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of Cellular Neural Networks with Delay
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Abstract—This paper gives a new sufficient condition for algebraic equations, and a fixed-point theorem play important
Cellular Neural Networks with Delay (DCNN's) to be completely roles. We also show that a conjecture concerning the complete

stable. A fixed-point theorem and a convergence theorem of the stability of DCNN’s given in [14] does not hold true. A
Gauss-Seidel method play important roles in the proof, while t le to th iect il be ai ’
most conventional stability criteria were obtained by constructing counterexample to the conjecture will be given.

Lyapunov functionals.

Index Terms— Cellular neural networks, Delay, Complete sta- II. DCNN MODEL
bility, Gauss-Seidel method . . . .
The state equation of a DCNN is described by the following

differential equation
I. INTRODUCTION

Cellular neural networks (CNN's) introduced by Chua and da(t) = —x(t)+ Ay(t) + ATyt —7)+b (1)
Yang [1] have many applications in the area of image process- d
ing [2], [3]. Since CNN's are usually required to be completelwhere x(t) = [zi(t),...,2,(t)]T is the state,y(t) =

stable for their applications, studies on complete stability ¢, (¢),...,y,(t)]” is the output,b = [by,...,b,]T is the

CNN's have been vigorously done and many criteria have beiput, A = [a;;] is the feedback matrixA™ = [a7;] s the

obtained so far [1], [4]- [9]. delayed feedback matrix; is a positive number representing
As a generalization of the standard CNN model, Cellulahe length of delay, and is the number of cells. The value

Neural Networks with Delay (DCNN's) were introduced byof each elemeny; of y is determined frome; as follows:

Roska and Chua [10]. In DCNN's, the state transition of each

cell depends not only on the present outputs of its neighbor yi(t) = f(zi(t), i=1,2,....n

cells but also on the delayed outputs of them. Because 0#‘1 3 is the bi ise i function defined b

the delay effect, DCNN’s are thought to be useful for motion? ere f(:) is the piecewise linear function defined by

related image processing. However, the dynamical behavior of

DCNN's is so complicated that studies on complete stability of

DCNN's are much more difficult than that of standard CNN’sI.
So far, some complete stability criteria for DCNN’s have

been obtained [7], [11], [12]. In [11], it was proved that z(t) = ¢°t), te[-1,0] (2)

DCNN'’s with positive cell-linking templates are completely

stable almost everywhere. In [12], it was shown that if suithere¢’(t) is assumed to be a continuous functionjem, 0].

of the feedback matrix and the delayed feedback matrix @ne should note that the DCNN model includes the standard

symmetric and the length of delay is smaller than a certaffNN as the special case whe# = 0.

value depending on the delayed feedback matrix then theDefinition 1: A DCNN is said to be completely stable if

DCNN is completely stable. The stability condition givergnd only if the trajectoryp(t, ¢°) of the state equation (1)

in [7] is similar to the one in [12]. Besides these completgatisfies

F(0) = (0 + 1]~ o 1))

he initial condition for a DCNN is given by

stability criteria, some sufficient conditions for a DCNN to lim ¢(t, ¢°) = const. 3
have a globally asymptotically stable equilibrium point have treo
also been obtained [13]- [15]. holds for any continuous functioa®(t).

It should be noted that the existing stability criteria for If a DCNN is not completely stable, it has at least one
standard CNN’s can not necessarily be applied to DCNN®ajectorye(t, ¢°) which does not satisfy (3). In the following,
It was in fact reported in [12] that a DCNN can becomsuch a trajectory is said to be unstable and denoted with the
unstable even though both the feedback template and theperscriptu, aso®(t, ¢°).
delayed feedback template are symmetric. We now give a few definitions which will be needed in the

In this paper, we give a new sufficient condition for a DCNNollowing sections.
to be completely stable. The main result of the present papeDefinition 2: An n x n matrix P with nonpositive off-
is based on the stability condition for standard CNN's givetliagonal elements is calledf -matrix if all its principal minors
in [9]. A convergence theorem of the Gauss-Seidel methage positive.

