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A Simple Sufficient Condition for Convergence of
Projected Consensus Algorithm

Norikazu Takahashi and Kosuke Kawashima

Abstract—This paper studies the convergence property of the
projected consensus algorithm. Under the assumption that i) the
intersection of all constraint sets is nonempty, ii) the directed
graph representing the communication among agents is time-
invariant, strongly connected and aperiodic, and iii) the sum of
the weights on incoming edges to each vertex of the graph is
one, we prove that the states of all agents converge to a common
point in the intersection of all constraint sets. Our proof does
not need the assumption that every vertex has a self-loop. The
validity of the theoretical analysis is confirmed through numerical
experiments performed for a system of linear equations with
nonnegativity constraints.

Index Terms—Distributed control, decentralized control, opti-
mization algorithms

I. INTRODUCTION

D ISTRIBUTED computations by multi-agent networks
such as average consensus [1]–[4], dynamic consensus

[5], [6], constrained consensus [7]–[11], distributed forma-
tion [12]–[14], distributed optimization [7], [15]–[19], alge-
braic connectivity estimation [20]–[23] have attracted a great
deal of attention. In these problems, agents are interconnected
over an underlying communication network, and each agent
computes or estimates the value of some global feature only
from the information of itself and the agents in its neighbor-
hood.

In this paper, we focus our attention on the constrained
consensus problem [7], [9] where the states of m agents
have to converge to a common vector in the intersection of
m constraint sets which are closed and convex, under the
condition that agent i only knows the i-th constraint set.
For this problem, Nedić et al. [7] proposed a distributed
algorithm called the projected consensus algorithm, in which
each agent performs the projection onto its constraint set
and the weighted averaging of the states of the agents in
its neighborhood, alternately. They considered the case where
the directed graph, which we call the communication graph
in this paper, representing the information exchange among
agents is time-varying, and proved under some assumptions
that a constrained consensus is reached by their algorithm
for any initial condition. The assumptions include the double
stochasticity of the weights and the existence of a positive
lower bound for the weights on self-loops. By the double
stochasticity, we mean that not only the sum of the weights
on incoming edges but also the sum of the weights on
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outgoing edges from each vertex are one. Recently, Nedić and
Liu [9] proved the convergence of the algorithm under weaker
assumptions. In their analysis, the double stochasticity of the
weights is relaxed to the single stochasticity, which means that
only the sum of the weights on incoming edges to each vertex
is one. However, the existence of a positive lower bound for
the weights on self-loops is still needed.

The objective of this paper is to show that the above-
mentioned assumption on the weights on self-loops is not
needed to guarantee the convergence of the projected con-
sensus algorithm when the communication graph is time-
invariant. To be more specific, we prove that the states of
all agents converge to a common vector in the intersection
of all constraint sets under the following assumptions: i)
the intersection of all constraint sets is nonempty, ii) the
communication graph is time-invariant, strongly connected
and aperiodic, and iii) the sum of the weights on incoming
edges to each vertex of the graph is one. A directed graph
is said to be aperiodic if the greatest common divisor of
the lengths of cycles is one. For example, if there exists a
vertex having a self-loop then the communication graph is
aperiodic. A key difference between the proof given in this
paper and the one in [9] is that max1≤i≤m{∥xi(k) − x∥}
is employed as a candidate Lyapunov function in the former
while

∑m
i=1 πi(k)∥xi(k) − x∥2 is used in the latter, where

xi(k) is the state of agent i at time k which is expected to con-
verge to a common point in the intersection of m constraints,
x is any vector in the intersection of all constraint sets, and
πi(k) are the suitably defined time-varying positive weights1.
Our Lyapunov function is similar to the one used in [24] where
multi-agent systems with continuous-time dynamics is studied.

In order to confirm the validity of the theoretical analysis,
we perform some numerical experiments for a system of
linear equations with nonnegativity constraints [25], [26].
In this problem, the projection onto each constraint set is
easily done by using the algorithm presented in [25]. It is
shown experimentally that the states of all agents converge
to a common solution vector exponentially if our sufficient
condition is satisfied.

