Y1 Wua{Wia + X 2o Wa (Hij/Haj) }
WiaVij
11=1 Wua)Wia
Yy
=1 L1 Waa

C Iy
— 8}1 b

Hy;j

I
&

Il
M:

Il
-

—

N
™=

=

from which the inequality
Vi
(A1 (W, H)).y < max (Zs)
' en
holds for any pair (a, j). Note that the right-hand side is a constant which depends on
neither W nor H. Similarly, we have
Y HeVij/(WH);j - Y Vij

m
j=1 Haj Em

Wia

from which the inequality

(A2(W,H))iq < max (ZJS;VU 78>

holds for any pair (i,a). Note that the right-hand side is a constant which depends
on neither W nor H. Hence A(W, H) belongs to a compact set in X. This means that,
for any initial point (W% H°) € X, the sequence {(W*,H*)}*  generated by the
mapping A belongs to a compact set in X. a
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The last step is to prove that the second condition of Zangwill’s global conver-
gence theorem is also satisfied. To do this, we first need to introduce two auxil-
iary functions fp. Let (W,H) be any point in X. Let the function g]v)i/ D [€,00)7M X
[€,00)" — R be defined by

Vi oo WiaH,;'
ViilogVii —Vii+ ——2+—Y W,H log ——
1{ st (WH')-; W W),

U a

™=
(ngE

gVDV(H’H/) =
1j

~.
I

+
-
Ms

gDa/(Hllij)

a 1

Lj

where the function glvg aj © [€:0°) X [€,00)7™ is defined by

|14 no_ % W ; Wlthl]
gDaj(Hﬂj’H ) = Haj Z a/ Z WH, (VVWHIU)
i=1 l]

Similarly, let the function gD [€,00)™" X [€,00)"*" — R be defined by

b4 no_ | Vij SN 1 VVI»;I:Iaj
hD<W7W) - Vl/ Ong/ th+ (W H) Z‘}ViaHaj 0g (W’I:I)ij

-
M= ™=

i=1j ij a=

+ Z Dia VVW’W

Il
_

I

where the function hgm : [€,00) X [€,00)"" — R is defined by

, m ~ w! H i
‘/‘/ ‘/‘/ — . V.. ia”"a g y .
tha( ia; W') = j§:1 { WiaHaj —Vij (ﬂ”H) IOg(WmHaj)} .

The functions gg/ and hg are essentially the same as the auxiliary functions con-
sidered by Lee and Seung [17], though mathematical expressions are slightly differ-
ent. In the following, we give five lemmas which are needed to prove that the second
condition of Zangwill’s global convergence theorem is satisfied. Although Lemmas
9 and 10 below can be immediately obtained from some of the results given by Lee
and Seung [17], we will provide proofs for these lemmas in order to make this pa-
per self-contained. On the other hand, as for Lemmas 11, 12 and 13, we omit proofs
because they are similar to those for Lemmas 4, 5 and 6.

Lemma9 Let (W,I:I ) be any point in X. The function gvg satisfies the following two
conditions:

eV (H.H) = fo(W,H), VH € [g,00)™", (40)

gp (H,H') > fo(W,H), VH,H' € [e,00)”™. (41)
Also, the function hg satisfies the following two conditions:

WI(WW) = fo(W,H), YW € [g,00)",

KWWY > fo(W,H), YW,W' € [g,00)™ .



Global convergence of modified multiplicative updates for nonnegative matrix factorization 19

Proof We prove only the first part because the second part can be proved in the same
way. For any W € [g,0)"" and H € [g,0)"™™, gl (H,H) can be transformed as

>

oQ
U=
=
=
Il
-
ngE

Il
R
~.

Il
-

Vi vy WiaHa;
Vi'lo Vl*Vz“i’ = VViuHa'l =
{’ s <WH>,-~§ ),
Z{ a,ZWm H,, W,aHa,}
n m Z

(VijlogVi; —Vij) ZZVulOgWHU-i-

+
M\

Q

I
™= L

)
~.
Il

M=

i=1j=1 i=1j=1 i=1j=1
nom .

= Vii log = V+(WH)U}
B L Gy,

= fD WaH)

Thus the condition (40) holds true. In order to show (41), we consider

Hy,j  WiHj, .
7 ,\m = IOg(WH/),’j
H,;  (WH');;

ol (H.H')— fo(W,H) = ZZ ﬁ%w1—w

(42)
From the concavity of the log function,

log(WH) ij =log <Zr: ) Z Uqlog ( ZZHaj) (43)

forany H € [€,00)"*™ and any set of positive numbers fi1, llp, ..., i, suchthat Y7, pt, =
1. By substituting 1, = (VViaH;j)/(WH’)ij fora=1,2,...,rinto (43), we have

a=1 VViaH;j
r 1. H/_ H.:
ia N
> Y L Llog(WH);j+log 5 b .
Lt

which implies that the right-hand side of (42) is nonnegative for all H,H’ € [g,00)" ™.
O