[16], [17], which is an iterative technique for solving linear Definition 3: Let P be a matrix with positive diagonal

The author is with the Department of Informatics, Kyushu Universitﬁlements' The comparison matikof P is defined as;;; =
Fukuoka, Japan. pii ands;; = —|p;;| for i # j.



I11. M AIN RESULT AND RELATED WORKS

The following theorem, which gives a new sufficient con-
dition for DCNN's to be completely stable, is the main result
of this paper. The proof will be given in Section IV.

Theorem 1:Let W = [w;;] be then x n matrix determined
from the matricesA and A™ as follows:

Wij = { ) | (4)
J

If W is an M-matrix, then the DCNN is completely stable.

This is based on the following theorem.

Theorem 2 ( [9]): A standard CNN is completely stable if
the comparison matrix ofA — I is an M-matrix where I
denotes the identity matrix. Fig. 1.

Since a standard CNN can be regarded as a DCNN satis-
fying A™ = 0, Theorem 2 corresponds to the special case of
Theorem 1 whered”™ = 0. The statement of Theorem 2 was . ; 0
firstly given in [8] as a conjecture, and then proved to be trys Lemma L:If a > 1 then any unstable trajectory” (. ¢")

in [9]. A convergence theorem of the Gauss-Seidel methoe(%j (5) satisfies

o
—

if i=j
otherwise -

Qg — 1-— |a;

—lai;| - |af,

1 (1)

DP plotI'(t)

plays a key role in the proof of Theorem 2. As we will see F(8"(t, %)) € 1™ v > (k—1)r 8)
later, this technique is also efficient for the proof of Theorem -
1. for all k (= 0,1,2,...), where I®) is the closed interval
Theorem 1 is also a generalization of the following theoregptained by the following algorithm with.(Y = 1 and
because a row sum dominant matrix is AfRmatrix. 100) — _1.
Theorem 3 ([7]): A DCNN is completely stable if the Algorithm 2
matrix W is row sum dominant. Step 1:Set1(®) = [1(0) ()],
The sufficient condition in Theorem 1 is distinguished Step 2:Setk = 1.
from the existing complete stability criteria [7], [11], [12] on Step 3:Compute
the following points: i) the condition does not impose any
restriction on signs of the off-diagonal elementsbfind A7, *) min, ¢ ;-1{a"y} +b
and ii) the condition is independent of the length of delay. w=f ( a—1 ) ©)
| | IV. PRO-OF OFTHEOREM 1 | 0 _ ¢ <_ max, ¢ r-n{a’y} + b) (10)
In this section, we give a proof of Theorem 1. First, the a—1

complete stability of one-cell CNN's is investigated, and then
DCNN's with arbitrary number of cells will be dealt with.

and setl %) = [1(F) 4,(#)],

Step 4:Add 1 to &, and go to Step 3.
A. One-Cell DCNN’s

Let us consider the dynamics of DCNN's consisting of onlf X Proof: Itis obvious that (8) holds fok = 0 since/® =

1]. In the following, we will show that if (8) holds for

one cell: k= k(> 0), that i
= at is
da(t =S !
W ey +ayt - b ©) |
dt flg (e, 0%) e I®), W= (K —1)r (A1)
with the initial condition
H _ /
2(t) = ¢°t), Vi€ [-7,0]. then it also holds fok = k' + 1..
_ It follows from (11) thatg(t) is bounded agmin < g(t) <
By putting Jmax fOr any unstable trajectory and for all> k', where
glt) = ay(t—7) +b (©) |
we can rewrite (5) as follows: Ymin = yg}l({j,){a yr+b (12)
dx(t max = max {a’y}+b. 13
20— —a(t) + af () + 900 @ ’ i ) )

