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A New Sufficient Condition for Complete Stability
of Cellular Neural Networks with Delay

Norikazu Takahashi,Member, IEEE

Abstract— This paper gives a new sufficient condition for
Cellular Neural Networks with Delay (DCNN’s) to be completely
stable. A fixed-point theorem and a convergence theorem of the
Gauss-Seidel method play important roles in the proof, while
most conventional stability criteria were obtained by constructing
Lyapunov functionals.

Index Terms— Cellular neural networks, Delay, Complete sta-
bility, Gauss-Seidel method

I. I NTRODUCTION

Cellular neural networks (CNN’s) introduced by Chua and
Yang [1] have many applications in the area of image process-
ing [2], [3]. Since CNN’s are usually required to be completely
stable for their applications, studies on complete stability of
CNN’s have been vigorously done and many criteria have been
obtained so far [1], [4]– [9].

As a generalization of the standard CNN model, Cellular
Neural Networks with Delay (DCNN’s) were introduced by
Roska and Chua [10]. In DCNN’s, the state transition of each
cell depends not only on the present outputs of its neighbor
cells but also on the delayed outputs of them. Because of
the delay effect, DCNN’s are thought to be useful for motion-
related image processing. However, the dynamical behavior of
DCNN’s is so complicated that studies on complete stability of
DCNN’s are much more difficult than that of standard CNN’s.

So far, some complete stability criteria for DCNN’s have
been obtained [7], [11], [12]. In [11], it was proved that
DCNN’s with positive cell-linking templates are completely
stable almost everywhere. In [12], it was shown that if sum
of the feedback matrix and the delayed feedback matrix is
symmetric and the length of delay is smaller than a certain
value depending on the delayed feedback matrix then the
DCNN is completely stable. The stability condition given
in [7] is similar to the one in [12]. Besides these complete
stability criteria, some sufficient conditions for a DCNN to
have a globally asymptotically stable equilibrium point have
also been obtained [13]– [15].

It should be noted that the existing stability criteria for
standard CNN’s can not necessarily be applied to DCNN’s.
It was in fact reported in [12] that a DCNN can become
unstable even though both the feedback template and the
delayed feedback template are symmetric.

In this paper, we give a new sufficient condition for a DCNN
to be completely stable. The main result of the present paper
is based on the stability condition for standard CNN’s given
in [9]. A convergence theorem of the Gauss-Seidel method
[16], [17], which is an iterative technique for solving linear
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algebraic equations, and a fixed-point theorem play important
roles. We also show that a conjecture concerning the complete
stability of DCNN’s given in [14] does not hold true. A
counterexample to the conjecture will be given.

II. DCNN M ODEL

The state equation of a DCNN is described by the following
differential equation

dx(t)

dt
= −x(t) +Ay(t) +Aτy(t− τ) + b (1)

where x(t) = [x1(t), . . . , xn(t)]
T is the state,y(t) =

[y1(t), . . . , yn(t)]
T is the output,b = [b1, . . . , bn]

T is the
input, A = [aij ] is the feedback matrix,Aτ = [aτij ] is the
delayed feedback matrix,τ is a positive number representing
the length of delay, andn is the number of cells. The value
of each elementyi of y is determined fromxi as follows:

yi(t) = f(xi(t)), i = 1, 2, . . . , n

wheref(·) is the piecewise linear function defined by

f(v) =
1

2
(|v + 1| − |v − 1|).

The initial condition for a DCNN is given by

x(t) = ϕ0(t), t ∈ [−τ, 0] (2)

whereϕ0(t) is assumed to be a continuous function on[−τ, 0].
One should note that the DCNN model includes the standard
CNN as the special case whereAτ = 0.

Definition 1: A DCNN is said to be completely stable if
and only if the trajectoryϕ(t,ϕ0) of the state equation (1)
satisfies

lim
t→∞

ϕ(t,ϕ0) = const. (3)

holds for any continuous functionϕ0(t).
If a DCNN is not completely stable, it has at least one

trajectoryϕ(t,ϕ0) which does not satisfy (3). In the following,
such a trajectory is said to be unstable and denoted with the
superscriptu, asϕu(t,ϕ0).

