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Abstract Multiplicative update rules are a well-known computational method
for nonnegative matrix factorization. Depending on the error measure between
two matrices, various types of multiplicative update rules have been proposed
so far. However, their convergence properties are not fully understood. This
paper provides a sufficient condition for a general multiplicative update rule
to have the global convergence property in the sense that any sequence of
solutions has at least one convergent subsequence and the limit of any conver-
gent subsequence is a stationary point of the optimization problem. Using this
condition, it is proved that many of the existing multiplicative update rules
have the global convergence property if they are modified slightly so that all
variables take positive values. This paper also proposes new multiplicative up-
date rules based on Kullback-Leibler, Gamma, and Rényi divergences. It is
shown that these three rules have the global convergence property if the same
modification as above is made.
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1 Introduction

Nonnegative matrix factorization (NMF), which was first introduced by Paatero
and Tapper [32], is a mathematical operation that decomposes a given nonneg-
ative matrix into two nonnegative low-rank factor matrices. Since the seminal
papers by Lee and Seung [28,29], NMF has attracted a lot of of attention from
researchers in different disciplines, and has been shown to be useful for many
applications in pattern recognition [18], text mining [3], document cluster-
ing [35, 43], signal processing [10], music analysis [20, 33], graph analysis [40],
cyber security [44], and so on.

NMF is formulated as an optimization problem in which an error between
the given nonnegative matrix and the product of two factor matrices is mini-
mized subject to the nonnegativity constraints on the factor matrices. Unlike
nonnegative rank factorization [2, 4, 5] which has a longer history, the ranks
of the factor matrices in NMF are allowed to be less than the maximum.
However, because the objective function is nonconvex with respect to the two
factor matrices, finding a global optimal solution is very difficult in general.
In fact, it has been proved that the NMF optimization problem is NP-hard
when the error is measured by Euclidean distance [39]. Therefore the goal in
solving an NMF optimization problem is to find a local optimal solution.

During the last two decades, many algorithms for NMF have been devel-
oped [6–9, 11–13, 15, 17, 19, 21, 23–25, 27–29, 31, 45]. The most well-known and
widely used algorithms are the two multiplicative update rules proposed by
Lee and Seung [28,29]: one is for NMF with Euclidean distance and the other
is for NMF with the generalized Kullback-Leibler divergence, also known as
I-divergence. The main idea behind their algorithms is to repeat the mini-
mization of an auxiliary function with respect to a subset of the variables
until a certain stopping condition is satisfied. Because the minimization of the
auxiliary function does not increase the error, it is guaranteed that the error
decreases monotonically. This idea was later applied to various error measures
such as Bregman divergence [11], a parametric divergence containing Euclidean
distance and I-divergence as special cases [27], α-divergence [7], Itakura-Saito
divergence [12], and β-divergence [13]. Furthermore, a unified method for de-
riving multiplicative update rules from a wide variety of error measures was
proposed by Yang and Oja [45]. Using this method, they obtained eleven dif-
ferent multiplicative update rules from a collection of error measures including
the ones mentioned above, Kullback-Leibler divergence, γ-divergence, Rényi
divergence, and so on. Like the multiplicative update rules of Lee and Seung,
all update rules obtained by this method have the property that the error
decreases monotonically.
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Although the original multiplicative update rules have some good proper-
ties as stated above, they have a serious drawback that the convergence to a
stationary point is not guaranteed theoretically. The error decreases monoton-
ically, but this does not mean the convergence of the sequence of solutions. In
fact, it was shown by numerical experiments that the multiplicative update
rule based on Euclidean distance does not converge to an local optimal solution
for some problems [16]. Another drawback is that every multiplicative update
is not well-defined in the feasible region of the NMF optimization problem.
For example, if one of the two factor matrices is a zero matrix, the update
rule is not defined because the denominator is zero. Here we should note that
these two drawbacks are not independent but closely related to each other.

Many authors have studied the convergence property of the multiplica-
tive update rules proposed by Lee and Seung and their variants. Finesso and
Spreij [14] considered the I-divergence based multiplicative update rule and
proved the convergence of the left factor matrix and the product of the two
factor matrices under the assumption that the right factor matrix is normal-
ized after each update. Lin [30] considered a modified version of the Euclidean
distance based multiplicative update rule and proved that the sequence of so-
lutions converges to a stationary point in some sense. Gillis and Glineur [15]
considered another modified version of the Euclidean distance based multi-
plicative update rule, which returns a user-specified positive constant if the
original update rule returns a value less than the constant, and proved that
if the sequence of solutions converges then it is a stationary point. Takahashi
and Hibi [36] proved that the multiplicative update rules based on Euclidean
distance and I-divergence combined with the modification of Gillis and Glineur
have the global convergence property in the sense that any sequence of solu-
tions has at least one convergent subsequence and the limit of any convergent
subsequence is a stationary point. Badeau et al. [1] studied the local stability
of a generalized multiplicative update rules by Lyapunov’s stability theory and
showed that the local optimal solution is asymptotically stable if one of the
two factor matrices is fixed to a nonnegative constant matrix. Zhao and Tan
recently performed a unified convergence analysis of the multiplicative update
rules for NMF with ℓ1 regularization [47].

In this paper, we consider a wide class of error measures including Eu-
clidean distance, I-divergence and all other divergences mentioned above, and
provide a general sufficient condition on the error measure and the auxiliary
function for the obtained multiplicative update rule combined with the mod-
ification of Gillis and Glineur [15] to have the global convergence property
in the same sense as Takahashi and Hibi [36]. We then apply our results to
the eleven error measures considered by Yang and Oja [45], and show that
all of them satisfy the sufficient condition for the global convergence except
Kullback-Leibler divergence, γ-divergence and Rényi divergence. Finally, we
propose three new error measures based on these divergences and show that
the obtained update rules have the global convergence property.

It is often said that the multiplicative update rules are slow. In fact, many
faster algorithms have been proposed for NMF with Euclidean distance [8,
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9, 15, 17, 21, 23–25, 31]. Nevertheless, the multiplicative update rules are still
important because of its simplicity, easiness to implement, and applicability
to a wide range of error measures. We therefore focus our attention on the
multiplicative update rules in this paper, and clarify the global convergence
condition. For the convergence properties of other algorithms, see [6,19,25,26]
and references therein.

The rest of this paper is organized as follows. In Section 2, NMF and
the multiplicative update rule are briefly reviewed. In Section 3, the global
convergence of the modified multiplicative update rule is proved under some
mild assumptions on the error measure and the auxiliary function. In Section 4,
the result in Section 3 is applied to the eleven multiplicative updates obtained
by the unified method of Yang and Oja, and their global convergence is proved
except Kullback-Leibler divergence, γ-divergence, and Rényi divergence. In
Section 5, three new multiplicative update rules corresponding to these three
error measures are derived, and their global convergence is proved. In Section 6
we conclude the paper.

2 NMF and Multiplicative Update Rules

2.1 NMF Optimization Problem

Given a nonnegative matrix X ∈ Rm×n
+ , where R+ denotes the set of non-

negative real numbers, we consider the problem of finding two nonnegative
matrices W ∈ Rm×r

+ and H ∈ Rr×n+ such that

X ≈ WH (1)

where r is a positive integer less thanm and n. The operation that decomposes
a given nonnegative matrix X into two nonnegative factor matrices W and H
as shown in (1) is called nonnegative matrix factorization (NMF). Although
it is important in NMF how to choose the value of r, we do not consider this
issue in this paper. We simply assume that the value of r is given together
with X. Also, we assume throughout this paper that every row and column
of X has at least one nonzero entry. The problem of finding W and H in (1)
is formulated as a constrained optimization problem:

minimize D(W ,H)
subject to W ≥ Om×r, H ≥ Or×n

(2)

where D(W ,H) is a function representing the error between X and WH and
Om×r (Or×n, resp.) is the m × r (r × n, resp.) zero matrix. The inequality
signs between matrices are to be interpreted componentwise. In the remainder
of this paper, we call D(W ,H) the error function. Also, we denote the feasible
region of (2) by F0, that is, F0 = Rm×r

+ × Rr×n+ .
So far, various kinds of error functions such as the one based on Euclidean

distance:
D(W ,H) =

∑
ij

(Xij − (WH)ij)
2 (3)
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where (WH)ij denotes the (i, j)-th entry of the matrix WH ∈ Rm×n, and
the one based on I-divergence:

D(W ,H) =
∑
ij

(
Xij ln

Xij

(WH)ij
−Xij + (WH)ij

)
have been used [45]. All of those error functions are in general continuous in
the interior of F0, which is denoted by intF0 in this paper. However, some
of them are not well-defined on the boundary of F0. Hence, when using such
an error function, we allow it take the value +∞, that is, we regard it as an
extended real-valued function defined on F0.