Now we introduce the DP plot [3] which will be needed irLet I',,,., andT',;,, denote the DP plots corresponding to the
some of the lemmas given below. The DP {I¢t) is the curve cases wher@(t) = gmax and g(t) = gmin, respectively. Then
obtained by plotting the right-hand side of (7) as a function d¢fie DP plotl'(¢) of any unstable trajectory is bounded By,
z(t). Fig.1 shows a DP plaF'(¢) for certain values of and andT',;, for ¢ > k’r as shown in Fig.2. In Fig.2 (resp.,q)
g(t). One should note thdt(¢) moves up and down as timedenotes the value of at the point where the middle segment
increases since the value gft) varies with time. of I'in (resp.,I'ax ) and thez-axis intersect. The values of
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Fig. 2. The region bounded byax andI'y,;,. These figures correspond to the six possible cases depending the valwnad§: (a) -1 < ¢ <p <1,
P) -1<g<1<p(€)g<-1<p<L,(d)g<-1<1<p(e)1<g<p Hg<p<-1

p andg are expressed by the following equations: Taking all the above cases into account, we can conclude
G 1 that any unstable trajectory” (¢, ¢°) satisfies
p = - =— ( min {a"y} + b) (14)
a—1 a—1lyer® fla) < f(0"(t,¢%) < f(p), VE2K'T.  (16)

max ]' T 1 ! !
¢ = = <max {a y}+b)' (15) since f(p) = u**V and f(q) = I*"*Y, (16) can be

a—1  a—1\yerth . _
: _ _ ) rewritten as follows:
Fig.2 shows six possible cases depending on the values of

p and ¢. In Fig.2(a), dz(t)/dt is positive for any value of F(o"(t,¢°) € IFHD vt > k'r.

g(t) as long asz(t) satisfiesp < x(t) < 1. Therefore, if o

p < ¢“(t,¢°) < 1 holds for somet > k't then lim;_,, ThLerefore (;)Ifhmdstjof _kf +1 -
F(6"(t,8%)) = 1 holds. This implies thag® (¢, ¢°) converges ~ -6MMa 2:If a anda’ satisfy
to an equilibrium point. Also, if-1 < ¢%(t,¢") < ¢ holds a—1—]a"| >0 (17)
for somet > k't then ¢*(t,¢°) converges to an equilibrium
point. Therefore, any unstable trajectar(t, ") must satisfy

q< ¢"(t,¢°) <p, Vt>Kk'r

then the sequencds:*)} and {I(*)} obtained by Algorithm
2 converge to the same value, that is,

i *) — lim [®) =
In Figs.2(b) and (e), any unstable trajectasy(t, ¢") must Jm u = Jm I =c. (18)
satisfy Proof: See Appendix. ]
q < ¢u(t,¢%), V> kT The following lemma follows from Lemmas 1 and 2.

. Lemma 3:The one-cell DCNN (5) is completely stable if
because if ¢“(t,¢") < ¢ for some t then we have a anda” satisfy (17).

limy 00 f(¢u(t’¢0_)_) = —1 which implies ¢"(t, ¢") con- Proof: From Lemma 1, any unstable trajectasy(t, ¢°)
verges to an eqwhbnum point. Slmllarly, in Fig.2(c) and (f)y¢ (5) satisfies (8) for alk(= 0,1,2,- - ). However, ifa and
any unstable trajectory"(, ¢°) must satisfy a” satisfy (17), it follows from Lemma 2 that

u 0 /
¢“(t,¢7) <p, VKT lim f(¢"(t,¢°)) = const.
because ifp(t, #°) > p for somet then it converges to an oo
equilibrium point. Finally, in the case of Fig.2(d), there is navhich implies ¢“(t, ¢°) converges to an equilibrium point.
restriction on the value ob“(t, ¢°) for t > k'r. This is a contradiction. [ |



Now we consider one-cell DCNN's with time-varying input:
dx(t)

dt
whereb(t) is assumed to be bounded as

=—z(t)+ay(t) +a"y(t — 1) + b(t) (19)

bmin < b(t) < bmax, Vit > 0.

Although this is not the model of interest in this paper, th
dynamic properties of (19) are useful in later discussion.

Lemma 4:1f a > 1 then any unstable trajectory(t, #°)
of (19) satisfies

flo¥(t,¢°)) € IV,

for all k£ (= 0,1,2,...), where I*) is the closed intervals
given by the following algorithm with,(?) = 1 and!(®) = —1.
Algorithm 3

Step 1:Set (0 = [1(0) 4 )]

Step 2:Setk = 1.

