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An Improvement of the Design Method of
Cellular Neural Networks based on Generalized

Eigenvalue Minimization

Ryoma Bise , Norikazu Takahashi, and Tetsuo Nishi

Abstract—Realization of associative memories by cellular neu-
ral networks (CNNs) with binary output is studied. Concerning
this problem, a CNN design method based upon generalized eigen-
value minimization (GEVM) has recently been proposed. In this
paper, a new CNN design method which is based on the GEVM-
based method will be presented. We first give some analytical re-
sults related to the basin of attraction of a memory vector. We then
derive the design method by combining those analytical results
and the GEVM-based method. We finally show through computer
simulations that the proposed method can achieve higher recall
probability than the original GEVM-based method.

Index Terms— Cellular neural networks, associative memory,
basin of attraction, generalized eigenvalue minimization.

I. I NTRODUCTION

A cellular neural network (CNN) is a nonlinear analog circuit
consisting of a number of locally coupled signal processing el-
ements called cells. Since the first paper of Chua and Yang [1]
was published in 1988, CNNs have found many applications
mainly in the field of image processing. In each application of
CNNs, it is very important to find optimum values of the net-
work parameters so that a CNN performs a desired task. So far,
there have been many attempts to construct systematic ways of
designing CNNs with space-invariant couplings for image pro-
cessing tasks [2], [3], [4], [5].

In this paper, as a fundamental design problem for CNNs,
we consider the realization of associative memories by means
of CNNs with space-varying couplings. As is well known, this
problem has been vigorously studied for fully coupled neural
networks such as the Hopfield model from the early ninety-
eighties, and various design methods have been proposed so
far [6], [7], [8], [9], [10], [11]. However, since each cell in a
CNN is connected only with its neighboring cells, these meth-
ods cannot be applied directly to CNNs. In order to make
use of CNNs for associative memories, it is thus required to
develop design methods suitable for their structural character-
istics. Liu and Michel [12] have proposed a design method
for sparsely interconnected neural networks and applied it to
CNNs. Their method is a modification of the eigenstructure
method [10] which is well known as an effective design tech-
nique for fully connected neural networks. Seileret al. [13] de-
veloped an optimization-based method for realizing prescribed
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stable output patterns and unstable output patterns of a CNN.
The method proposed by Grassi [14], [15] is distinct from oth-
ers because it makes use of CNNs possessing a unique equi-
librium point which is globally asymptotically stable and input
patterns are fed into such CNNs as bias vectors.

Park et al. [16] have recently proposed a method to de-
sign CNNs based on the generalized eigenvalue minimization
(GEVM) [17], [18], [19]. Throughout this paper, this method
will be referred to as Park’s method for simplicity. In the syn-
thesis procedure of Park’s method, for each step the feasibility
of a set of linear inequalities is first checked. If it is feasible, a
GEVM problem is solved to find the network parameters which
guarantee both that the prototype vectors are stored as memory
vectors and that the basin of attraction of each prototype vec-
tor is maximized in a certain sense. Otherwise, a linear matrix
inequality (LMI) problem is solved to find the network parame-
ters which guarantee just that the prototype vectors are stored as
memory vectors. Since both GEVM problems and LMI prob-
lems are solved efficiently by using computer software such as
MATLAB [20], the network parameters can be easily obtained.
The results of computer simulations carried out by Parket al.
[16] have shown that Park’s method is superior in the average
recall probability to the modified eigenstructure method pro-
posed by Liu and Michel. Therefore, Park’s method can be
regarded as one of the most effective CNN design techniques
for associative memories. We note here that LMIs also play
important roles in the stability analysis of recurrent neural net-
works; for example, LMI conditions are given by Suykenset al.
[21], [22] in relation to the global asymptotic stability of mul-
tilayer recurrent neural networks and the basins of attraction of
equilibrium points.

In this paper, we propose a new CNN design procedure based
on Park’s method. We first give some analytical results related
to the basin of attraction of a memory vector. One of them is
a generalization of a theorem given by Parket al. [16], and
the others are firstly obtained in the present paper. We then
develop the CNN design procedure by modifying a certain part
of Park’s method by using those analytical results. We finally
show through computer simulations that the proposed method
can achieve higher recall probability than the original GEVM-
based method.