2.2 Multiplicative Update Rules

Because (2) is not a convex optimization problem, it is difficult to find a
global optimal solution. As an approach to find a local optimal solution, a
class of iterative methods called multiplicative update rules [14,28,29,45] are
widely used. Given an error function D(W ,H), a multiplicative update rule
is obtained in the following manner. First, an auxiliary function of the error
function is constructed in some way. The definition of the auxiliary function
is given below. Second, for each variable, a problem of finding a unique min-
imum point of the auxiliary function under some constraints is solved. If the
minimum point is explicitly expressed in terms of the current values of W and
H, this expression leads to the multiplicative update rule.

Let us now give a formal definition of the auxiliary function.

Definition 1 (Auxiliary Function) Given an error functionD(W ,H), any

D̄(W ,H, W̃ , H̃) : intF0 × intF0 → R that satisfies

∀(W ,H, W̃ , H̃) ∈ intF0 × intF0, D̄(W ,H, W̃ , H̃) ≥ D(W ,H) (4)

and

∀(W ,H) ∈ intF0, D̄(W ,H,W ,H) = D(W ,H) (5)

is called an auxiliary function of D(W ,H).

It is important to note that we use only a single auxiliary function in this
paper, while two auxiliary functions have been used in the literature: one is
for W and the other is for H. The reason for doing this is to simplify the
analysis. In fact, the update rule for the entries of W and the update rule for
the entries of H are obtained from a common auxiliary function. When two
auxiliary functions are given, one can immediately obtain a single auxiliary
function by averaging them. If the obtained single auxiliary function satisfies
Assumptions 1–3 given later, our method can be applied.

Let D̄(W ,H, W̃ , H̃) be an auxiliary function ofD(W ,H). Let {(W (l),H(l))}∞l=0

be any sequence such that i) (W (0),H(0)) ∈ intF0 and ii) for each l ≥ 0,
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W (l+1) is obtained from W (l) and H(l) as an optimal solution of the prob-
lem:

minimize D̄(W ,H(l),W (l),H(l))
subject to W > Om×r,

(6)

and iii) for each l ≥ 0, H(l+1) is obtained from W (l+1) and H(l) as an optimal
solution of the problem:

minimize D̄(W (l+1),H,W (l+1),H(l))
subject to H > Or×n.

(7)

Then the sequence {D(W (l),H(l))}∞l=0 is monotone decreasing because

D(W (l+1),H(l+1)) ≤ D̄(W (l+1),H(l+1),W (l),H(l))

≤ D̄(W (l+1),H(l),W (l),H(l))

≤ D̄(W (l),H(l),W (l),H(l))

= D(W (l),H(l)) .

Here, the first inequality follows from (4), the second inequality follows from
the fact that H(l+1) is an optimal solution of (7), the third inequality follows
from the fact thatW (l+1) is an optimal solution of (6), and the equality follows
from (5).

For example, using Lemma 9 given in Appendix A, we can obtain an aux-
iliary function of (3) as follows:

D̄(W ,H, W̃ , H̃) =
∑
ij

(W̃ H̃)ij
∑
k

W 2
ikH

2
kj

W̃ikH̃kj

− 2
∑
ij

Xij(WH)ij +
∑
ij

X2
ij .

(8)
If (W (l),H(l)) ∈ intF0 then the problem (6) with (8) has the unique op-
timal solution, which is explicitly expressed by W (l) and H(l). Similarly, if
(W (l+1),H(l)) ∈ intF0 then the problem (7) with (8) has the unique opti-
mal solution, which is explicitly expressed by W (l+1) and H(l). From these
expressions, a multiplicative update rule described by

W
(l+1)
ik =W

(l)
ik

(X(H(l))T)ik
(W (l)H(l)(H(l))T)ik

, (9)

H
(l+1)
kj = H

(l)
kj

((W (l+1))TX)kj
((W (l+1))TW (l)H(l))kj

(10)

is obtained [28,29]. Note that the right-hand sides of (9) and (10) are positive
because we have assumed that every row and column of X has at least one
nonzero entry. Therefore, if (W (0),H(0)) ∈ intF0 then (W (l),H(l)) ∈ intF0

for all l ≥ 1. Note also that the sequence {D(W (l),H(l))}∞l=1 converges to
some constant because it is monotone decreasing and bounded from below.
However, this does not imply that the sequence {(W (l),H(l))}∞l=0 converges
to a local optimal solution of (2). In addition, even if the sequence converges
to some point, it is not guaranteed that the limit point belongs to intF0.



A unified global convergence analysis of multiplicative update rules for NMF 7

The approach described above is not restricted to Euclidean distance but
can be applied to various error functions. In fact, Yang and Oja [45] proposed a
unified method to develop multiplicative update rules and applied it to eleven
error functions. Details will be given in Section 4.

2.3 Modified Multiplicative Update Rules

The multiplicative update rule given by (9) and (10) and other multiplicative
update rules [7, 11–13, 27, 45] have a common serious problem that they are
not defined for all points in F0. For example, if all entries in the k-th row of
H(l) are zero then the denominator of the right-hand side of (9) becomes zero.
One may think this is not a serious issue because if (W (0),H(0)) belongs to
intF0 then so does (W (l),H(l)) for all l ≥ 0, as mentioned above. However,
it may occur that some of the entries of W (l) and H(l) converges to zero as
l → ∞. In this case, some of the entries of W (l) and H(l) may go to infinity
with l. In order to avoid this situation, Gillis and Glineur [15] modified (9)
and (10) as

W
(l+1)
ik = max

(
ϵ,W

(l)
ik

(X(H(l))T)ik
(W (l)H(l)(H(l))T)ik

)
, (11)

H
(l+1)
kj = max

(
ϵ,H

(l)
kj

((W (l+1))TX)kj
((W (l+1))TW (l)H(l))kj

)
, (12)

respectively, where ϵ is a user-specified positive constant. This simple modifi-
cation is general and can be applied to all multiplicative update rules.

When a modified multiplicative update rule is used, it is natural to consider
a modified optimization problem:

minimize D(W ,H)
subject to W ≥ ϵ1m×r, H ≥ ϵ1r×n

(13)

instead of the original optimization problem (2), where 1m×r (1r×n, resp.) is
the m × r (r × n, resp.) matrix consisting of all ones. Let the feasible region
of the problem (13) be denoted by Fϵ, that is,

Fϵ = {(W ,H) |W ≥ ϵ1m×r, H ≥ ϵ1r×n} .

If (W (0),H(0)) belongs to Fϵ then the sequence {(W (l),H(l))}∞l=0 generated
by (11) and (12) is contained in Fϵ. Moreover, if some entry of W (l) and H(l)

converges as l → ∞, its limit point belongs to [ϵ,∞) because this is a closed
set.

Although the original multiplicative update rule given by (9) and (10) often
produces sparse matrices, the modified update rule given by (11) and (12)
always produces dense matrices because ϵ is positive. However, if we replace
all ϵ in the factor matrices produced by the modified update rule with zero, the
resulting matrices are expected to be sparse because local optimal solutions of
(2) or (13) are often located at the boundary of the feasible region.
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3 Global Convergence of Modified Multiplicative Update Rules

3.1 Problem Setting and Main Result

In this section, we consider a general error functionD(W ,H), which is defined
on F0 as an extended real-valued function and satisfies the following properties:
i) it is continuously differentiable on intF0 (see Assumption 1 given below),
ii) D(W ,H) ≥ 0 for all (W ,H) ∈ F0, and iii) D(W ,H) = 0 if WH = X.
We then give a sufficient condition on D(W ,H) and the auxiliary function

D̄(W ,H, W̃ , H̃) for the modified update rule to have the global convergence
property in the sense of Zangwill [46]. For the update rule we are considering,
it is defined as follows.

Definition 2 (Global Convergence) Let ϵ be a user-specified positive con-
stant. An update rule is said to have the global convergence property if, for
any initial point (W (0),H(0)) ∈ Fϵ, the sequence {(W (l),H(l))}∞l=0 generated
by the update rule has at least one convergent subsequence and the limit of
any convergent subsequence is a stationary point of the optimization problem
(13).

A stationary point of (13) is a point (Ŵ , Ĥ) ∈ Fϵ such that the following
conditions are satisfied (see, e.g., [36]):

∇WD(Ŵ , Ĥ) ≥ Om×r, (14)

∇HD(Ŵ , Ĥ) ≥ Or×n, (15)

∇WD(Ŵ , Ĥ)⊙ (ϵ1m×r − Ŵ ) = Om×r, (16)

∇HD(Ŵ , Ĥ)⊙ (ϵ1r×n − Ĥ) = Or×n, (17)

where ∇WD(Ŵ , Ĥ) (∇HD(Ŵ , Ĥ), resp.) is them×r (r×n, resp.) matrix of
which the (i, k)-th ((k, j)-th, resp.) entry is the value of ∂D/∂Wik (∂D/∂Hkj ,

resp.) at (Ŵ , Ĥ) and ⊙ denotes the componentwise multiplication of two
matrices of the same dimension. In this paper, the set of stationary points of
(13) is denoted by Sϵ.