Step 3:Compute

u(k):f<
1(k) :f(

and setl %) = [1(F) 4,(#)],
Step 4:Add 1 to k£, and go to Step 3.

vt > (k—1)7

minyel(k—l) {aTy} + boin
a—1

)
)

max, e k—1) {a"y} + bmax

a—1

We omit the proof of Lemma 4 because it is very similar to

that of Lemma 1.

Lemma 5:If a anda” satisfy (17) then the sequen¢é®)}
obtained by Algorithm 3 converges to the closed inteivai=
[I*,u*] C [-1,1] which is uniquely determined from, a7,
bmax andbi,. Moreover, the interval* satisfies

(20)
n

B. DCNN's with arbitrary number of cells

Lemma 6:Let A; and A7 denote the(n — 1) x (n — 1)
matrices obtained by eliminating theth row and thei-th
column from A and A", respectively. If every(n — 1)-cell
DCNN defined by

de(t
th(f ) _ —z(t)+ Ay(t) + Aly(t—7) + b (21)
is completely stable, and if
aii—1—|a;ri|>0, i:l,?,...,n (22)

holds, then any unstable trajectogy” (¢, ") of the n-cell
DCNN (1) satisfies

lim f(¢"(t, %)) € D (23)
— 00

for m = 0,1,2,... where D(™ is the closed region deter-
mined by Algorithm 4 below.

Algorithm 4

Step 1:Set
DO —

O —1-1,1), i=1,2,...,n

and
D© = D 5 P x ... x DO

Step 2:Setm = 1.
Step 3:DetermineD§m) (i=1,2,...
substeps.

Substep 3.1Seti = 1.

Substep 3.2Set

e ,n) by the following

[© = pim=b (24)
and
i1
bmin = min (m>{aijyj +ajyi}
j=1Y3:Y; €D;
n
+ min ~ {ai;y; +ajy; ) +bi (25)
j=i+1Y5Y; €D;
i1
bmax = max {ai;y; + aj;y;}
j=1 y.?‘v?JJTGDJ('m)
n
+ max  {ai;y; +al;y; } + b (26)

. (m—1)
j=it+1 Y095 €D;

Substep 3.3Execute Algorithm 3 with (24)—(26) until
{1(®)} converges to a certain closed intenval
Substep 3.4Set

D™ — I,

2

Substep 3.51f ¢ = n, go to Step 4 Otherwise, add
to ¢ and go toSubstep 3.2
Step 4:Set

D™ = D™ % DI™ x ... x D™,

Step 5:Add 1 to m and go toStep 3

Proof: It is obvious that (23) holds fom = 0. We will
show in the following that if (23) holds fom = m/, then it
also holds form = m’ + 1. First we rewrite the-th equation
of (1) as

d%t(t) = —x;(t) + auyi(t) + alyi(t — 1) + b (t)  (27)
where
bi(t) = Z (aijy;(t) +ajy;(t — 7)) + b;
Jj=1,j#i
Since
Jim f(@"(1.¢)) € D) 29)

holds from the assumption; (t) eventually satisfies

bi,min S bz(t) S bi,max



where Conjecture 1 is based on the fact that if the comparison
n matrix of A + A™ — I is an M-matrix then only the total
bimax = Z l max {aijyj + a[jy;-} +b; saturation region contains stable equilibrium points. However,
(m”)

j=17i LYi-v]€D;" no one has proved so far that it is true or false.
n We now show that Conjecture 1 does not hold true by
bi min = Z min {aijyj + agjyjf} + b;. giving a counterexample. Let us consider the following one-
jotj#i Lvivjen™” cell DCNN:
One should note that (27) is regarded as a one-cell DCNN with da:(t)
time-varying input. One should also note that each element TR —a(t) +y(t) +y(t — 7). (29)
#%(t, ¢°) of an unstable trajectorg® (¢, ¢°) must be unstable,
because if there exists ansuch thatlim, .., ¢%(t, ") = This DCNN satisfies the sufficient condition for complete