We now give a few definitions which will be needed in the
following sections.

Definition 2: An n × n matrix P with nonpositive off-
diagonal elements is calledM -matrix if all its principal minors
are positive.

Definition 3: Let P be a matrix with positive diagonal
elements. The comparison matrixS of P is defined assii =
pii andsij = −|pij | for i ̸= j.
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III. M AIN RESULT AND RELATED WORKS

The following theorem, which gives a new sufficient con-
dition for DCNN’s to be completely stable, is the main result
of this paper. The proof will be given in Section IV.

Theorem 1:Let W = [wij ] be then×n matrix determined
from the matricesA andAτ as follows:

wij =

{
aii − 1− |aτii| if i = j
−|aij | − |aτij | otherwise

. (4)

If W is anM -matrix, then the DCNN is completely stable.
This is based on the following theorem.
Theorem 2 ( [9]): A standard CNN is completely stable if

the comparison matrix ofA − I is an M -matrix whereI
denotes the identity matrix.

Since a standard CNN can be regarded as a DCNN satis-
fying Aτ = 0, Theorem 2 corresponds to the special case of
Theorem 1 whereAτ = 0. The statement of Theorem 2 was
firstly given in [8] as a conjecture, and then proved to be true
in [9]. A convergence theorem of the Gauss-Seidel method
plays a key role in the proof of Theorem 2. As we will see
later, this technique is also efficient for the proof of Theorem
1.

Theorem 1 is also a generalization of the following theorem
because a row sum dominant matrix is anM -matrix.

Theorem 3 ( [7]): A DCNN is completely stable if the
matrix W is row sum dominant.

The sufficient condition in Theorem 1 is distinguished
from the existing complete stability criteria [7], [11], [12] on
the following points: i) the condition does not impose any
restriction on signs of the off-diagonal elements ofA andAτ ,
and ii) the condition is independent of the length of delay.

IV. PROOF OFTHEOREM 1

In this section, we give a proof of Theorem 1. First, the
complete stability of one-cell CNN’s is investigated, and then
DCNN’s with arbitrary number of cells will be dealt with.

A. One-Cell DCNN’s

Let us consider the dynamics of DCNN’s consisting of only
one cell:

dx(t)

dt
= −x(t) + ay(t) + aτy(t− τ) + b (5)

with the initial condition

x(t) = ϕ0(t), ∀t ∈ [−τ, 0].

By putting
g(t) = aτy(t− τ) + b (6)

we can rewrite (5) as follows:

dx(t)

dt
= −x(t) + af(x(t)) + g(t) (7)

Now we introduce the DP plot [3] which will be needed in
some of the lemmas given below. The DP plotΓ(t) is the curve
obtained by plotting the right-hand side of (7) as a function of
x(t). Fig.1 shows a DP plotΓ(t) for certain values ofa and
g(t). One should note thatΓ(t) moves up and down as time
increases since the value ofg(t) varies with time.

x( t)

d t
d x( t )

1

-1
( t)g

Fig. 1. DP plotΓ(t)

Lemma 1: If a > 1 then any unstable trajectoryϕu(t, ϕ0)
of (5) satisfies

f(ϕu(t, ϕ0)) ∈ I(k), ∀t ≥ (k − 1)τ (8)

for all k (= 0, 1, 2, . . .), where I(k) is the closed interval
obtained by the following algorithm withu(0) = 1 and
l(0) = −1.
Algorithm 2

Step 1:SetI(0) = [l(0), u(0)].
Step 2:Setk = 1.
Step 3:Compute

u(k) = f

(
−
miny∈I(k−1){aτy}+ b

a− 1

)
(9)

l(k) = f

(
−
maxy∈I(k−1){aτy}+ b

a− 1

)
(10)

and setI(k) = [l(k), u(k)].
Step 4:Add 1 to k, and go to Step 3.