We now give three assumptions about the error function and the auxiliary
function.

Assumption 1 D(W ,H) and D̄(W ,H, W̃ , H̃) are continuously differen-
tiable on intF0 and intF0 × intF0, respectively.

Assumption 2 For any (Ŵ , Ĥ) ∈ intF0, the following equalities hold:

∇W D̄(Ŵ , Ĥ, Ŵ , Ĥ) = ∇WD(Ŵ , Ĥ) ,

∇HD̄(Ŵ , Ĥ, Ŵ , Ĥ) = ∇HD(Ŵ , Ĥ)

where ∇W D̄(Ŵ , Ĥ, Ŵ , Ĥ) (∇HD̄(Ŵ , Ĥ, Ŵ , Ĥ), resp.) is the m× r (r×n,
resp.) matrix of which (i, k)-th ((k, j)-th, resp.) entry is the value of ∂D̄/∂Wik

(∂D̄/∂Hkj , resp.) at (Ŵ , Ĥ, Ŵ , Ĥ).
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Assumption 3 D̄(W ,H, W̃ , H̃) satisfies the following conditions.

1. D̄(W ,H, W̃ , H̃) is separable in the sense that it is expressed as

D̄(W ,H, W̃ , H̃) =
∑
ijk

D̄1
ijk(Wik,Hkj , W̃ , H̃) + D̄2(W̃ , H̃) + constant .

(18)

2. For each (Ŵ , Ĥ) ∈ intF0,

uik(Wik) ≜
∑
j

D̄1
ijk(Wik, Ĥkj , Ŵ , Ĥ)

is strictly convex in R++ and minimized at W ∗
ik ∈ R++ which is explicitly

expressed as

W ∗
ik = fik(Ŵ , Ĥ) ,

where R++ is the set of positive numbers. Also, for each (Ŵ , Ĥ) ∈ intF0,

vkj(Hkj) ≜
∑
i

D̄1
ijk(Ŵik,Hkj , Ŵ , Ĥ)

is strictly convex in R++ and minimized at H∗
kj ∈ R++ which is explicitly

expressed as

H∗
kj = gkj(Ŵ , Ĥ) .

3. fik(W ,H) is continuous in intF0 and, for each ϵ > 0, there exist cik > 0
and ϕik < 1 such that

∀(W ,H) ∈ Fϵ, fik(W ,H) ≤ cikW
ϕik

ik . (19)

Also, gkj(W ,H) is continuous in intF0 and, for each ϵ > 0, there exist
dkj > 0 and ψkj < 1 such that

∀(W ,H) ∈ Fϵ, gkj(W ,H) ≤ dkjH
ψkj

kj . (20)

Under Assumptions 1–3, we can prove the global convergence of the mod-
ified update rule, as stated in the following theorem. The proof is given in the
next subsection.

Theorem 1 Suppose that an error function D(W ,H) and an auxiliary func-

tion D̄(W ,H, W̃ , H̃) of it satisfy Assumptions 1–3. Then, for any positive
constant ϵ, the modified multiplicative update rule described by

W
(l+1)
ik = max(ϵ, fik(W

(l),H(l))) , (21)

H
(l+1)
kj = max(ϵ, gkj(W

(l+1),H(l))) (22)

has the global convergence property, where fik and gkj are defined in Assump-
tion 3.
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If a modified update rule has the global convergence property, it is easy
to obtain an algorithm that terminates within a finite number of iterations
after finding an approximate solution. Let us relax the conditions (14)–(17) as
follows:

∇WD(W ,H) ≥ −δ11m×r, (23)

∇HD(W ,H) ≥ −δ11r×n, (24)

(∇WD(W ,H))ik > δ1 ⇒Wik − ϵ ≤ δ2 , (25)

(∇HD(W ,H))kj > δ1 ⇒ Hkj − ϵ ≤ δ2 , (26)

where δ1 and δ2 are positive constants specified by the user. Employing these
conditions as a stopping criterion, we obtain the following algorithm.

Algorithm 1 Modified Multiplicative Update Algorithm

Input: X ∈ Rm×n
+ , r ∈ N, ϵ > 0, δ1 > 0, δ2 > 0

Output: A point (W ,H) ∈ Fϵ that satisfies (23)–(26)
1: Choose (W (0),H(0)) ∈ Fϵ and set l = 0.
2: Find (W (l+1),H(l+1)) by the update rule described by (21) and (22).
3: If (W ,H) = (W (l+1),H(l+1)) ∈ Fϵ satisfies (23)–(26) then return (W (l+1),H(l+1)).

Otherwise add 1 to l and go to Step 2.

The finite termination of this algorithm is guaranteed by the following
theorem. We omit the proof because it is the same as that of Theorem 2 in
Reference [36].

Theorem 2 Suppose that an error function D(W ,H) and its auxiliary func-

tion D̄(W ,H, W̃ , H̃) satisfy Assumptions 1–3. Then, for any positive con-
stants ϵ, δ1 and δ2, Algorithm 1 stops within a finite number of iterations.

3.2 Relation to Existing Work

There are many results on the convergence properties of NMF algorithms
in the literature [6, 15, 17, 21, 23, 25, 27, 29, 31]. However, most of them are
insufficient to prove that an approximate stationary point is always obtained
by the algorithm. As mentioned before, the monotone decrease of the error
value does not imply the convergence of the sequence of solutions. It is claimed
in some papers [6, 15, 21, 23, 25, 31] that every limit point of the sequence of
solutions is a stationary point. However, this claim says nothing about the
convergence of the sequence or even the existence of a convergent subsequence.

The convergence of the sequence of solutions generated by the multiplica-
tive update rule was proved by some authors in different settings [14, 30, 47].
Finesso and Spreij [14] considered a variant of the I-divergence based multi-
plicative update rule, and proved the convergence of the right factor matrix
and the product of the two factor matrices. Lin [30] proved the convergence
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of a variant of the Euclidean distance based multiplicative update rule. A
common key feature of these two algorithms is that one of the two factor
matrices is normalized after each update. This guarantees the boundedness
of the corresponding factor matrix. Zhao and Tan [47] recently performed a
unified convergence analysis of the multiplicative update rules for NMF with
ℓ1 regularization. They proved the boundedness of the sequence of solutions
by showing that the level set of the objective function is bounded. However,
this result relies on the existence of ℓ1 regularization terms, and cannot be
directly applied to NMF without regularizations.

The unified global convergence analysis in the present paper is a general-
ization of the results given by Takahashi and Hibi [36]. They showed that the
modification of Gillis and Glineur [15] is sufficient to guarantee the global con-
vergence of the multiplicative update rules based on Euclidean distance and
I-divergence. However, because these update rules were studied separately, it
was not clear what kind of conditions are required in general for the error
function and the auxiliary function in order for the obtained multiplicative
update rule to have the global convergence property.

Finally, it is important to make a comment on the stopping condition. Some
authors [17, 31] used a stopping condition similar to the one in Algorithm 1.
Roughly speaking, their condition corresponds to (23)–(26) with δ2 = 0. In
this case, the finite termination of the algorithm is not guaranteed.

3.3 Proof of Theorem 1

We prove Theorem 1 by Zangwill’s global convergence theorem [46], which
has been used extensively to prove the convergence of various algorithms (see
[38,42] for example).

Theorem 3 (Zangwill [46]) Let A be a point-to-set mapping defined on a
space V that assigns to every point x ∈ V a subset of V . Let {x(l)}∞l=0 be a
sequence generated satisfying x(0) ∈ V and x(l+1) ∈ A(x(l)). Also let a solution
set Ω ⊂ V be given. Suppose that the following three statements hold true.

1. All points x(l) are in a compact set X ⊂ V .
2. There is a continuous function Z : V → R such that i) if x is not a

solution then Z(y) < Z(x) for any y ∈ A(x), and ii) if x is a solution then
Z(y) ≤ Z(x) for any y ∈ A(x).

3. The mapping A is closed at points outside Ω.

Then the limit of any convergent subsequence of {x(l)}∞l=0 is a solution.

In the following discussion, we express for simplicity (21) and (22) as
W (l+1) = A1(W

(l),H(l)) and H(l+1) = A2(W
(l+1),H(l)), respectively. Fur-

thermore, we express the update process from (W (l),H(l)) to (W (l+1),H(l+1))
as (W (l+1),H(l+1)) = A(W (l),H(l)). Then the mapping A is expressed in
terms of A1 and A2 as follows:

A(W (l),H(l)) = (A1(W
(l),H(l)), A2(A1(W

(l),H(l)),H(l))) .
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Note thatA is not a point-to-set mapping but a point-to-point mapping defined
on Fϵ. In this case, the closedness of A in Theorem 3 reduces to the continuity
of A. Therefore, it suffices to show that the following statements hold true.