const. then the state equation fat= c can be written in Stability given in Conjecture 1 becausd + A™ — I =
the form of (21) which implies¢®(t, ¢°) converges to an @11 +af; —1 = 1 > 0 holds. Now letr = 37/2 and

equilibrium point. #°(t) = rsin(t) (-7 < t < 0) where0 < r < 1. Then,
By applying Lemma 4 tap¥(t, ¢°), we have for x(t) = rsin(t), we have
lim ¢1(t,¢°) € I* = D" —a(t) + y(t) +y(t —7)

where I* is the limit of the sequencg/(*)} obtained by = —rsin(t) + rsin(t) + rsin(t — 37/2)

Algorithm 3 with 7© = D™ by = bt mmax, aNd by = = rcos(t).

b1 min. Hence (28) can be updated to . . . . . .
b (28) P Thusz(t) = rsin(t) is a solution of the differential equation

lim ¢"(t,¢°) € D™+ x D{™) x ... x D), (29). Sincex(t) = rsin(t) never converges to an equilibrium
o e ) point, the above DCNN is not completely stable.
Similarly, applying Lemma 4 t@%, ¢%, ..., ¢, we have

. w 0 (m/+1) o (m’4+1) _ p(m’+1)
Jim ¢%(t,¢") € Dy X x Dy, =D ' VI. CONCLUDING REMARKS
Therefore, (23) holds fom = m' + 1. [ |

Lemma 7:If W is an M-matrix, the sequencé¢D(™)}
obtained by Algorithm 4 converges to a singleton.
Proof: See Appendix. ]

We have derived a new sufficient condition for DCNN's
to be completely stable by utilizing a fixed-point theorem
and a convergence theorem of the Gauss-Seidel method to
Now we are ready to prove Theorem 1 the stab_ility analysis of_ DCNN's. Also, we have shoyvr_l that

' the conjecture made in [14] does not hold by giving a

Proof of Theorem 1:lt is obvious from Lemma 3 that the .
, counterexample. It should be noted that the complete stability
theorem holds for one-cell DCNN'’s. Assume that the theorecr:rr]iterion ven in this paper is independent of the lenath of
holds for any(n — 1)-cell DCNN (n > 2). We will show that 9 bap b g

the n-cell DCNN such tha¥ is an M-matrix is completely delay. In addition, the criterion is valid even though the length
) ) of delay differs from cell to cell.
stable under this assumption. : e
Since any principal submatrix of ad/-matrix is also However, as shown in [9], the new condition is rather severe,
an M-matrix, any (n — 1)-cell DCNN defined by (21) is particularly for DCNN'’s with space-invariant templates. Find-
completely s:cable. Moreover, sindd is an M-matrix, (22) ing new classes of completely stable DCNN'’s which provide

holds. Thus Lemma 6 can be applied to theell DCNN, us useful applications is a future problem.
and we can say that any unstable trajectptyt, ¢°) satisfies
(23). However, it follows from Lemma 7 thaim,,_, ., D™
is a singleton which impliedim; ., ¢*(t, ") = const. This
is a contradiction. Therefore, there is no unstable trajectory. proof of Lemma 2: Case 1)Suppose:™ < 0. Since (9)
In other words, ther-cell DCNN is completely stable. B and (10) become

APPENDIX

V. A CONJECTURE ON THECOMPLETE STABILITY OF (k) _ a"u*=1 4+ p
DCNN’s wt =\

Concerning the complete stability of DCNN'’s, the following
conjecture was recently made by Arik and Tavsanoglu. *) aT1E=1) 4 p
Conjecture 1 ( [14]): A DCNN is completely stable if the = T a1

comparison matrix ofA + A™ — I is an M-matrix.