Proof: It is obvious that (8) holds fork = 0 sinceI(0) =
[−1, 1]. In the following, we will show that if (8) holds for
k = k′(≥ 0), that is,

f(ϕu(t, ϕ0)) ∈ I(k
′), ∀t ≥ (k′ − 1)τ (11)

then it also holds fork = k′ + 1.
It follows from (11) thatg(t) is bounded asgmin ≤ g(t) ≤

gmax for any unstable trajectory and for allt ≥ k′τ , where

gmin = min
y∈I(k′)

{aτy}+ b (12)

gmax = max
y∈I(k′)

{aτy}+ b. (13)

Let Γmax andΓmin denote the DP plots corresponding to the
cases whereg(t) = gmax andg(t) = gmin, respectively. Then
the DP plotΓ(t) of any unstable trajectory is bounded byΓmax

andΓmin for t ≥ k′τ as shown in Fig.2. In Fig.2,p (resp.,q)
denotes the value ofx at the point where the middle segment
of Γmin (resp.,Γmax ) and thex-axis intersect. The values of
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Fig. 2. The region bounded byΓmax andΓmin. These figures correspond to the six possible cases depending the value ofp andq: (a) −1 < q ≤ p < 1,
(b) −1 < q < 1 ≤ p, (c) q ≤ −1 < p < 1, (d) q ≤ −1 < 1 ≤ p, (e) 1 ≤ q ≤ p, (f) q ≤ p ≤ −1

p andq are expressed by the following equations:

p = − gmin

a− 1
= − 1

a− 1

(
min

y∈I(k′)
{aτy}+ b

)
(14)

q = − gmax

a− 1
= − 1

a− 1

(
max

y∈I(k′)
{aτy}+ b

)
. (15)

Fig.2 shows six possible cases depending on the values of
p and q. In Fig.2(a),dx(t)/dt is positive for any value of
g(t) as long asx(t) satisfiesp < x(t) ≤ 1. Therefore, if
p < ϕu(t, ϕ0) ≤ 1 holds for somet ≥ k′τ then limt→∞
f(ϕu(t, ϕ0)) = 1 holds. This implies thatϕu(t, ϕ0) converges
to an equilibrium point. Also, if−1 ≤ ϕu(t, ϕ0) < q holds
for somet ≥ k′τ thenϕu(t, ϕ0) converges to an equilibrium
point. Therefore, any unstable trajectoryϕu(t, ϕ0) must satisfy

q ≤ ϕu(t, ϕ0) ≤ p, ∀t ≥ k′τ

In Figs.2(b) and (e), any unstable trajectoryϕu(t, ϕ0) must
satisfy

q ≤ ϕu(t, ϕ0), ∀t ≥ k′τ

because if ϕu(t, ϕ0) < q for some t then we have
limt→∞ f(ϕu(t, ϕ0)) = −1 which implies ϕu(t, ϕ0) con-
verges to an equilibrium point. Similarly, in Fig.2(c) and (f),
any unstable trajectoryϕu(t, ϕ0) must satisfy

ϕu(t, ϕ0) ≤ p, ∀t ≥ k′τ

because ifϕu(t, ϕ0) > p for somet then it converges to an
equilibrium point. Finally, in the case of Fig.2(d), there is no
restriction on the value ofϕu(t, ϕ0) for t ≥ k′τ .

Taking all the above cases into account, we can conclude
that any unstable trajectoryϕu(t, ϕ0) satisfies

f(q) ≤ f(ϕu(t, ϕ0)) ≤ f(p), ∀t ≥ k′τ. (16)

Since f(p) = u(k′+1) and f(q) = l(k
′+1), (16) can be

rewritten as follows:

f(ϕu(t, ϕ0)) ∈ I(k
′+1), ∀t ≥ k′τ.