II. PROJECTED CONSENSUS ALGORITHM

In what follows, we denote the set of real numbers and the
set of nonnegative integers by R and Z+, respectively. Also,
we use ∥x∥ to denote the Euclidean norm of a vector x. Let
us consider a network of m agents labeled by 1, 2, . . . ,m.
Given m closed convex sets X1, X2, . . . , Xm ⊆ Rn, we want

1Note that the communication graph is assumed to be time-varying in [9].
If it is time-invariant, πi(k) become positive constants.



to make agents in the network find a point x ∈ X = ∩mi=1Xi

in a distributed manner. That is, we assume that i) agent i
only knows Xi, ii) agent i has its own state xi ∈ Xi, iii)
agents exchange their states through communication channels,
iv) agent i updates its own state xi based on the states of the
agents in its neighborhood.

Nedić et al. [7] proposed a distributed algorithm called
the projected consensus algorithm for agents to solve the
constrained consensus problem. When the communication
among agents is time-invariant, their algorithm is described
by

xi(k) =

{
PXi [s

i], if k = 0,

PXi

[
wi(k − 1)

]
, if k ≥ 1,

(1)

with

wi(k) =
m∑
j=1

aijx
j(k)

where xi(k) ∈ Xi denotes the state of agent i at time
k ∈ Z+, si ∈ Rn is the seed to determine the initial state
xi(0) of agent i, wi(k) ∈ Rn is the weighted average of
the states of all agents at time k computed by agent i, aij
is a nonnegative number representing the weight of the state
xj(k− 1) in wi(k), PXi [x̄] is the projection of x̄ on Xi, that
is, PXi [x̄] = argminx∈Xi ∥x̄− x∥.

As is easily seen from (1), agent i receives information from
agent j if and only if aij > 0. In this sense, the information
exchange or communication among agents is determined by
the values of aij , and can be represented by the directed graph
G = (V,E) where V = {1, 2, . . . ,m} is the vertex set, E =
{(j, i) | aij > 0} is the edge set. In what follows, this directed
graph is called the communication graph of the multi-agent
network.

As far as (1) is considered, the result of the convergence
analysis done by Nedić et al. [9] can be stated as follows.

Theorem 1: Let the set X = ∩mi=1Xi be nonempty. If
the three assumptions below are valid then for any seeds
s1, s2, . . . , sm there exists a point x ∈ X such that
limk→∞ xi(k) = x for all i.

1)
∑m

j=1 a
i
j = 1 for all i.

2) The communication graph G is strongly connected.
3) aii > 0 for all i.
The first assumption is natural because wi(k − 1) =∑m
j=1 a

i
jx

j(k − 1) can be seen as a weighted average of the
states xj(k − 1) (j = 1, 2, . . . ,m). The second assumption is
also natural because agents cannot reach a consensus without
the strong connectivity of the network in general. On the other
hand, it is not clear whether the third assumption is really
needed, though it plays an important role in the convergence
analysis of Nedić et al. [9]. In the next section, we show
that the convergence of (1) is guaranteed even if the third
assumption is not satisfied.

III. CONVERGENCE ANALYSIS

In this section, we prove the convergence of (1) under the
following assumption.

Assumption 1: The weights {aij} and the associated com-
munication graph G satisfy the following three conditions.

1)
∑m

j=1 a
i
j = 1 for all i.

2) G is strongly connected.
3) G is aperiodic.
A directed graph is said to be aperiodic if the greatest com-

mon divisor of the lengths2 of its cycles is one. For example, if
there exists a vertex having a self-loop then the communication
graph is aperiodic, because it has a cycle with length one. The
following lemma describes an important property of strongly
connected aperiodic directed graphs, which plays a crucial role
in later analysis.

Lemma 1 (See, for example, [27]): If a directed graph G =
(V,E) is strongly connected and aperiodic then there exists a
positive integer r such that there exists a directed walk from
vertex j to vertex i with length r for all (i, j) ∈ V × V .

For a point x ∈ X = ∩mi=1Xi, we define the function
fx :

∏m
i=1 Xi → R as

fx(x
1(k),x2(k), . . . ,xm(k)) = max

1≤i≤m

{
∥xi(k)− x∥

}
.

The left-hand side of this equation is denoted by fx(k) for
simplicity. We also define the set Ω ⊂

∏m
i=1 Xi as

Ω =

{
(x1, . . . ,xm) ∈

m∏
i=1

Xi

∣∣∣∣∣ x1 = · · · = xm ∈ X

}
.

We first give two lemmas regarding the monotonicity of the
sequence {fx(k)}∞k=0.