1. (Boundedness) For any initial point (W (0),H(0)) ∈ Fϵ, the sequence {(W (l),H(l))}∞l=0

generated by the update rule A belongs to a compact subset of Fϵ.
2. (Monotoneness) There exists a function Z : Fϵ → R such that

(W ,H) /∈ Sϵ ⇒ Z(A(W ,H)) < Z(W ,H) ,

(W ,H) ∈ Sϵ ⇒ Z(A(W ,H)) ≤ Z(W ,H) ,

where Sϵ is the set of stationary points of (13).
3. (Continuity) A is continuous in Fϵ \ Sϵ.

We first consider the first statement. Our proof is based on the following
lemma.

Lemma 1 (Katayama et al. [22]) Let ϵ be any positive constant. Let f be
a mapping from [ϵ,∞) to R. If there exist a positive constant c and a constant
ϕ less than 1 such that

∀x ≥ ϵ, f(x) ≤ cxϕ

then any sequence {x(l)}∞l=0 generated by the update rule:

x(l+1) = max(ϵ, f(x(l))), l = 0, 1, 2, . . .

with the initial value x(0) ≥ ϵ is contained in a closed and bounded set.

Some illustrative examples for Lemma 1 are shown in Fig. 1. In Fig. 1(a),
two sequences generated by x(l+1) = max(ϵ, f(x(l))) with ϵ = 0.1 and f(x) =
1.5x0.3 are plotted. The sequence starting from x(0) = 0.2 increases mono-
tonically and converges to the unique fixed point. The sequence starting from
x(0) = 3.2 decreases monotonically and converges to the fixed point. In Fig. 1(b),
the sequence generated by x(l+1) = max(ϵ, f(x(l))) with x(0) = 0.7, ϵ = 0.2
and f(x) = 1.5x−0.8−0.28 is plotted. We see from the figure that it converges
to periodic sequence with period 2.

In view of Assumption 3 and Lemma 1, we immediately obtain the following
lemma.

Lemma 2 Let ϵ be any positive constant. If Assumption 3 holds then, for any
initial point (W (0),H(0)) ∈ Fϵ, the sequence {(W (l),H(l))}∞l=0 generated by
(21) and (22) is contained in a closed and bounded set.

We next consider the third statement. The continuity of the mapping A is
shown as follows.

Lemma 3 Let ϵ be any positive constant. If Assumption 3 holds then the
mapping A : Fϵ → Fϵ is continuous.
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Fig. 1 Illustrative examples for Lemma 1. (a) Two sequences generated by x(l+1) =
max(ϵ, f(x(l))) with ϵ = 0.1 and f(x) = 1.5x0.3. (b) A sequence generated by x(l+1) =
max(ϵ, f(x(l))) with ϵ = 0.2 and f(x) = 1.5x−0.8 − 0.28.

Proof By Assumption 3, fik and gkj are continuous. Also, for any positive con-
stant ϵ, the mapping max(ϵ, ·) is continuous. So (21), which is the composition
of fik and max(ϵ, ·), and (22), which is the composition of gkj and max(ϵ, ·),
are both continuous. Furthermore, because the mapping A is the composition
of (21) and (22), it is continuous. ⊓⊔

We finally consider the second statement. As the first step, we discuss the
relationship between the stationary points of (13) and the mapping A in the
following two lemmas.

Lemma 4 Let ϵ be any positive constant. Let (Ŵ , Ĥ) be any point in Fϵ. If
Assumption 3 holds then the optimization problem:

minimize D̄(W , Ĥ, Ŵ , Ĥ)
subject to W ≥ ϵ1m×r

(27)

has a unique optimal solution which is given by A1(Ŵ , Ĥ). Similarly, if As-
sumption 3 hold then the optimization problem:

minimize D̄(Ŵ ,H, Ŵ , Ĥ)
subject to H ≥ ϵ1r×n

(28)

has a unique optimal solution which is given by A2(Ŵ , Ĥ).

Proof We prove only the first part because the second one can be proved in
the same way. Because D̄(W , Ĥ, Ŵ , Ĥ) is separable by Assumption 3, the
problem (27) can be divided into mr independent problems of the form:

minimize
∑
j D̄

1
ijk(Wik, Ĥkj , Ŵ , Ĥ)

subject to Wik ≥ ϵ .
(29)
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It follows from Assumption 3 that uik(Wik) ≜
∑
j D̄

1
ijk(Wik, Ĥkj , Ŵ , Ĥ) has

a unique minimum point given by fik(Ŵ , Ĥ) ∈ R++. If fik(Ŵ , Ĥ) ≥ ϵ
then it is apparently the unique optimal solution of (29). Otherwise, ϵ is the
unique optimal solution of (29) because, by Assumption 3, uik(Wik) is strictly
convex in R++. Therefore, the unique optimal solution of (29) is given by

max(ϵ, fik(Ŵ , Ĥ)) = (A1(Ŵ , Ĥ))ik. ⊓⊔

Lemma 5 Under Assumptions 1–3, the necessary and sufficient condition for
(Ŵ , Ĥ) ∈ Fϵ to be a stationary point of (13) is that Ŵ and Ĥ are the unique
optimal solutions of (27) and (28), respectively.

Proof As shown in the proof of Lemma 4, the necessary and sufficient condition
for Ŵ ≥ ϵ1m×r to be the unique optimal solution of (27) is that

∀i, k, u′ik(Ŵik)

{
= 0, if Ŵik > ϵ ,

≥ 0, if Ŵik = ϵ .
(30)

By Assumptions 2 and 3, we have

u′ik(Ŵik) =
∂D̄

∂Wik

∣∣∣∣
(Ŵ ,Ĥ,Ŵ ,Ĥ)

=
(
∇W D̄(Ŵ , Ĥ, Ŵ , Ĥ)

)
ik

=
(
∇WD(Ŵ , Ĥ)

)
ik
.

Therefore, (30) is rewritten as

∀i, k,
(
∇WD(Ŵ , Ĥ)

)
ik

{
= 0, if Ŵik > ϵ ,

≥ 0, if Ŵik = ϵ ,

which is equivalent to the conjunction of (14) and (16). We can show in the

same way as above that the necessary and sufficient condition for Ĥ ≥ ϵ1r×n
to be the unique optimal solution of (28) is equivalent to the conjunction of
(15) and (17). ⊓⊔

Using Lemmas 4 and 5, we can prove the monotoneness of the error function
as follows.

Lemma 6 Let ϵ be any positive constant. Under Assumptions 1–3, the fol-
lowing propositions hold true:

(Ŵ , Ĥ) /∈ Sϵ ⇒ D(A(Ŵ , Ĥ)) < D(Ŵ , Ĥ) , (31)

(Ŵ , Ĥ) ∈ Sϵ ⇒ D(A(Ŵ , Ĥ)) = D(Ŵ , Ĥ) . (32)
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Proof We first prove (32). Let (Ŵ , Ĥ) be any point in Sϵ. Then, it follows

from Lemma 5 that Ŵ and Ĥ are the unique optimal solutions of (27) and

(28), respectively. Furthermore, it follows from Lemma 4 that Ŵ = A1(Ŵ , Ĥ)

and Ĥ = A2(Ŵ , Ĥ). Therefore, we have

A(Ŵ , Ĥ) = (A1(Ŵ , Ĥ), A2(A1(Ŵ , Ĥ), Ĥ))

= (A1(Ŵ , Ĥ), A2(Ŵ , Ĥ))

= (Ŵ , Ĥ)

which implies that D(A(Ŵ , Ĥ)) = D(Ŵ , Ĥ). We next prove (31). Note that

if (Ŵ , Ĥ) /∈ Sϵ then, by Lemma 5, at least one of the following two statements

holds: i) Ŵ is not the unique optimal solution of (27), that is, Ŵ ̸= A1(Ŵ , Ĥ)

and ii) Ĥ is not the unique optimal solution of (28), that is, Ĥ ̸= A2(Ŵ , Ĥ).
If the first statement holds, we have

D(Ŵ , Ĥ) = D̄(Ŵ , Ĥ, Ŵ , Ĥ)

> D̄(A1(Ŵ , Ĥ), Ĥ, Ŵ , Ĥ)

= D(A1(Ŵ , Ĥ), Ĥ)−D(A1(Ŵ , Ĥ), Ĥ)

+ D̄(A1(Ŵ , Ĥ), Ĥ, Ŵ , Ĥ)

≥ D(A1(Ŵ , Ĥ), Ĥ)

= D̄(A1(Ŵ , Ĥ), Ĥ, A1(Ŵ , Ĥ), Ĥ)

≥ D̄(A1(Ŵ , Ĥ), A2(A1(Ŵ , Ĥ), Ĥ), A1(Ŵ , Ĥ), Ĥ)

= D(A1(Ŵ , Ĥ), A2(A1(Ŵ , Ĥ), Ĥ))

−D(A1(Ŵ , Ĥ), A2(A1(Ŵ , Ĥ), Ĥ))

+ D̄(A1(Ŵ , Ĥ), A2(A1(Ŵ , Ĥ), Ĥ), A1(Ŵ , Ĥ), Ĥ)

≥ D(A1(Ŵ , Ĥ), A2(A1(Ŵ , Ĥ), Ĥ))

= D(A(Ŵ , Ĥ)) .