Lemma 10 Let (W, H) be any point in X. Then g‘g (H,H), which is considered as a

function of H, is strictly convex in [€,00)™™. Also, Kl (W, W), which is considered as
a function of W, is strictly convex in [€,00)"*".
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Proof The second-order partial derivatives of gvg (H,H) are given by

82 (H H) HZI_ ? 1 (W )I if (aaj) = (Cl/,‘]/)
1 o aj
J Haﬁ Hyj 0, otherwise,

where (a, j),(d',j)) €{1,2,...,r} x{1,2,...,m}. Note here that (I:Iaj/Ha )Y (WiaV,

L
is positive for all H,; € [€,0) because of Assumption 1. Therefore, gD( H,H) is
strictly convex in [€,00)"*™. The second part can be proved in the same way. O

Lemma 11 Let (W,H) be any point in X. The optimization problem

minimize gg/ (H,H) (44)
subjectto H,j > €, Va,j
has a unique optimal solution which is given by Al(W H). Also, the optimization
problem
minimize hH(W,W)

45
subject to Wy, > €, Vi,a 45)

has a unique optimal solution which is given by Ay(W,H).
Lemma 12 The inequality fo(A(W,H)) < fo(W,H) holds for all (W,H) € X.

Lemma 13 (W,I:I) € Sp ifand only if H and W are the optimal solutions of (44) and
(45), respectively.

From Lemmas 11-13, we derive the following lemma which claims that the sec-
ond condition of Zangwill’s global convergence theorem is satisfied by setting z = fp.
The proof is omitted because it is similar to that for Lemma 7.

Lemma 14 Let (W,H) be any point in X. If (W, H) € Sp then AW,H) = (W,H).
Otherwise fn(A(W,H)) < fo(W,H). That is, Sp is identical with the set of fixed
points of the mapping A.

5 Conclusion

We have shown that the global convergence of the multiplicative updates proposed by
Lee and Seung is established if they are slightly modified as discussed by Gillis and
Glineur. Their idea is just to prevent each variable from becoming smaller than a user-
specified positive constant &, but this slight modification guarantees the boundedness
of solutions without normalization. Using Zangwill’s global convergence theorem,
we have proved that any sequence of solutions generated by the modified updates has
at least one convergent subsequence and the limit of any convergent subsequence is
a stationary point of the corresponding optimization problem. Furthermore, we have
developed two algorithms based on the modified updates which always stop within a
finite number of iterations after finding an approximate stationary point.

Vii/(WH);j)
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One may be concerned with the fact that matrices obtained by the modified up-
dates are always dense. However, when sparse matrices are preferable, we only have
to replace all € in the obtained matrices with zero. If € is set to a small positive num-
ber, this replacement will not affect the results significantly. It is in fact proved that
setting the entries of W and H equal to € to zero gives a solution which is £'(€) close
to a stationary point of the original problem, and that the objective function is affected
by an additive factor of at most &'(¢) [11].

The approach presented in this paper may be applied to various multiplicative
algorithms for NMF or other optimization problems. Developing a unified framework
for the global convergence analysis of multiplicative updates is a topic for future
research.
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Erratum Sheet
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1. Eq.(42) on Page 437 is not correct. It should be replaced with

) Wi  H' . H,;
! ajp
W g (W, H) § § i < log(WH § : 1 — log(WH'
7 ( 7 ) fD i=1 j=1 V] { Og ) =1 (WH/)Z']' & HC/LJ Og( ) }

which can be derived as follows:
gty (H,H') — fo(W, H)

WiaHL/z'
= ZZ{VQIOng VU+ ZWm (WH/);}

i=1 j=1 'Ua 1
room n_oo n W Vi
+ Ha' Wia_ ai #1 I/me-[a
_ZZ{ zjlog —‘/;]—F(WH)Z]}
=1 j=1 )

L Wi H, %ng
= Z VW log VU VW +Vi i Z WH’ (WH’) »
zg 17

=1 j=1
n

{Z WiaHaj — VwZ WzaH@)}
j=1 )i

J

n

>

=1

Zi{v log ‘—V»j+(WH)ij}
i=1 j=1

_l’_

n m Za}]’l WiaH, .
= ZZ‘Q log( WH U+Z ; r— -
Pt (WH) )ij (WH )iiWiaHa;
& WWH' Hoj <~ WiaHy,
- ZZVZ]{Iog / 1ogH,9—27, og(WH');; }
i=1 j=1 (WH )ij aj  am1 (WH)ij
= Zn: i Vi {log WmH, J Jog Hay log(WH') }
= i
i=1 j=1 (WH’)” Hf/w
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