Lemma 2: Suppose that the first condition in Assumption 1
holds. Let x be any point in X . Then ∥wi(k)− x∥ ≤ fx(k)
holds for all i ∈ {1, 2, . . . ,m} and k ∈ Z+. In particular, if
there exist j1 and j2 such that aij1 > 0, aij2 > 0 and xj1(k) ̸=
xj2(k) then ∥wi(k)− x∥ < fx(k) holds.

Proof: Using the first condition in Assumption 1 and the
strong convexity of the function g(y) = ∥y∥2 defined on Rn

(see also [9, Lemma 5]), we have

∥wi(k)− x∥2

=

∥∥∥∥∥∥
m∑
j=1

aij(x
j(k)− x)

∥∥∥∥∥∥
2

=
m∑
j=1

aij
∥∥xj(k)− x

∥∥2
− 1

2

m∑
j1=1

m∑
j2=1

aij1a
i
j2

∥∥xj1(k)− xj2(k)
∥∥2

≤
m∑
j=1

aijfx(k)
2 − 1

2

m∑
j1=1

m∑
j2=1

aij1a
i
j2

∥∥xj1(k)− xj2(k)
∥∥2

= fx(k)
2 − 1

2

m∑
j1=1

m∑
j2=1

aij1a
i
j2

∥∥xj1(k)− xj2(k)
∥∥2

≤ fx(k)
2.

The last inequality holds strictly if there exist j1 and j2 such
that aij1 > 0, aij2 > 0 and xj1(k) ̸= xj2(k).

Lemma 3: Suppose that the first condition in Assumption 1
holds. Let x be any point in X . Then the sequence {fx(k)}∞k=0

is monotone nonincreasing.
2We are assuming that all edges have length one.



Proof: Because Xi is a closed convex set, ∥PXi [y]−x∥ ≤
∥y−x∥ holds for any y ∈ Rn [7]. Taking this inequality and
Lemma 2 into account, we have

fx(k + 1) = max
1≤i≤m

{∥∥xi(k + 1)− x
∥∥}

= max
1≤i≤m

{∥∥PXi [w
i(k)]− x

∥∥}
≤ max

1≤i≤m

{∥∥wi(k)− x
∥∥}

≤ fx(k)

which means that {fx(k)}∞k=0 is monotone nonincreasing.
We next give two lemmas to show that if a constrained

consensus is not reached at some time instance then fx(k)
strictly decreases within a fixed number of iterations.

Lemma 4: Suppose that the first condition in Assumption 1
holds. Let x be any point in X . Then ∥xi(k+1)−x∥ = fx(k)
holds if and only if there exists a vector y such that i) y ∈ Xi,
ii) xj(k) = y for all j with aij > 0 and iii) ∥y−x∥ = fx(k).

Proof: Suppose that there exists a vector y satisfying the
three conditions. Then we have

∥xi(k + 1)− x∥ = ∥PXi [w
i(k)]− x∥

= ∥PXi [y]− x∥
= ∥y − x∥
= fx(k).

Suppose next that there does not exist such a vector y. In this
case, the following three cases have to be considered.

1) There exist j1 and j2 such that aij1 > 0, aij2 > 0 and
xj1(k) ̸= xj2(k).

2) There exists a vector y such that xj(k) = y for all j
with aij > 0, but y ̸∈ Xi.

3) There exists a vector y ∈ Xi such that xj(k) = y for
all j with aij > 0, but ∥y − x∥ < fx(k).

In the first case, by Lemma 2, we have

∥xi(k + 1)− x∥ =
∥∥PXi [w

i(k)]− x
∥∥

≤ ∥wi(k)− x∥
< fx(k).

In the second case, it follows from [7, Lemma 1 (b)] that
∥xi(k + 1) − x∥ = ∥PXi [y] − x∥ < ∥y − x∥ ≤ fx(k). In
the last case, we have ∥xi(k + 1) − x∥ = ∥PXi [y] − x∥ ≤
∥y − x∥ < fx(k).