If the first statement does not hold but the second one does, we have

D(Ŵ , Ĥ) = D̄(Ŵ , Ĥ, Ŵ , Ĥ)

> D̄(Ŵ , A2(Ŵ , Ĥ), Ŵ , Ĥ)

= D(Ŵ , A2(Ŵ , Ĥ))−D(Ŵ , A2(Ŵ , Ĥ))

+ D̄(Ŵ , A2(Ŵ , Ĥ), Ŵ , Ĥ)

≥ D(Ŵ , A2(Ŵ , Ĥ))

= D(A(Ŵ , Ĥ)) .

Therefore, the inequality D(A(Ŵ , Ĥ)) < D(Ŵ , Ĥ) holds in both cases. ⊓⊔
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Table 1 Error functions considered by Yang and Oja [45].

Name D(W ,H)

Euclidean distance
∑

ij(Xij − (WH)ij)
2

I-divergence
∑

ij

(
Xij ln

Xij

(WH)ij
−Xij + (WH)ij

)
Dual I-divergence

∑
ij

(
(WH)ij ln

(WH)ij
Xij

− (WH)ij +Xij

)
Itakura-Saito divergence

∑
ij

(
− ln

(
Xij

(WH)ij

)
+

Xij

(WH)ij
− 1
)

α-divergence 1
α(1−α)

∑
ij

(
αXij + (1− α)(WH)ij −Xα

ij(WH)1−α
ij

)
(α ̸= 0, 1)

β-divergence
∑

ij

(
Xij

X
β
ij−(WH)

β
ij

β
−

X
β+1
ij −(WH)

β+1
ij

β+1

)
(β ̸= 0,−1)

Log-Quad cost
∑

ij

(
(Xij − (WH)ij)

2 +Xij ln
Xij

(WH)ij
−Xij + (WH)ij

)
αβ-Bregman divergence

∑
ij

(
Xα

ij −Xβ
ij − (WH)αij + (WH)βij

−(α(WH)α−1
ij − β(WH)β−1

ij )(Xij − (WH)ij)
)

(α ≥ 1, 0 < β < 1)

Kullback-Leibler divergence
∑

ij
Xij∑
pq Xpq

ln

(
Xij/

∑
pq Xpq

(WH)ij/
∑

pq(WH)pq

)
γ-divergence 1

γ(1+γ)

(
ln
(∑

ij X
1+γ
ij

)
+ γ ln

(∑
ij(WH)1+γ

ij

)
− (1 + γ) ln

(∑
ij Xij(WH)γij

))
(γ ̸= 0,−1)

Rényi divergence 1
ρ−1

ln

(∑
ij

(
Xij∑
pq Xpq

)ρ (
(WH)ij∑
pq(WH)pq

)1−ρ
)

(ρ > 0, ρ ̸= 1)

4 Application of Theorem 1 to Multiplicative Update Rules
Derived by the Unified Method of Yang and Oja

Theorem 1 can be applied to various multiplicative update rules to prove their
global convergence. In this section, we apply it to the eleven multiplicative
update rules derived from the error functions shown in Table 11 by the uni-
fied method proposed by Yang and Oja [45]. To make the analysis simpler,
we assume for the moment that X is a positive matrix. Then all error func-
tions in Table 1 are well-defined on F0 as extended real-valued functions. For
each of the first eight error functions (Euclidean distance, I-divergence, Dual
I-divergence, Itakura-Saito divergence, α-divergence, β-divergence, Log-Quad
cost and αβ-Bregman divergence), we show later that the auxiliary function
derived by the method of Yang and Oja satisfies all conditions in Assump-
tions 1–3. This means that the modified update rules obtained from these
error functions have the global convergence property. In contrast, for the last
three error functions, the global convergence of the modified update rule can-
not be proved by Theorem 1 because the inequalities (19) and (20) are not
satisfied. This issue is discussed in the next section.

1 The error function based on Kullback-Leibler divergence in Table 1 is slightly different
from the one in [45]. Instead of assuming that

∑
ij Xij = 1, Xij has been replaced with

Xij/
∑

pq Xpq so that the result can be applied to a general nonnegative matrix X.
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Let D(W ,H) be a given error function. The procedure of the unified
method of Yang and Oja to derive a multiplicative update rule from D(W ,H)
is summarized as follows.

1. If D(W ,H) contains one or more logarithmic functions then we replace
each of them with a generalized polynomial by using the following rela-
tionship:

lnx = lim
µ→0+

xµ − 1

µ
. (33)

2. Applying Lemmas 8–10 given in Appendix A and then taking the limit
µ → 0+ if necessary, we can derive an auxiliary function of D(W ,H).
Note that we may need to apply L’Hôpital’s rule when taking the limit.
The derived auxiliary function is expressed in the form of (18) and, for

any (Ŵ , Ĥ) ∈ intF0, both uik(Wik) ≜
∑
j D̄

1
ijk(Wik, Ĥkj , Ŵ , Ĥ) and

vkj(Hkj) ≜
∑
i D̄

1
ijk(Ŵik,Hkj , Ŵ , Ĥ) are strictly convex in R++.

3. Let (Ŵ , Ĥ) ∈ intF0 be the current solution. Solving the equations u
′
ik(Wik) =

0 and v′kj(Hkj) = 0, we obtain multiplicative update formulae for Wik and
Hkj , respectively.

Carrying out this procedure for each of the eleven error functions shown in
Table 1, we obtain eleven auxiliary functions in the form of (18). Table 2 shows

the formula for the first term D̄1
ijk(Wik,Hkj , W̃ , H̃) of the auxiliary function

for each error function. It is easily seen that every auxiliary function shown
in Table 2 satisfies Assumptions 1, Assumption 2, and the first and second

conditions of Assumption 3. It is also seen that every D̄1
ijk(Wik,Hkj , W̃ , H̃)

is expressed as a1ijk(WikHkj)
b1 + a2ijk(WikHkj)

b2 where b1 ̸= b2 and a1ijk
and a2ijk are independent of Wik and Hkj . Therefore, letting uik(Wik) ≜∑
j D̄

1
ijk(Wik, Ĥkj , Ŵ , Ĥ) where (Ŵ , Ĥ) ∈ intF0 and solving the equation

u′ik(Wik) = 0, we obtain Wik = fik(Ŵ , Ĥ). The formulae for fik(W ,H)

are shown in Reference [45]2. Similarly, letting vkj(Hkj) ≜
∑
i D̄

1
ijk(Ŵik,Hkj ,

Ŵ , Ĥ) and solving the equation v′kj(Hkj) = 0, we obtain Hkj = gkj(Ŵ , Ĥ).
Finally, by simple algebraic manipulations, we can prove that fik(W ,H) and
gkj(W ,H) are upper bounded for the first eight error functions. Upper bounds
for fik(W ,H) are explicitly given in Reference [22].

Let us next consider the case where X has a zero entry. For Dual I-
divergence and α-divergence with a negative α, there exists a pair (i, k) such

that both
∑
j D̄

1
ijk(Wik,Hkj , W̃ , H̃) and fik(W ,H) are not defined. There-

fore, these error functions need a stronger assumption that X is positive. For
Itakura-Saito divergence, β-divergence with β less than −1, γ-divergence with
γ less than −1, D(W ,H) contains a constant term which takes +∞. However,
if we construct a new error function from the remaining terms, it is well-defined

on F0 as an extended real-valued function. Also, both
∑
j D̄

1
ijk(Wik, Hkj , W̃ , H̃)

2 In the case of Kullback-Leibler divergence, Xij in fik(W ,H) must be replaced with
Xij/

∑
pq Xpq .
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and fik(W ,H) are well-defined on R++ × R++ × intF0 and intF0, respec-
tively, for all (i, k). As for other functions, D(W ,H) is well-defined on F0 even

though some entries of X are zero. In addition,
∑
j D̄

1
ijk(Wik,Hkj , W̃ , H̃) and

fik(W ,H) are well-defined on R++ × R++ × intF0 and intF0, respectively,
for all (i, k).

From these observations, we obtain the following lemma.

Lemma 7 For Euclidean distance, I-divergence, Itakura-Saito divergence, α-
divergence with a positive α, β-divergence, Log-Quad cost and αβ-Bregman
divergence, the auxiliary function shown in Table 2 satisfies all conditions
in Assumptions 1–3. For Dual I-divergence and α-divergence with a negative
α, the auxiliary function satisfies all conditions in Assumptions 1–3 if X is
positive.

By Lemma 7 and Theorem 1, we immediately obtain the following theorem.