II. PROBLEM FORMULATION

Let us consider CNNs described by the following differential
equations:

dxi

dt
= −xi +

∑
j∈N̄i

Aijyj + Ii, i = 1, 2, . . . , n (1)

wherexi is the state of thei-th cell,yi the output of thei-th cell
determined byxi through

yi = f(xi) ,
1

2
(|xi + 1| − |xi − 1|), (2)

Aij the coupling coefficient from thej-th cell to thei-th cell,
Ii the bias of thei-th cell, andN̄i the set of indices of the cells
belonging to the neighborhood of thei-th cell. Although it is
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often assumed in CNN literature that coupling coefficients be-
tween cells are space-invariant [1], we will not make this as-
sumption in this paper. Note that the setsN̄i, i = 1, 2, . . . , n
are uniquely determined by the method of numbering cells and
the radius of neighborhood denoted byr. In the following, the
neighborhood of thei-th cell excluding itself is represented by
Ni, that is,Ni , N̄i \ {i} for convenience. Also, the set ofn
dimensional real vectors, the set ofn×n real matrices, and the
set ofn dimensional binary vectors, i.e. the vectors whose ele-
ments are+1 or −1 are denoted byRn, Rn×n andBn, respec-
tively. By introducing the state vectorx = [x1, x2, . . . , xn]

T ,
the output vectory = [y1, y2, . . . , yn]

T , the connection matrix
A = [Aij ] ∈ Rn×n, the bias vectorI = [I1, I2, . . . , In]

T , the
piecewise linear mappingf(x) , [f(x1), f(x2), . . . , f(xn)]

T ,
and the set of matricesM (N̄1, N̄2, . . . , N̄n) defined by

M (N̄1, N̄2, . . . , N̄n)

,
{
S = [Sij ] ∈ Rn×n |Sij = 0 if j ̸∈ N̄i

}
,

we can rewrite (1) and (2) in vector form as follows:

dx

dt
= −x+Ay + I (3)

y = f(x) (4)

where the connection matrix A belongs to
M (N̄1, N̄2, . . . , N̄n). A vector ye is referred to as a
memory vector of the CNN described by (3) and (4) if the
CNN has an asymptotically stable equilibrium pointxe such
that ye = f(xe). The set of initial statesx(0) such that
limt→∞ x(t) = xe is called the basin of attraction of the mem-
ory vectorye. As is well known, if every diagonal element of
A is greater than or equal to unity, then asymptotically stable
equilibrium points can exist only in the total saturation region
which is defined by{x ∈ Rn | |xi| ≥ 1, ∀i} [1], [23]. Thus, in
this case, all memory vectors are binary.

Based on the design problem given by Michel and Liu [11]
for fully coupled neural networks, we formulate the CNN de-
sign problem for associative memories as follows:

CNN Design Problem: For given prototype vectors
α1,α2, . . . ,αm ∈ {1,−1}n and the sets̄N1, N̄2, . . . , N̄n, find
the connection matrixA ∈ M (N̄1, N̄2, . . . , N̄n) and the bias
vectorI such that the synthesized CNN has the following prop-
erties.

1) All prototype vectorsα1,α2, . . . ,αm are memory vec-
tors.

2) The total number of spurious memory vectors, that
is, the memory vectors of the CNN not contained in
{α1,α2, . . . ,αm}, is as small as possible.

3) The basin of attraction of each prototype vector is as large
as possible.

4) The CNN has no oscillatory solution.
Since we will not assume that the connection matrixA is

symmetric or satisfies other stability conditions obtained so far
[24], [25], [26], the fourth property is not satisfied in general.
We will thus focus our attention only on the first three proper-
ties. Note here that the second and third properties are closely
related because the basins of attraction of the prototype vectors

become larger, as the total number of spurious memory vectors
becomes smaller, and vice versa. Note also that there will be
various strategies for designing CNNs depending on what kind
of qualitative criterion for the sizes of the basins of attraction
is considered. For example, Park’s method designs a CNN so
that the smallest basin of attraction is maximized in a certain
sense. In this case, the design problem is formulated as a kind
of minmax problem.

III. A NALYSIS

In this section, we will present some theorems concerning
the basin of attraction of a memory vector of a CNN which
play important roles in the CNN design method given in the
next section.