Lemma 5: Suppose that all of the three conditions
in Assumption 1 hold. Let x be any point in X . If
(x1(k∗),x2(k∗), . . . ,xm(k∗)) ̸∈ Ω for some k∗ ∈ Z+ then
fx(k

∗ + r) < fx(k
∗) holds, where r is the integer having the

property given in Lemma 1 for the communication graph.
Proof: Suppose that (x1(k∗),x2(k∗), . . . ,xm(k∗)) ̸∈ Ω

for some k∗ ∈ Z+. We prove the inequality fx(k
∗ + r) <

fx(k
∗) by contradiction. Assume that this is not the case. Then

∥xi(k∗ + r) − x∥ = fx(k
∗ + r) = fx(k

∗ + r − 1) = · · · =
fx(k

∗) for some i. Using Lemma 4, we can say that xj(k∗+
r−1) = xi(k∗+r) ∈ Xj for all j with aij > 0. This means that
∥xj(k∗+ r− 1)−x∥ = fx(k

∗+ r− 2) for all j with aij > 0.
Using Lemma 4 again, we can say that xj(k∗ + r − 2) =

xi(k∗ + r) ∈ Xj for all j such that there exists a directed
walk from vertex j to vertex i with length two. Repeating this
argument, we can finally say that xj(k∗) = xi(k∗ + r) ∈ Xj

for all j such that there exists a directed walk from vertex
j to vertex i with length r. This implies by Lemma 1 that
xj(k∗) = xi(k∗ + r) ∈ X for all j ∈ V , which contradicts
the assumption that (x1(k∗),x2(k∗), . . . ,xm(k∗)) ̸∈ Ω.

Now we are ready to prove the main result of this paper.
Theorem 2: Let X = ∩mi=1Xi be nonempty. Suppose that

all of the three conditions in Assumption 1 hold. Then, for
any seeds s1, s2, . . . , sm, the sequence {(x1(k),x2(k), . . . ,
xm(k))}∞k=0 generated by the projected consensus algorithm
(1) converges to a point in Ω.

Proof: Let r be the positive integer having the property
given in Lemma 1 for the communication graph. Let the
mapping that maps (x1(k),x2(k), . . . ,xm(k)) to (x1(k +
r),x2(k + r), . . . ,xm(k + r)) by using (1) be denoted by
A :

∏m
i=1 Xi →

∏m
i=1 Xi. Then, the following statements

hold true.
1) The sequence {Al(x1(0),x2(0), . . . ,xm(0))}∞l=0 is

contained in a bounded subset of
∏m

i=1 Xi, because it
follows from Lemma 3 that

fx(A
l(x1(0),x2(0), . . . ,xm(0)))

≤ fx(x
1(0),x2(0), . . . ,xm(0))

= max
1≤i≤m

{
∥xi(0)− x∥

}
holds for all l ∈ Z+.

2) If Al(x1(0),x2(0), . . . ,xm(0)) ̸∈ Ω then

fx(A
l+1(x1(0),x2(0), . . . ,xm(0)))

< fx(A
l(x1(0),x2(0), . . . ,xm(0))),

and if Al(x1(0),x2(0), . . . ,xm(0)) ∈ Ω then

Al+1(x1(0),x2(0), . . . ,xm(0))

= Al(x1(0),x2(0), . . . ,xm(0)).

3) A is continuous because it is a composite mapping
of two kinds of continuous mappings: the weighted
averaging and the projection onto a closed convex set.

From these observations and Zangwill’s global
convergence theorem [28], we can say that the sequence
{Al(x1(0),x2(0), . . . ,xm(0))}∞l=0 generated by (1) has
at least one convergent subsequence and the limit
of any convergent subsequence is a point in Ω. Let
{Al(x1(0),x2(0), . . . ,xm(0))}l∈L⊂Z+ be any convergent
subsequence of {Al(x1(0),x2(0), . . . ,xm(0))}∞l=0 and let
(u,u, . . . ,u) ∈ Ω be its limit point. Then the corresponding
subsequence {fu(rl)}l∈L of {fu(k)}∞k=0 converges to zero.
Taking this result and Lemma 3 into account, we can conclude
that the entire sequence {fu(k)}∞k=0 converges to zero, which
means that {(x1(k),x2(k), . . . ,xm(k))}∞k=0 converges to
(u,u, . . . ,u).

The convergence of the algorithm (1) is now guaranteed
by Theorem 2. What we need to do next is to determine
the convergence rate. The results given in [9] can be used
when aii > 0 for all i. However, when aii = 0 for some i,



no meaningful conclusion can be drawn by the direct use of
the results in [9]. The analysis of the convergence rate for this
case is left for a future work.

The extension of our results to multi-agent networks having
switching topology is also an important issue. It is easy to see
from the proof of Theorem 2 that if the time-varying weights
always satisfy Assumption 1 and each topology lasts at least
r time steps, where r is the integer given in Lemma 1 and
determined from the topology, then the same conclusion as
Theorem 2 is drawn. However, this condition is too severe.
Further studies are needed to obtain milder condition.