Theorem 4 For Euclidean distance, I-divergence, Itakura-Saito divergence,
α-divergence with a positive α, β-divergence, Log-Quad cost and αβ-Bregman
divergence, the modified multiplicative update rule obtained by the unified
method of Yang and Oja has the global convergence property for any positive
constant ϵ. For Dual I-divergence and α-divergence with a negative α, the
modified multiplicative update rule has the global convergence property for
any positive constant ϵ if X is positive.

5 New Multiplicative Update Rules for Kullback-Leibler, Gamma
and Rényi Divergences

In the previous section, we proved the global convergence of the modified
multiplicative update rule described by (21) and (22) for the first eight error
functions shown in Table 1. As for the last three (Kullback-Leibler divergence,
γ-divergence and Rényi divergence), the multiplicative update rule can be
derived, but the boundedness of the sequence {(W (l),H(l))}∞l=0 cannot be
proved. A possible reason is that the value of the error function does not
change even though W and H are multiplied by any positive scalar. In other
words, we can increase the values of nonzero entries of W and H as much as
we want, while keeping the value of the error function fixed. As a simple way
to avoid this situation, we add a regularization term

C

2

(∑
ij

Xij −
∑
ij

(WH)ij

)2

(34)

to each error function, where C is any positive constant. Applying Lem-
mas 8–10, we obtain new auxiliary functions for Kullback-Leibler divergence,
γ-divergence and Rényi divergence. How to derive the auxiliary function for
Kullback-Leibler divergence is explained in Appendix B. Although other aux-
iliary function is omitted due to space constraints, they are obtained in a
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Table 2 Auxiliary functions obtained from the error functions in Table 1 by the method
of Yang and Oja.

Error function D̄1
ijk(Wik, Hkj , W̃ , H̃)

Euclidean distance −2XijWikHkj + (W̃ H̃)ij(W̃ikH̃kj)
−1(WikHkj)

2

I-divergence −Xij(W̃ H̃)−1
ij W̃ikH̃kj ln(WikHkj) +WikHkj

Dual I-divergence
(
ln(WikHkj) + ln

(
X−1

ij (W̃ H̃)ij(W̃ikH̃kj)
−1
)
− 1
)
WikHkj

Itakura-Saito divergence (W̃ H̃)−1
ij WikHkj +Xij(W̃ H̃)−2

ij (W̃ikH̃kj)
2(WikHkj)

−1

α-divergence 1
α
WikHkj − 1

α(1−α)
Xα

ij(W̃ H̃)−α
ij (W̃ikH̃kj)

α(WikHkj)
1−α (α ̸= 0, 1)

β-divergence

1) β > 1 −Xij(W̃ H̃)β−1
ij WikHkj + 1

β+1
(W̃ H̃)βij(W̃ikH̃kj)

−β(WikHkj)
β+1

2) 0 < β ≤ 1 − 1
β
Xij(W̃ H̃)β−1

ij (W̃ikH̃kj)
1−β(WikHkj)

β

+ 1
β+1

(W̃ H̃)βij(W̃ikH̃kj)
−β(WikHkj)

β+1

3) β < 0, β ̸= −1 − 1
β
Xij(W̃ H̃)β−1

ij (W̃ikH̃kj)
1−β(WikHkj)

β + (W̃ H̃)βijWikHkj

Log-Quad cost
(
(W̃ H̃)ij + 1

2

)
(W̃ikH̃kj)

−1(WikHkj)
2

−Xij

(
(W̃ H̃)−1

ij + 2
)
W̃ikH̃kj ln(WikHkj)

αβ-Bregman divergence
(
(α− 1)(W̃ H̃)α−1

ij +
β(1−β)

α
(W̃ H̃)β−1

ij

)
(W̃ikH̃kj)

1−α(WikHkj)
α

+
(

α(α−1)
1−β

(W̃ H̃)α−2
ij + β(W̃ H̃)β−2

ij

)
Xij(W̃ikH̃kj)

2−β(WikHkj)
β−1

(α ≥ 1, 0 < β < 1)

Kullback-Leibler divergence (
∑

pq(W̃ H̃)pq)−1WikHkj − (
∑

pq Xpq)−1Xij(W̃ H̃)−1
ij W̃ikH̃kj ln(WikHkj)

γ-divergence

1) γ > 0 1
1+γ

(∑
pq(W̃ H̃)1+γ

pq

)−1
(W̃ H̃)γij(W̃ikH̃kj)

−γ(WikHkj)
1+γ

−
(∑

pq Xpq(W̃ H̃)γpq

)−1
Xij(W̃ H̃)γ−1

ij W̃ikH̃kj ln(WikHkj)

2) γ < 0, γ ̸= −1
(∑

pq(W̃ H̃)1+γ
pq

)−1
(W̃ H̃)γijWikHkj

− 1
γ

(∑
pq Xpq(W̃ H̃)γpq

)−1
Xij(W̃ H̃)γ−1

ij

(
W̃ikH̃kj

)1−γ
(WikHkj)

γ

Rényi divergence

1) ρ > 1 − 1
1−ρ

(∑
pq X

ρ
pq(W̃ H̃)1−ρ

pq

)−1
Xρ

ij(W̃ H̃)−ρ
ij

(
W̃ikH̃kj

)ρ
(WikHkj)

1−ρ

+
(∑

pq(W̃ H̃)pq
)−1

WikHkj

2) 0 < ρ < 1 −
(∑

pq X
ρ
pq(W̃ H̃)1−ρ

pq

)−1
Xρ

ij(W̃ H̃)−ρ
ij W̃ikH̃kj ln(WikHkj)

+
(∑

pq(W̃ H̃)pq
)−1

WikHkj

similar way. All of the three auxiliary functions satisfy Assumption 1, As-
sumption 2, and the first and second conditions of Assumption 3. Also, each

D̄1
ijk(Wik,Hkj , W̃ , H̃) can be expressed as a1ijk(WikHkj)

b1 +a2ijk(WikHkj)
b2

where b1 ̸= b2 and a1ijk and a2ijk are independent of Wik and Hkj . Therefore,
the multiplicative update rules can be obtained from the auxiliary functions.
The formulae for fik(W ,H) for the three error functions are shown in Ta-
ble 3. Furthermore, for each of the three error functions, it is easy to prove
that fik(W ,H) and gjk(W ,H) satisfy the third condition of Assumption 3.
Upper bounds for fik(W ,H) on Fϵ are shown in Table 4, and how to derive
the upper bound for Kullback-Leibler divergence is described in Appendix C.

From these results, we obtain the following theorem.
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Table 3 Multiplicative update rules obtained from the last three error functions in Table 1
with regularization term.

Error function fik(W ,H)

Kullback-Leibler divergence Wik

(
(
∑

pq Xpq)−1
∑

j Xij(WH)−1
ij Hkj + C

∑
pq Xpq

∑
j Hkj

(
∑

pq(WH)pq)−1
∑

j Hkj + C
∑

pq(WH)pq
∑

j Hkj

) 1
2

γ-divergence Wik

(
(
∑

pq Xpq(WH)γpq)
−1
∑

j Xij(WH)γ−1
ij Hkj + C

∑
pq Xpq

∑
j Hkj

(
∑

pq(WH)1+γ
pq )−1

∑
j(WH)γijHkj + C

∑
pq(WH)pq

∑
j Hkj

)η

where η =

{
1/(1 + γ), if γ > 0
1/(1− γ), if γ < 0, γ ̸= −1

Rényi divergence Wik

(
(
∑

pq X
ρ
pq(WH)1−ρ

pq )−1
∑

j X
ρ
ij(WH)−ρ

ij Hkj + C
∑

pq Xpq
∑

j Hkj

(
∑

pq(WH)pq)−1
∑

j Hkj + C
∑

pq(WH)pq
∑

j Hkj

)η

where η =

{
1/ρ, if ρ > 1
1, if 0 < ρ < 1

Table 4 Upper bounds for fik(W ,H) in Table 3 on Fϵ.

Error function Upper bound

Kullback-Leibler divergence
(

1
ϵ3nrC

+ 1
ϵn

∑
pq Xpq

) 1
2
W

1
2
ik

γ-divergence
(

1
ϵ3mrC

+ 1
ϵn

∑
pq Xpq

)η
W 1−η

ik where η =

{
1/(1 + γ), if γ > 0
1/(1− γ), if γ < 0, γ ̸= −1

Rényi divergence
(

1
ϵ3mrC

+ 1
ϵn

∑
pq Xpq

)η
W 1−η

ik where η =

{
1/ρ, if ρ > 1
1, if 0 < ρ < 1

Theorem 5 For Kullback-Leibler divergence, γ-divergence and Rényi diver-
gence with the regularization term (34), the modified multiplicative update
rule obtained by the unified method of Yang and Oja has the global conver-
gence property for any positive constant ϵ.