It should be noted that Theorem 2 corresponds to the spe¢i@pectively, the sequencds*)} and {I{*)} are indepen-
case of Conjecture 1 wher&™ = 0. In addition, Conjecture 1 gently obtained. Let
is closely related to Theorem 1. In fact, the class of completely

stable DCNN'’s given in Theorem 1 is strictly included in that hiv) — a’v+0b
of Conjecture 1. W=r\-—F=)




Then it is obvious that ifv belongs to the closed interval
[-1,1] then so does(v). Moreover, we have

, av+b a™v' +b
) - = |7 (=) g (<)
< (_a71}+b> B (_CLTU/—I—())‘
- a—1 a—1
= aill(v—v’)
= aa71|va'|.

Since0 < —a"/(a—1) < 1 holds from (17)h(v) : [-1,1] —

[-1,1] is a contraction mapping. From a fixed-point theorem,

the equationrv = h(v) has a unique solution ifi-1,1] and
both {u(*)} and {I(*)} converge to the unique solution.
Case 2) Suppose:” > 0. Then (9) and (10) become

77(k—1)
u®) = f <_al+b> (30)
a—1
7, (k—1)
10 = 5 (_M> (31)
a—1
respectively. Let = [u,[]7, and
I (v) F(=25)
h(v) = .
('U) |: hg(v) :| [ f( a u+b)
It is obvious that ifv € [-1,1]*(= [-1,1] x [-1,1]) then
h(v) € [-1,1]?. Moreover, one can easily derive
71 (v) = by (V)] <
and
[ha(v) = ha (V)] < ——[u — .
Thus we have
11 (0) = (V)| <l = /| -
Since0 < a”/(a—1) < 1 holds from (17)h(v) : [-1,1]*> —

[—1,1]? is a contraction mapping. From a fixed-point theorem,

the equatiorw = h(v) has a unique solution if-1, 1] and
the sequencdv® = [u(®) 1(¥)]T} converges to the unique

solution. By taking the symmetry of (30) and (31)into account,

we derive (18). |
Proof of Lemma 5:We only give a proof of the second

statement because the first one can be proved in a similar

way as Lemma 2. Since* = [u*,[*]T is the fixed-point of
Algorithm 3, v* and[* satisfy

e
)

= <maxy€[l*,u*]{aTy} + bmax
bmin)

minye[l*>u*]{a7y} + bmin
a—1

and

a—1
Thus we have

oo ol =) +

U* _ l S (bmax -

a—1
which can be rewritten as (20).

Proof of Lemma 7: Let |D \ denote the length

of the interval D™, and letd™ = [a\™ . . d\™)T
(ID{™|,...,|DY™|)T. Since it is obvious thab©® > D)
D® D ... holds, it suffices for us to show thgid(™}

converges to the zero vector.
Let {z(™)} be the sequence of vectors which is obtained
by the following algorithm.

Algorithm 5
Step 1:Setm =1andz” =2 (i =1,2,...,n).
Step 2:For: =1,2,...,n, compute

n
-1
b ST (agg| + Jag ™Y
Jj=i+1
Qi; — 1— |CLZ—Z

i—1
Z |al]‘ + |az]‘
Jj=1

(m) _

i

z

and set

2(m = [zyn), zém), 2T

Step 3:Add 1 to m and go to Step 2.

Algorithm 5 describes the Gauss-Seidel method for solving
the equationW z = 0 with the initial approximationz(®) =
[2,2,...,2]T. It is well known that the Gauss-Seidel method
for solving a linear algebraic equatioRz = b converges
to the true solution ifP is an M-matrix [16]. Therefore the
sequence z("™} converges to the zero vector.

From the initial condition of Algorithms 4 and 5, we have

dV =29 i=12..n
Moreover, if
(m) (m) . _ :
d;7 <z, j=12,...,i—1
and
N L E S

J
holds then it follows from (20), (25) and (26) that

.
=

m m—1
(Jaj| + laZ)d™ + Z (Jaj| + laZ; )™

(m)  ~ Jj=1 Jj=itl
- o— 1+ |a..
i—1
1
(laij] + laf; 24" + Z (Jai;| + laZ; )=~
< j=1 j=i+1
B ai — 1+ |aj;

Therefored(m) < z ) holds fori = 1,2,...,n and for all
m. Slnce{z(m)} converges to the zero vector, so ddes™)}
and its convergence rate is faster thigri™)}. [
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