IV. APPLICATION TO LINEAR EQUATIONS WITH
NONNEGATIVITY CONSTRAINTS

As an example of the constrained consensus prob-
lem, we consider the problem of finding a vector x =
(x1, x2, . . . , xn)

T satisfying

Bx = c, x ≥ 0 (2)

where B = (bij)
T ∈ Rm×n is a constant matrix and c ∈ Rm

is a constant vector. The inequality x ≥ 0 means that all
entries of x are nonnegative. Let bi be the i-th row of B and
let Xi ≜ {x ∈ Rn | bix = ci, x ≥ 0} for i = 1, 2, . . . ,m.
Then the problem is equivalent to finding a point in X =
∩mi=1Xi, and thus can be solved by (1) if X is nonempty.

In order to confirm the validity of the theoretical analysis
in the previous section, we conduct some numerical experi-
ments. Various kinds of methods can be used for computing
PXi [x]. In our experiments, we use the algorithm proposed
by Michelot [25], which is described in Algorithm 1, because
it is simple and easy to implement.

Algorithm 1 Projection onto Xi = {x | bix = ci,x ≥ 0}
Input: x = (x1, x2, . . . , xn)

T ∈ Rn, bi = (bi1,
bi2, . . . , bin) ∈ Rn and ci ∈ R.

Output: y ∈ {PXi [x],−1} (y = −1 means Xi is empty)
1: Set y ← x.
2: If bi = 0 then go to Step 5.
3: Set y ←

(
I − bTi bi/∥bi∥2

)
x̂+ cib

T
i /∥bi∥2.

4: If y ≥ 0 then return y and stop.
5: Set J ← {j | yj < 0}.
6: Set yj ← 0 and bij ← 0 for all j ∈ J .
7: If bi ̸= 0 then go to Step 3.
8: If ci ̸= 0 set y ← −1. Return y and stop.

In the first experiment, we consider the situation in which
the problem (2) with

B =


−65 33 28 71 59 −66
56 29 38 −75 −33 86
72 −91 73 14 −70 43
16 9 −23 63 −62 85
−21 86 −6 23 56 24

 ,

c = (−115, 978, 612, 148, 399)T
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Fig. 1. Communication graph of the multi-agent network used for the first
experiment. Numbers beside directed edges represent weights.

is solved by a five-agent network. Note that X is nonempty
in this case because x = (5, 4, 8, 0, 2, 4)T is a solution of
Bx = c. The weights on the states are set to

A =

 a11 . . . a15
...

. . .
...

a51 . . . a55

 =


0.3 0.4 0.3 0.0 0.0
0.2 0.4 0.1 0.3 0.0
0.1 0.3 0.4 0.0 0.2
0.0 0.4 0.0 0.3 0.3
0.0 0.0 0.3 0.2 0.5


and the entries of the seeds s1, s2, . . . , sm are chosen ran-
domly from the interval [−1, 1]. Note that A satisfies all
conditions in Assumption 1. The communication graph of the
multi-agent network is shown in Fig. 1. It is easy to see that
the graph is strongly connected.

The results of the first experiment are shown in Fig. 2.
Figure 2 (a) shows the time evolution of ei(k) = ∥Bxi(k)−
c∥/∥c∥ for i = 1, 2, . . . , 5. It is clear from the figure that
ei(k) converges exponentially to zero for all i. This means
that each agent eventually finds a vector x satisfying (2).
Figure 2 (b) shows the time evolution of vi(k) = ∥xi(k) −
(1/5)

∑5
j=1 x

j(k)∥/∥(1/5)
∑5

j=1 x
j(k)∥ for i = 1, 2, . . . , 5.

It is clear from the figure that vi(k) also converges expo-
nentially to zero for all i. This means that the states xi(k)
(i = 1, 2, . . . , 5) converge to the same value, that is, five agents
eventually reach a consensus.