6 Conclusions

A unified global convergence analysis of the multiplicative update rule for
NMF has been presented. We have given a sufficient condition on the error
function and the auxiliary function for a slightly modified version of the mul-
tiplicative update rule to have the global convergence property in the sense
that any sequence of solutions contains at least one convergent subsequence
and the limit of any convergent subsequence is a stationary point of the cor-
responding optimization problem. This result can be applied to a wide variety
of multiplicative update rules to examine their global convergence. In fact, we
have proved the global convergence of eleven different multiplicative update
rules.

Recently, many variants of NMF have been proposed (see the review paper
by Wang and Zhang [41] and references therein). Extending the results in this
paper to such variants is an interesting and important direction for future
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research. Another interesting direction is to develop a method for determining
the global convergence of the modified multiplicative update rule only from the
error function. The motivation of this problem comes from the observation that
the multiplicative update rule is uniquely determined by the error function if
we assume that the auxiliary function is always derived by the method of Yang
and Oja.

A How to Derive Auxiliary Functions

In the unified method of Yang and Oja [45], an auxiliary function is systematically derived
from a given generalized polynomial by using three rules. They are described by the fol-
lowing lemmas. Because the mathematical expressions differ from those in [45] due to the
introduction of the framework of a single auxiliary function, we provide proofs for the sake
of readers’ convenience.

Lemma 8 Suppose that the error function is expressed asD(W ,H) = a
(∑

ij bij(WH)cij

)d
where a and c are nonzero constants, bij are positive constants, and d is a constant other

than 0 or 1. If ξ(x) ≜ axd is convex in R++, let

D̄(W ,H, W̃ , H̃) = a

(∑
ij

bij(W̃ H̃)cij

)d−1∑
ij

bij(W̃ H̃)cij

(
(WH)ij

(W̃ H̃)ij

)cd

.

If ξ(x) is concave in R++, let

D̄(W ,H, W̃ , H̃) = a

(∑
ij

bij(W̃ H̃)cij

)d

+ ad

(∑
ij

bij(W̃ H̃)cij

)d−1

×
(∑

ij

bij(WH)cij −
∑
ij

bij(W̃ H̃)cij

)
.

Then D̄(W ,H, W̃ , H̃) is an auxiliary function of D(W ,H), and satisfies the conditions in
Assumptions 1 and 2.

Proof There are two cases to consider: One is that ξ(x) ≜ axd is convex, and the other is
that ξ(x) is concave. In either case, it is easy to see that the following statements hold true:

1. D̄(Ŵ , Ĥ, Ŵ , Ĥ) = D(Ŵ , Ĥ) for all (Ŵ , Ĥ) ∈ F0,

2. D̄(W ,H, W̃ , H̃) is differentiable at any point in intF0 × intF0, and

3. ∇W D̄(Ŵ , Ĥ, Ŵ , Ĥ) = ∇WD(Ŵ , Ĥ) and ∇HD̄(Ŵ , Ĥ, Ŵ , Ĥ) = ∇HD(Ŵ , Ĥ) for all

(Ŵ , Ĥ) ∈ intF0.

Therefore, it suffices for us to show that

D̄(W ,H, W̃ , H̃) ≥ D(W ,H)

for all (W ,H, W̃ , H̃) ∈ intF0 × intF0. Suppose first that ξ(x) = axd is convex in R++.
Then, for any numbers x11, x12, . . . , xmn and any positive numbers λ11, λ12, . . . , λmn such
that

∑
ij λij = 1, it follows from Jensen’s inequality that

ξ

∑
ij

xij

 = ξ

∑
ij

λij ·
xij

λij

 ≤
∑
ij

λijξ

(
xij

λij

)
.



22 Norikazu Takahashi et al.

Substituting xij = bij(WH)cij and λij = bij(W̃ H̃)cij/
∑

pq bpq(W̃ H̃)cpq into this equation,
we have

D(W ,H) = a

∑
ij

bij(WH)cij

d

≤ a
∑
ij

bij(W̃ H̃)cij∑
pq bpq(W̃ H̃)cpq

(
bij(WH)cij

bij(W̃ H̃)cij/
∑

pq bpq(W̃ H̃)cpq

)d

= a

∑
ij

bij(W̃ H̃)cij

d−1∑
ij

bij(W̃ H̃)cij

(
(WH)ij

(W̃ H̃)ij

)cd

= D̄(W ,H, W̃ , H̃) .

Suppose next that ξ(x) = axd is concave in R++. Then, for any positive numbers x and x̃,
the following inequality holds:

ξ(x) ≤ ξ(x̃) + ξ′(x̃)(x− x̃) .

Substituting x =
∑

ij bij(WH)cij and x̃ =
∑

ij bij(W̃ H̃)cij into this inequality, we have

D(W ,H) = a

∑
ij

bij(WH)cij

d

≤ a

∑
ij

bij(W̃ H̃)cij

d

+ ad

∑
ij

bij(W̃ H̃)cij

d−1∑
ij

bij(WH)cij −
∑
ij

bij(W̃ H̃)cij


= D̄(W ,H, W̃ , H̃)

which completes the proof. ⊓⊔

Lemma 9 Suppose that the error function is expressed as D(W ,H) =
∑

ij aij(WH)bij
where aij are nonzero constants and b is a constant other than 0 or 1. If ξij(x) ≜ aijx

b is
convex in R++, let

D̄ij(W ,H, W̃ , H̃) = aij(W̃ H̃)b−1
ij

∑
k

(W̃ikH̃kj)
1−b(WikHkj)

b .

If ξij(x) is concave in R++, let

D̄ij(W ,H, W̃ , H̃) = aij(W̃ H̃)bij + aijb(W̃ H̃)b−1
ij

(
(WH)ij − (W̃ H̃)ij

)
.

Then D̄(W ,H, W̃ , H̃) =
∑

ij D̄ij(W ,H, W̃ , H̃) is an auxiliary function of D(W ,H), and
satisfies the conditions in Assumptions 1 and 2.

Proof Let Dij(W ,H) = aij(WH)bij . There are two cases to consider: One is that ξij(x) ≜
aijx

b is convex and the other is that ξij(x) is concave. In either case, we easily see that the
following statements hold true:

1. D̄ij(Ŵ , Ĥ, Ŵ , Ĥ) = Dij(Ŵ , Ĥ) for all (Ŵ , Ĥ) ∈ intF0,

2. D̄ij(W ,H, W̃ , H̃) is differentiable at any point in intF0 × intF0, and
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3. ∇W D̄ij(Ŵ , Ĥ, Ŵ , Ĥ) = ∇WDij(Ŵ , Ĥ) and∇HD̄ij(Ŵ , Ĥ, Ŵ , Ĥ) = ∇HDij(Ŵ , Ĥ)

for all (Ŵ , Ĥ) ∈ intF0.

Therefore, it suffices for us to show that

D̄ij(W ,H, W̃ , H̃) ≥ Dij(W ,H)

for all (W ,H, W̃ , H̃) ∈ intF0 × intF0. Suppose first that ξij(x) = aijx
b is convex in R++.

Then, for any numbers x1, x2, . . . , xr and any positive numbers λ1, λ2, . . . , λr such that∑
k λk = 1, it follows from Jensen’s inequality that

ξij

(∑
k

xk

)
= ξij

(∑
k

λk ·
xk

λk

)
≤
∑
k

λkξij

(
xk

λk

)
.

Substituting xk = WikHkj and λk = W̃ikH̃kj/(W̃ H̃)ij into this equation, we have

Dij(W ,H) = aij(WH)bij

≤
∑
k

W̃ikH̃kj

(W̃ H̃)ij
aij

(
WikHkj

W̃ikH̃kj/(W̃ H̃)ij

)b

= aij(W̃ H̃)b−1
ij

∑
k

(W̃ikH̃kj)
1−b(WikHkj)

b

= D̄ij(W ,H, W̃ , H̃) .

Suppose next that ξij(x) = aijx
b is concave in R++. Then, for any positive numbers x and

x̃, the following inequality holds:

ξij(x) ≤ ξij(x̃) + ξ′ij(x̃)(x− x̃) .

Substituting x = (WH)ij and x̃ = (W̃ H̃)ij into this inequality, we have

Dij(W ,H) = aij(WH)bij

≤ aij(W̃ H̃)bij + aijb(W̃ H̃)b−1
ij

(
(WH)ij − (W̃ H̃)ij

)
= D̄ij(W ,H, W̃ , H̃)

which completes the proof. ⊓⊔

Lemma 10 Suppose that the error function is expressed asD(W ,H) =
∑

tijk atijk(WikHkj)
bt

where atijk are nonzero constants and bt are constants, atijkx
bt is convex in R++, and

{bt} contains at least two distinct nonzero numbers. Let bmax = max{bt | bt ̸= 0} and

bmin = min{bt | bt ̸= 0}. Let us define D̄tijk(W ,H, W̃ , H̃) on intF0 × intF0 as follows:

1. If bt ∈ {bmin, bmax, 0}, let

D̄tijk(W ,H, W̃ , H̃) = atijk(WikHkj)
bt .