Theorem 1:Supposen setsN̄1, N̄2, . . . , N̄n and a binary
vectorα∗ = [α∗

1, α
∗
2, . . . , α

∗
n]

T ∈ Bn are given. If the con-
nection matrixA = [Aij ] ∈ M (N̄1, N̄2, . . . , N̄n) and the bias
vectorI satisfy

α∗
i

∑
j∈Ni

Aijα
∗
j + Ii

 > κi max
j∈Ni

|Aij |+ (Aii − 1) (5)

with Aii ≥ 1 and κi ≥ 0, then any vectorβ =
[β1, β2, . . . , βn]

T ∈ Rn such that f(βi) ̸= α∗
i and∑

j∈Ni
|f(βj)− α∗

j | ≤ κi has the following properties.
1) The vectorα = f(β) is not a memory vector.
2) If x(0) = β thenxi(t) moves towardα∗

i at t = 0.
Proof: It follows from the state equation of a CNN that

α∗
i ·

dxi

dt

∣∣∣∣
x=β

= α∗
i

−βi +
∑
j∈N̄i

Aijf(βj) + Ii


= α∗

i

∑
j∈N̄i

Aijf(βj) + Ii

− α∗
i βi. (6)

By applying the conditions to the first term on the right-hand
side, we have

α∗
i

∑
j∈N̄i

Aijf(βj) + Ii


= Aiiα

∗
i f(βi) + α∗

i

∑
j∈Ni

Aijf(βj) + Ii


= Aiiα

∗
i f(βi) + α∗

i

(∑
j∈Ni

Aijα
∗
j + Ii

+
∑
j∈Ni

Aij(f(βj)− α∗
j )

)

≥ Aiiα
∗
i f(βi) + α∗

i

∑
j∈Ni

Aijα
∗
j + Ii


−

∣∣∣∣∣∣
∑
j∈Ni

Aij(f(βj)− α∗
j )

∣∣∣∣∣∣
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≥ Aiiα
∗
i f(βi) + α∗

i

∑
j∈Ni

Aijα
∗
j + Ii

− κi max
j∈Ni

|Aij |

= (1 + α∗
i f(βi))Aii − 1 + α∗

i

∑
j∈Ni

Aijα
∗
j + Ii


−κi max

j∈Ni

|Aij | − (Aii − 1)

> (1 + α∗
i f(βi))Aii − 1

≥ α∗
i f(βi). (7)

From (6) and (7) the following inequality is obtained.

α∗
i ·

dxi

dt

∣∣∣∣
x=β

> α∗
i f(βi)− α∗

i βi (8)

Since it is assumed thatf(βi) ̸= α∗
i , there are two possible

cases where|f(βi)| < 1 andf(βi) = −α∗
i . In the former case,

the right-hand side of (8) vanishes becausef(βi) = βi holds.
In the latter case, the right-hand side of (8) takes a nonnega-
tive value becauseα∗

i f(βi) = −1 ≥ α∗
i βi holds. Therefore,

(6) always takes a positive value. This means thatβ is not an
equilibrium point and that ifx(0) = β thenxi(t) tends toα∗

i

at t = 0.
Although Theorem 1 is very similar to a theorem given by

Parket al. [16], these two results are different at the follow-
ing two points. One is that Theorem 1 contains the condition
Aii ≥ 1 while in the theorem of Parket al. no condition is
assumed on the value ofAii. Since, as far as only binary out-
put is concerned, it is common in designing CNNs to assume
Aii ≥ 1, adding this condition will not lose generality. In fact,
Aii ≥ 1 is assumed even in Park’s method. The other is thatβ
is assumed to be a real vector in Theorem 1 whileβ is restricted
to a binary vector in the theorem of Parket al.. Because of this
difference, Theorem 1 can be considered as an extension of the
theorem of Parket al..

Theorem 2:Supposen setsN̄1, N̄2, . . . , N̄n and a binary
vectorα∗ = [α∗

1, α
∗
2, . . . , α

∗
n]

T ∈ Bn are given. If the con-
nection matrixA = [Aij ] ∈ M (N̄1, N̄2, . . . , N̄n) and the bias
vectorI satisfy

α∗
i

∑
j∈Ni

Aijα
∗
j + Ii

 > κi max
j∈N̄i

|Aij | − (Aii − 1) (9)

with κi ≥ 0, then any vectorβ ∈ Rn such thatf(βi) ̸= α∗
i and∑

j∈N̄i
|f(βj)− α∗

j | ≤ κi has the followings properties.
1) The vectorα = f(β) is not a memory vector.
2) If x(0) = β thenxi(t) moves towardα∗

i at t = 0.
Proof: By applying the condition to the first term on the

right-hand side of (6), we have

α∗
i

∑
j∈N̄i

Aijf(βj) + Ii


= α∗

i

∑
j∈N̄i

Aijα
∗
j + Ii +

∑
j∈N̄i

Aij(f(βj)− α∗
j )



≥ α∗
i

∑
j∈N̄i

Aijα
∗
j + Ii

− κi max
j∈N̄i

|Aij |

= α∗
i

∑
j∈Ni

Aijα
∗
j + Ii

− κi max
j∈N̄i

|Aij |+ (Aii − 1) + 1

> 1

≥ α∗
i f(βi).