In the second experiment, we consider the situation in which
the same problem as in the first experiment is solved by a
different five-agent network. The weights on the states are set
to

A =


0.3 0.4 0.3 0.0 0.0
0.2 0.0 0.5 0.3 0.0
0.5 0.3 0.0 0.0 0.2
0.0 0.4 0.0 0.0 0.6
0.0 0.0 0.3 0.7 0.0


and the entries of the seeds s1, s2, . . . , sm are set to the
same values as in the first experiment. The matrix A above
is obtained from the one in the first experiment by setting aii
(i = 2, 3, 4, 5) to zero and then by increasing the values of
the smallest offdiagonal entries in each row so that the first
condition in Assumption 1 is satisfied. The communication
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Fig. 2. Results of the first experiment. (a) Time evolution of ei(k) =
∥Bxi(k) − c∥/∥c∥. (b) Time evolution of vi(k) = ∥xi(k) −
(1/5)

∑5
j=1 x

j(k)∥/∥(1/5)
∑5

j=1 x
j(k)∥.

graph of this multi-agent network is strongly connected. In
addition, it is aperiodic because vertex 1 has a self-loop.

The results of the second experiment are shown in
Fig. 3. Figures 3 (a) and 3 (b) show the time evo-
lution of ei(k) = ∥Bxi(k) − c∥/∥c∥ and vi(k) =
∥xi(k) − (1/5)

∑5
j=1 x

j(k)∥/∥(1/5)
∑5

j=1 x
j(k)∥, respec-

tively, for i = 1, 2, . . . , 5. As in the first experiment, both
ei(k) and vi(k) converge exponentially to zero for all i. But
the more important point is that their convergence rates are
faster than those in the first experiment.

In the third experiment, we consider the situation in which
the same problem as in the first experiment is solved by a
five-agent network with aii = 0 for all i. The weights on the
states are set to

A =


0.0 0.4 0.6 0.0 0.0
0.2 0.0 0.5 0.3 0.0
0.5 0.3 0.0 0.0 0.2
0.0 0.4 0.0 0.0 0.6
0.0 0.0 0.3 0.7 0.0


and the entries of the seeds s1, s2, . . . , sm are set to the
same values as in the first experiment. The matrix A above is
obtained from the one in the first experiment by setting aii to
zero for all i and then by increasing the values of the smallest
offdiagonal entries in each row so that the first condition in
Assumption 1 is satisfied. The communication graph of this
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Fig. 3. Results of the second experiment. (a) Time evolution of
ei(k) = ∥Bxi(k) − c∥/∥c∥. (b) Time evolution of vi(k) = ∥xi(k) −
(1/5)

∑5
j=1 x

j(k)∥/∥(1/5)
∑5

j=1 x
j(k)∥.

multi-agent network is strongly connected. In addition, it is
aperiodic because the greatest common divisor of the lengths
of cycles, which are three, four and five, is one.

The results of the third experiment are shown in
Fig. 4. Figures 4 (a) and 4 (b) show the time evo-
lution of ei(k) = ∥Bxi(k) − c∥/∥c∥ and vi(k) =
∥xi(k) − (1/5)

∑5
j=1 x

j(k)∥/∥(1/5)
∑5

j=1 x
j(k)∥, respec-

tively, for i = 1, 2, . . . , 5. As in the first and second exper-
iments, both ei(k) and vi(k) converge exponentially to zero
for all i. In addition, their convergence rates are faster than
those in the second experiment.

The results of these experiments suggest that the smaller
the weights on self-loops are, the faster the convergence rate
of the algorithm is. We do not address this issue in this paper.
Further studies are needed to determine whether this statement
holds true.

V. CONCLUSION

The convergence property of the projected consensus algo-
rithm proposed by Nedić et al. [7] was studied in this paper.
Restricting ourselves to the case where the communication
graph is time-invariant, we have proved, under weaker condi-
tions than those in the literature, that a constrained consensus
is achieved by the algorithm. In our proof, self-loops in the
communication graph are not necessarily needed, while it is
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Fig. 4. Results of the third experiment. (a) Time evolution of ei(k) =
∥Bxi(k) − c∥/∥c∥. (b) Time evolution of vi(k) = ∥xi(k) −
(1/5)

∑5
j=1 x

j(k)∥/∥(1/5)
∑5

j=1 x
j(k)∥.

assumed that every vertex has a self-loop in, for example,
the convergence analysis done by Nedić and Liu [9]. We
have also confirmed the validity of the theoretical analysis
through numerical experiments in which a system of linear
equations with nonnegativity constraints are solved by the
algorithm. Experimental results indicate that the convergence
rate may become faster as the weights on self-loops become
smaller. Clarifying the relationship between the weights and
the convergence rate is left for a future work.
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