Therefore (8) holds fork = k′ + 1.
Lemma 2: If a andaτ satisfy

a− 1− |aτ | > 0 (17)

then the sequences{u(k)} and {l(k)} obtained by Algorithm
2 converge to the same value, that is,

lim
k→∞

u(k) = lim
k→∞

l(k) = c. (18)

Proof: See Appendix.
The following lemma follows from Lemmas 1 and 2.
Lemma 3:The one-cell DCNN (5) is completely stable if

a andaτ satisfy (17).
Proof: From Lemma 1, any unstable trajectoryϕu(t, ϕ0)

of (5) satisfies (8) for allk(= 0, 1, 2, · · ·). However, ifa and
aτ satisfy (17), it follows from Lemma 2 that

lim
t→∞

f(ϕu(t, ϕ0)) = const.

which implies ϕu(t, ϕ0) converges to an equilibrium point.
This is a contradiction.
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Now we consider one-cell DCNN’s with time-varying input:

dx(t)

dt
= −x(t) + ay(t) + aτy(t− τ) + b(t) (19)

whereb(t) is assumed to be bounded as

bmin ≤ b(t) ≤ bmax, ∀t ≥ 0.

Although this is not the model of interest in this paper, the
dynamic properties of (19) are useful in later discussion.

Lemma 4: If a > 1 then any unstable trajectoryϕu(t, ϕ0)
of (19) satisfies

f(ϕu(t, ϕ0)) ∈ I(k), ∀t ≥ (k − 1)τ

for all k (= 0, 1, 2, . . .), where I(k) is the closed intervals
given by the following algorithm withu(0) = 1 andl(0) = −1.
Algorithm 3

Step 1:SetI(0) = [l(0), u(0)].
Step 2:Setk = 1.
Step 3:Compute

u(k) = f

(
−
miny∈I(k−1){aτy}+ bmin

a− 1

)

l(k) = f

(
−
maxy∈I(k−1){aτy}+ bmax

a− 1

)
and setI(k) = [l(k), u(k)].
Step 4:Add 1 to k, and go to Step 3.

We omit the proof of Lemma 4 because it is very similar to
that of Lemma 1.

Lemma 5: If a andaτ satisfy (17) then the sequence{I(k)}
obtained by Algorithm 3 converges to the closed intervalI∗ =
[l∗, u∗] ⊂ [−1, 1] which is uniquely determined froma, aτ ,
bmax andbmin. Moreover, the intervalI∗ satisfies

u∗ − l∗ ≤ bmax − bmin

a− 1− |aτ |
(20)

Proof: See Appendix.

B. DCNN’s with arbitrary number of cells

Lemma 6:Let Ai and Aτ
i denote the(n − 1) × (n − 1)

matrices obtained by eliminating thei-th row and thei-th
column fromA and Aτ , respectively. If every(n − 1)-cell
DCNN defined by

dx(t)

dt
= −x(t) +Aiy(t) +Aτ

i y(t− τ) + b (21)

is completely stable, and if

aii − 1− |aτii| > 0, i = 1, 2, . . . , n (22)

holds, then any unstable trajectoryϕu(t,ϕ0) of the n-cell
DCNN (1) satisfies

lim
t→∞

f(ϕu(t,ϕ0)) ∈ D(m) (23)

for m = 0, 1, 2, . . . whereD(m) is the closed region deter-
mined by Algorithm 4 below.
Algorithm 4

Step 1:Set

D
(0)
i = [−1, 1], i = 1, 2, . . . , n

and
D(0) = D

(0)
1 ×D

(0)
2 × · · · ×D(0)

n .

Step 2:Setm = 1.
Step 3:DetermineD(m)

i (i = 1, 2, . . . , n) by the following
substeps.

Substep 3.1:Set i = 1.
Substep 3.2:Set

I(0) = D
(m−1)
i (24)

and

bmin =

i−1∑
j=1

min
yj ,yτ

j ∈D
(m)
j

{aijyj + aτijy
τ
j }

+

n∑
j=i+1

min
yj ,yτ

j ∈D
(m−1)
j

{aijyj + aτijy
τ
j }+ bi (25)

bmax =
i−1∑
j=1

max
yj ,yτ

j ∈D
(m)
j

{aijyj + aτijy
τ
j }

+

n∑
j=i+1

max
yj ,yτ

j ∈D
(m−1)
j

{aijyj + aτijy
τ
j }+ bi. (26)

Substep 3.3:Execute Algorithm 3 with (24)–(26) until
{I(k)} converges to a certain closed intervalI∗.
Substep 3.4:Set

D
(m)
i = I∗.