2. If bt ̸∈ {bmin, bmax, 0} and
(a) if (bt > 1) ∨ ((bt = 1) ∧ (atijk > 0)), let

D̄tijk(W ,H, W̃ , H̃) =
atijkbt

bmax
(W̃ikH̃kj)

bt−bmax
(
WikHkj

)bmax

+ atijk(W̃ikH̃kj)
bt

(
1−

bt

bmax

)
,
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(b) if (bt < 1) ∨ ((bt = 1) ∧ (atijk < 0)), let

D̄tijk(W ,H, W̃ , H̃) =
atijkbt

bmin
(W̃ikH̃kj)

bt−bmin
(
WikHkj

)bmin

+ atijk(W̃ikH̃kj)
bt

(
1−

bt

bmin

)
.

Then D̄(W ,H, W̃ , H̃) =
∑

tijk D̄tijk(W ,H, W̃ , H̃) is an auxiliary function of D(W ,H),

and strictly convex in intF0. Furthermore, D̄(W ,H, W̃ , H̃) satisfies the conditions in As-
sumptions 1 and 2.

Proof Let Dtijk(W ,H) = atijk(WikHkj)
bt . There are three cases to consider depending

on the values of atijk and bt. In either case, we easily see that D̄tijk(W ,H, W̃ , H̃) is
differentiable at any point in intF0 × intF0 and that

∇W D̄tijk(Ŵ , Ĥ, Ŵ , Ĥ) = ∇WDtijk(Ŵ , Ĥ) ,

∇HD̄tijk(Ŵ , Ĥ, Ŵ , Ĥ) = ∇HDtijk(Ŵ , Ĥ)

hold for all (Ŵ , Ĥ) ∈ F0. Also, it has already been shown by Yang and Oja [45, Lemma 2]

that D̄(W ,H, W̃ , H̃) is an auxiliary function of D(W ,H). ⊓⊔

B Derivation of Auxiliary Function for Kullback-Leibler
Divergence with Regularization Term

We derive an auxiliary function for Kullback-Leibler divergence with the regularization term
by using the unified method of Yang and Oja. First of all, we rewrite the error function by
using (33) as follows:

D(W ,H) = lim
µ→0+

1

µ

(
D1(W ,H) +D2(W ,H) +D3(W ,H) +D4(W ,H)

)
+
∑
ij

Xij∑
pq Xpq

ln

(
Xij∑
pq Xpq

)
+

C

2

(∑
ij

Xij

)2

where

D1(W ,H) =

(∑
ij

(WH)ij

)µ

,

D2(W ,H) = −
∑
ij

Xij∑
pq Xpq

(WH)µij ,

D3(W ,H) = −µC
∑
ij

Xij ·
∑
ij

(WH)ij ,

D4(W ,H) =
µC

2

(∑
ij

(WH)ij

)2

.

Let us assume that µ is a sufficiently small positive constant. Applying Lemmas 8 and 9 to
these functions, we have the following auxiliary functions:

D1(W ,H, W̃ , H̃) = µ

(∑
ij

(W̃ H̃)ij

)µ−1∑
ijk

WikHkj + (1− µ)

(∑
ij

(W̃ H̃)ij

)µ

,
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D2(W ,H, W̃ , H̃) = −
∑
ij

Xij∑
pq Xpq

(W̃ H̃)µ−1
ij

∑
k

(W̃ikH̃kj)
1−µ(WikHkj)

µ,

D3(W ,H, W̃ , H̃) = −µC
∑
ij

Xij ·
∑
ijk

WikHkj ,

D4(W ,H, W̃ , H̃) =
µC

2

∑
ij

(W̃ H̃)ij ·
∑
ijk

(
W̃ikH̃kj

)−1
(WikHkj)

2.

The exponents of WikHkj in these auxiliary functions are 1, µ, 1 and 2. The minimum is µ
and the maximum is 2. So we apply Lemma 10 to some of these auxiliary functions to obtain
an auxiliary function of D(W ,H) such that the exponents of WikHkj are restricted to µ

and 2. Applying Lemma 10 to D1, we obtain another auxiliary function of D1 as follows:

D1(W ,H, W̃ , H̃) =
µ

2

(∑
ij

(W̃ H̃)ij

)µ−1∑
ijk

(W̃ikH̃kj)
−1(WikHkj)

2

+
(
1−

µ

2

)(∑
ij

(W̃ H̃)ij

)µ

.

Applying Lemma 10 to D3, we obtain another auxiliary function of D3 as follows:

D3(W ,H, W̃ , H̃)

= −C
∑
ij

Xij ·
∑
ijk

(W̃ikH̃kj)
1−µ(WikHkj)

µ + (1− µ)C
∑
ij

Xij ·
∑
ij

(W̃ H̃)ij .

As a result, we have the following auxiliary function:

D̄(W ,H, W̃ , H̃) = lim
µ→0+

1

µ

(
D1(W ,H, W̃ , H̃) +D2(W ,H, W̃ , H̃)

+D3(W ,H, W̃ , H̃) +D4(W ,H, W̃ , H̃)

)

+
∑
ij

Xij∑
pq Xpq

ln

(
Xij∑
pq Xpq

)
+

C

2

(∑
ij

Xij

)2

.

Because

lim
µ→0+

(
D1(W ,H, W̃ , H̃) +D2(W ,H, W̃ , H̃)

+D3(W ,H, W̃ , H̃) +D4(W ,H, W̃ , H̃)

)
= 0,

we apply L’Hôpital’s rule. Then we have

D̄(W ,H, W̃ , H̃) =
1

2

(∑
ij

(W̃ H̃)ij

)−1∑
ijk

(W̃ikH̃kj)
−1(WikHkj)

2

−
1

2
+ ln

(∑
ij

(W̃ H̃)ij

)

−
∑
ij

Xij∑
pq Xpq

(W̃ H̃)−1
ij ln

(
(W̃ H̃)ij

)∑
k

W̃ikH̃kj
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−
∑
ij

Xij∑
pq Xpq

(W̃ H̃)−1
ij

∑
k

W̃ikH̃kj ln

(
WikHkj

W̃ikH̃kj

)

− C
∑
ij

Xij ·
∑
ijk

W̃ikH̃kj ln

(
WikHkj

W̃ikH̃kj

)

− C
∑
ij

Xij ·
∑
ij

(W̃ H̃)ij

+
C

2

∑
ij

(W̃ H̃)ij ·
∑
ijk

(W̃ikH̃kj)
−1(WikHkj)

2

+
∑
ij

Xij∑
pq Xpq

ln

(
Xij∑
pq Xpq

)
+

C

2

(∑
ij

Xij

)2

which can be rewritten in the form of (18) with

D̄1
ijk(Wik, Hkj , W̃ , H̃) =

1

2

(∑
pq

(W̃ H̃)pq

)−1

(W̃ikH̃kj)
−1(WikHkj)

2

−
Xij∑
pq Xpq

(W̃ H̃)−1
ij W̃ikH̃kj ln(WikHij)

− C
∑
pq

Xpq · W̃ikH̃kj ln(WikHkj)

+
C

2

∑
pq

(W̃ H̃)pq · (W̃ikH̃kj)
−1(WikHkj)

2 .

C Derivation of Upper Bound for Multiplicative Update Rule
Obtained from Kullback-Leibler Divergence With Regularization
Term

For the first multiplicative update rule shown in Table 3, which is obtained from Kullback-
Leibler divergence with the regularization term, we derive an upper bound for fik(W ,H)
on Fϵ. By simple mathematical manipulations, we have the following inequalities:

fik(W ,H) < Wik


∑

j
Xij∑
pq Xpq

(WH)−1
ij Hkj + C

∑
pq Xpq

∑
j Hkj

C
∑

pq(WH)pq
∑

j Hkj


1
2

≤ Wik


∑

j
Xij∑
pq Xpq

(WH)−1
ij Hkj

C
∑

pq(WH)pq
∑

j Hkj
+

∑
pq Xpq∑

pq(WH)pq


1
2

.

Here note that∑
j

Xij∑
pq Xpq

(WH)−1
ij Hkj∑

j Hkj
=
∑
j

Xij∑
pq Xpq

(WH)−1
ij

Hkj∑
q Hkq

<
1

ϵ2r

∑
j Xij∑
pq Xpq

<
1

ϵ2r
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and
1∑

pq(WH)pq
<

1∑
q WikHkq

=
1

Wik
∑

q Hkq
≤

1

ϵnWik
.

Therefore we have

fik(W ,H) ≤ W
1
2
ik

(
1

ϵ3nrC
+

1

ϵn

∑
pq

Xpq

) 1
2

.
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gence analysis of multiplicative update rules for nonnegative matrix factorization”, Computational
Optimization and Applications, vol.71, no.1, pp.221–250, 2018.

1. Eq.(10) on Page 226 is not correct. It should be replaced with

H
(l+1)
kj = H

(l)
kj

((W (l+1))TX)kj

((W (l+1))TW (l+1)H(l))kj
(10)
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