The rest of the proof is same as Theorem 1.
The following theorem follows from Theorems 1 and 2.
Theorem 3:Let I1 andI2 be two sets such thatI1 ∪ I2 =

{1, 2, . . . , n} andI1∩I2 = ϕ. Supposen setsN̄1, N̄2, . . . , N̄n

and a binary vectorα∗ = [α∗
1, α

∗
2, . . . , α

∗
n]

T ∈ Bn are given. If
the connection matrixA ∈ M (N̄1, N̄2, . . . , N̄n) and the bias
vectorI of a CNN satisfy (5) withAii ≥ 1 andκi ≥ 0 for all
i ∈ I1, and satisfy (9) withκi ≥ 0 for all i ∈ I2, thenα∗ is a
memory vector of the CNN and any vectorβ ∈ Rn satisfying∑

j∈Ni

|f(βj)− α∗
j | ≤ κi, ∀i ∈ I1∑

j∈N̄i

|f(βj)− α∗
j | ≤ κi, ∀i ∈ I2

 (10)

belongs to the basin of attraction ofα∗.
Proof: We first prove thatα∗ is a memory vector. Since

(5) is satisfied withAii ≥ 1 andκi ≥ 0 for anyi ∈ I1, we have

α∗
i

∑
j∈N̄i

Aijα
∗
j + Ii

 = Aii + α∗
i

∑
j∈Ni

Aijα
∗
j + Ii


> Aii + κi max

j∈Ni

|Aij |+ (Aii − 1)

≥ 2Aii − 1

≥ 1

for all i ∈ I1. Since (9) is satisfied withκi ≥ 0 for anyi ∈ I2,
we also have

α∗
i

∑
j∈N̄i

Aijα
∗
j + Ii

 = Aii + α∗
i

∑
j∈Ni

Aijα
∗
j + Ii


> Aii + κi max

j∈N̄i

|Aij | − (Aii − 1)

≥ 1

for all i ∈ I2. It follows from the above two inequalities that

α∗
i

∑
j∈N̄i

Aijα
∗
j + Ii

 > 1, i = 1, 2, . . . , n

which means that there exists an equilibrium pointx∗ such that
f(x∗) = α∗. Since this equilibrium point lies inside the total
saturation region, it is asymptotically stable. Therefore,α∗ is
a memory vector of the CNN. Next, we will prove the second
statement of the theorem. LetR be the set of vectorsβ ∈
Rn satisfying (10). It follows from Theorems 1 and 2 that if
x(t0) ∈ R then

d

dt
|f(xi(t))− α∗

i | ≤ 0, i = 1, 2, . . . , n (11)
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holds att = t0. The condition (11) holds with an equal sign if
and only if f(xi(t0)) = α∗

i . As a consequence, ifx(0) ∈ R
thenx(t) ∈ R for all t ≥ 0 andf(x(t)) converges toα∗

monotonically.

IV. D ESIGN

In the CNN design problem given in Section II, the most im-
portant thing is to storem prototype vectorsα1,α2, . . . ,αm as
memory vectors. This is achieved by choosing the connection
matrix A ∈ M (N̄1, N̄2, . . . , N̄n) and the bias vectorI such
that the set of inequalities

αk
i

∑
j∈N̄i

Aijα
k
j + Ii

 > 1, k = 1, 2, . . . ,m (12)

holds for i = 1, 2, . . . , n. Note that (12) is feasible with
Aii = 1 + ε (ε > 0) for any set of the prototype vectors
α1,α2, . . . ,αm because the left-hand side of (12) becomes
1 + ε if we put Aij = 0, ∀j ∈ Ni and Ii = 0. It is also
important in the CNN design problem to guarantee that mem-
ory vectors are restricted to be binary. As we have mentioned
before, this is achieved by choosing the values of the diagonal
elements ofA such that

Aii ≥ 1, i = 1, 2, . . . , n. (13)

The main idea of Park’s method is to try to make the basins
of attraction of the prototype vectors as large as possible by
making use of Theorem 1 while guaranteeing the above two re-
quirements, i.e., (12) and (13). The total number of spurious
memory vectors is expected to be reduced if the basins of at-
traction become large. Let us consider the set of inequalities