Substep 3.5:If i = n, go to Step 4. Otherwise, add1
to i and go toSubstep 3.2.

Step 4:Set

D(m) = D
(m)
1 ×D

(m)
2 × · · · ×D(m)

n .

Step 5:Add 1 to m and go toStep 3.

Proof: It is obvious that (23) holds form = 0. We will
show in the following that if (23) holds form = m′, then it
also holds form = m′ + 1. First we rewrite thei-th equation
of (1) as

dxi(t)

dt
= −xi(t) + aiiyi(t) + aτiiyi(t− τ) + bi(t) (27)

where

bi(t) =
n∑

j=1,j ̸=i

(aijyj(t) + aτijyj(t− τ)) + bi

Since
lim
t→∞

f(ϕu(t,ϕ0)) ∈ D(m′) (28)

holds from the assumption,bi(t) eventually satisfies

bi,min ≤ bi(t) ≤ bi,max
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where

bi,max =
n∑

j=1,j ̸=i

[
max

yj ,yτ
j ∈D

(m′)
j

{
aijyj + aτijy

τ
j

}]
+ bi

bi,min =
n∑

j=1,j ̸=i

[
min

yj ,yτ
j ∈D

(m′)
j

{
aijyj + aτijy

τ
j

}]
+ bi.

One should note that (27) is regarded as a one-cell DCNN with
time-varying input. One should also note that each element
ϕu
i (t,ϕ

0) of an unstable trajectoryϕu(t,ϕ0) must be unstable,
because if there exists ani such thatlimt→∞ ϕu

i (t,ϕ
0) =

const. then the state equation att = ∞ can be written in
the form of (21) which impliesϕu(t,ϕ0) converges to an
equilibrium point.

By applying Lemma 4 toϕu
1 (t,ϕ

0), we have

lim
t→∞

ϕu
1 (t,ϕ

0) ∈ I∗ = D
(m′+1)
1

where I∗ is the limit of the sequence{I(k)} obtained by
Algorithm 3 with I(0) = D

(m′)
1 , bmax = b1,max, and bmin =

b1,min. Hence (28) can be updated to

lim
t→∞

ϕu(t,ϕ0) ∈ D
(m′+1)
1 ×D

(m′)
2 × · · · ×D(m′)

n .

Similarly, applying Lemma 4 toϕu
2 , ϕu

3 , . . . , ϕu
n, we have

lim
t→∞

ϕu(t,ϕ0) ∈ D
(m′+1)
1 × · · · ×D(m′+1)

n = D(m′+1).

Therefore, (23) holds form = m′ + 1.
Lemma 7: If W is an M -matrix, the sequence{D(m)}

obtained by Algorithm 4 converges to a singleton.
Proof: See Appendix.

Now we are ready to prove Theorem 1.
Proof of Theorem 1:It is obvious from Lemma 3 that the

theorem holds for one-cell DCNN’s. Assume that the theorem
holds for any(n− 1)-cell DCNN (n ≥ 2). We will show that
then-cell DCNN such thatW is anM -matrix is completely
stable under this assumption.

Since any principal submatrix of anM -matrix is also
an M -matrix, any (n − 1)-cell DCNN defined by (21) is
completely stable. Moreover, sinceW is anM -matrix, (22)
holds. Thus Lemma 6 can be applied to then-cell DCNN,
and we can say that any unstable trajectoryϕu(t,ϕ0) satisfies
(23). However, it follows from Lemma 7 thatlimm→∞ D(m)

is a singleton which implieslimt→∞ ϕu(t,ϕ0) = const. This
is a contradiction. Therefore, there is no unstable trajectory.
In other words, then-cell DCNN is completely stable.

V. A CONJECTURE ON THECOMPLETE STABILITY OF

DCNN’S

Concerning the complete stability of DCNN’s, the following
conjecture was recently made by Arik and Tavsanoglu.

Conjecture 1 ( [14]): A DCNN is completely stable if the
comparison matrix ofA+Aτ − I is anM -matrix.

It should be noted that Theorem 2 corresponds to the special
case of Conjecture 1 whereAτ = 0. In addition, Conjecture 1
is closely related to Theorem 1. In fact, the class of completely
stable DCNN’s given in Theorem 1 is strictly included in that
of Conjecture 1.

Conjecture 1 is based on the fact that if the comparison
matrix of A + Aτ − I is an M -matrix then only the total
saturation region contains stable equilibrium points. However,
no one has proved so far that it is true or false.

We now show that Conjecture 1 does not hold true by
giving a counterexample. Let us consider the following one-
cell DCNN:

dx(t)

dt
= −x(t) + y(t) + y(t− τ). (29)

This DCNN satisfies the sufficient condition for complete
stability given in Conjecture 1 becauseA + Aτ − I =
a11 + aτ11 − 1 = 1 > 0 holds. Now let τ = 3π/2 and
ϕ0(t) = r sin(t) (−τ ≤ t ≤ 0) where 0 < r < 1. Then,
for x(t) = r sin(t), we have

−x(t) + y(t) + y(t− τ)

= −r sin(t) + r sin(t) + r sin(t− 3π/2)

= r cos(t).

Thusx(t) = r sin(t) is a solution of the differential equation
(29). Sincex(t) = r sin(t) never converges to an equilibrium
point, the above DCNN is not completely stable.

VI. CONCLUDING REMARKS

We have derived a new sufficient condition for DCNN’s
to be completely stable by utilizing a fixed-point theorem
and a convergence theorem of the Gauss-Seidel method to
the stability analysis of DCNN’s. Also, we have shown that
the conjecture made in [14] does not hold by giving a
counterexample. It should be noted that the complete stability
criterion given in this paper is independent of the length of
delay. In addition, the criterion is valid even though the length
of delay differs from cell to cell.

However, as shown in [9], the new condition is rather severe,
particularly for DCNN’s with space-invariant templates. Find-
ing new classes of completely stable DCNN’s which provide
us useful applications is a future problem.

APPENDIX

Proof of Lemma 2: Case 1)Supposeaτ < 0. Since (9)
and (10) become

u(k) = f

(
−aτu(k−1) + b

a− 1

)

l(k) = f

(
−aτ l(k−1) + b

a− 1

)
respectively, the sequences{u(k)} and {l(k)} are indepen-
dently obtained. Let

h(v) = f

(
−aτv + b

a− 1

)
.
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Then it is obvious that ifv belongs to the closed interval
[−1, 1] then so doesh(v). Moreover, we have

|h(v)− h(v′)| =

∣∣∣∣f (
−aτv + b

a− 1

)
− f

(
−aτv′ + b

a− 1

)∣∣∣∣
≤

∣∣∣∣(−aτv + b

a− 1

)
−
(
−aτv′ + b

a− 1

)∣∣∣∣
=

∣∣∣∣ −aτ

a− 1
(v − v′)

∣∣∣∣
=

−aτ

a− 1
|v − v′|.

Since0 ≤ −aτ/(a−1) < 1 holds from (17),h(v) : [−1, 1] →
[−1, 1] is a contraction mapping. From a fixed-point theorem,
the equationv = h(v) has a unique solution in[−1, 1] and
both {u(k)} and{l(k)} converge to the unique solution.

Case 2) Supposeaτ > 0. Then (9) and (10) become

u(k) = f

(
−aτ l(k−1) + b

a− 1

)
(30)

l(k) = f

(
−aτu(k−1) + b

a− 1

)
(31)

respectively. Letv = [u, l]T , and

h(v) =

[
h1(v)
h2(v)

]
=

[
f(−aτ l+b

a−1 )

f(−aτu+b
a−1 )

]
.

It is obvious that ifv ∈ [−1, 1]2(= [−1, 1] × [−1, 1]) then
h(v) ∈ [−1, 1]2. Moreover, one can easily derive

|h1(v)− h1(v
′)| ≤ aτ

a− 1
|l − l′|

and
|h2(v)− h2(v

′)| ≤ aτ

a− 1
|u− u′|.

Thus we have

||h(v)− h(v′)||∞ ≤ aτ

a− 1
||v − v′||∞.

Since0 ≤ aτ/(a−1) < 1 holds from (17),h(v) : [−1, 1]2 →
[−1, 1]2 is a contraction mapping. From a fixed-point theorem,
the equationv = h(v) has a unique solution in[−1, 1]2 and
the sequence{v(k) = [u(k), l(k)]T } converges to the unique
solution. By taking the symmetry of (30) and (31)into account,
we derive (18).

Proof of Lemma 5: We only give a proof of the second
statement because the first one can be proved in a similar
way as Lemma 2. Sincev∗ = [u∗, l∗]T is the fixed-point of
Algorithm 3, u∗ and l∗ satisfy

u∗ = f

(
−
miny∈[l∗,u∗]{aτy}+ bmin

a− 1

)
and

l∗ = f

(
−
maxy∈[l∗,u∗]{aτy}+ bmax

a− 1

)
.

Thus we have

u∗ − l∗ ≤ |aτ |(u∗ − l∗) + (bmax − bmin)

a− 1

which can be rewritten as (20).

Proof of Lemma 7: Let |D(m)
i | denote the length

of the intervalD(m)
i , and letd(m) = [d

(m)
1 , . . . , d

(m)
n ]T =

[|D(m)
1 |, . . . , |D(m)

n |]T . Since it is obvious thatD(0) ⊇ D(1) ⊇
D(2) ⊇ · · · holds, it suffices for us to show that{d(m)}
converges to the zero vector.

Let {z(m)} be the sequence of vectors which is obtained
by the following algorithm.

Algorithm 5
Step 1:Setm = 1 andz(0)i = 2 (i = 1, 2, . . . , n).
Step 2:For i = 1, 2, . . . , n, compute

z
(m)
i =

i−1∑
j=1

(|aij |+ |aτij |)z
(m)
j +

n∑
j=i+1

(|aij |+ |aτij |)z
(m−1)
j

aii − 1− |aτii|

and set

z(m) = [z
(m)
1 , z

(m)
2 , . . . , z(m)

n ]T .

Step 3:Add 1 to m and go to Step 2.

Algorithm 5 describes the Gauss-Seidel method for solving
the equationWz = 0 with the initial approximationz(0) =
[2, 2, . . . , 2]T . It is well known that the Gauss-Seidel method
for solving a linear algebraic equationPz = b converges
to the true solution ifP is anM -matrix [16]. Therefore the
sequence{z(m)} converges to the zero vector.

From the initial condition of Algorithms 4 and 5, we have

d
(0)
i = z

(0)
i , i = 1, 2, . . . , n.

Moreover, if

d
(m)
j ≤ z

(m)
j , j = 1, 2, . . . , i− 1

and
d
(m−1)
j ≤ z

(m−1)
j , j = i+ 1, . . . , n

holds then it follows from (20), (25) and (26) that

d
(m)
i ≤

i−1∑
j=1

(|aij |+ |aτij |)d
(m)
j +

n∑
j=i+1

(|aij |+ |aτij |)d
(m−1)
j

aii − 1 + |aτii|

≤

i−1∑
j=1

(|aij |+ |aτij |)z
(m)
j +

n∑
j=i+1

(|aij |+ |aτij |)z
(m−1)
j

aii − 1 + |aτii|
= z

(m)
i .

Therefored(m)
i ≤ z

(m)
i holds for i = 1, 2, . . . , n and for all

m. Since{z(m)} converges to the zero vector, so does{d(m)}
and its convergence rate is faster than{z(m)}.
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