αk
i

∑
j∈Ni

Aijα
k
j + Ii

 > κi max
j∈Ni

|Aij |+ (Aii − 1),

k = 1, 2, . . . ,m (14)

which corresponds to (5) in Theorem 1. Ifκi can be maxi-
mized under the constraints (14),κi ≥ 0 andAii ≥ 1 for
i = 1, 2, . . . , n, then the basins of attraction of the prototype
vectors are maximized in some sense. Note here thatκi is maxi-
mized whenAii = 1. Note also that (14) is feasible withκi ≥ 0
andAii = 1 if and only if

αk
i

∑
j∈Ni

Aijα
k
j + Ii

 > 0, k = 1, 2, . . . ,m (15)

is feasible. Furthermore it is apparent that (12) is feasible with
Aii = 1 if and only if (15) is feasible. Park’s method thus first
checks the feasibility of (15). If (15) is feasible,Aii is set to1
and the optimization problem:

Minimize −κi

Subject to −κiqi + αk
i

∑
j∈Ni

Aijα
k
j + Ii

 > 0,

k = 1, 2, . . . ,m
|Aij | < qi, ∀j ∈ Ni

|Ii| < U
L < qi < U.

(16)

is solved, whereL andU (L < U) are positive constants spec-
ified by users. The optimization problem(16) is in the form of
the GEVM problem. If, on the other hand, (15) is not feasible,
since (14) is not feasible withκi ≥ 0 andAii ≥ 1 in this case,
Aii is set to1+ ε (ε > 0) and the values ofAij , j ∈ Ni andIi
satisfying (12) withAii = 1 + ε are found. One can easily see
that this is an LMI problem.

Although computer simulation results [16] show that Park’s
method can achieve much higher average recall probability than
the modified eigenstructure method [12], it is still insufficient
because the basins of attraction of prototype vectors are not
taken into account at all in the case where (15) is not feasi-
ble. In order to solve this problem, we make use of Theorem 2
in addition to Theorem 1.

Let us consider the set of inequalities

αk
i

∑
j∈Ni

Aijα
k
j + Ii

 > κi max
j∈N̄i

|Aij | − (Aii − 1),

k = 1, 2, . . . ,m (17)

which corresponds to (9) in Theorem 2. If we setAii = 1 +
ε (ε > 0), Aij = 0, ∀j ∈ Ni, Ii = 0 andκi = 0 then
the left-hand side of (17) becomes0, while the right-hand side
becomes−ε. This means that the set of inequalities (17) is
feasible for any set of prototype vectorsα1,α2, . . . ,αm under
the conditions thatAii ≥ 1 andκi ≥ 0. Therefore, even if
(15) is not feasible, we can make the basins of attraction of the
prototype vectors as large as possible by settingAii = 1 + ε
and solving the optimization problem

Minimize −κi

Subject to −κiqi + αk
i

∑
j∈Ni

Aijα
k
j + Ii

 > −ε,

k = 1, 2, . . . ,m
|Aij | < qi, ∀j ∈ Ni

|Ii| < U
L < qi < U

(18)

whereL andU (L < U) are positive constants specified by
users. The optimization problem (18) is in the form of the
GEVM problem.

From the above considerations, we derive the following CNN
design method.

CNN Design Method: Given n setsN̄1, N̄2, . . . , N̄n ⊆
{1, 2, . . . , n} andm prototype vectorsα1,α2, . . . ,αm ∈ Bn,
execute the following procedure fori = 1, 2, . . . , n.

1) Check whether the set of inequalities (15) is feasible. If
it is feasible go to Step 2), otherwise go to Step 3).

2) SetAii = 1, and findAij , j ∈ Ni andIi by solving the
optimization problem (16).

3) SetAii = 1 + ε (ε > 0), and findAij , j ∈ Ni andIi by
solving the optimization problem (18).

The proposed method tries to maximizeκi in Theorem 2
even in the case where the set of inequalities (15) is not feasi-
ble, while Park’s method just tries to satisfy the condition (12).
It is thus expected from Theorem 3 that the proposed method
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Fig. 1. Prototype vectors

TABLE I
COMPARISON OF THE AVERAGE RECALL PROBABILITYPAV (d) BETWEEN PARK ’ S METHOD AND THE PROPOSED METHOD

Average recall probabilityPav(d)radius of neighborhood design method
d = 1 d = 2 d = 3 d = 4 d = 5

Park’s method 0.4623 0.2239 0.1109 0.0566 0.0288
r = 1

Proposed method 0.5479 0.2969 0.1623 0.0879 0.0455
Park’s method 0.9082 0.8186 0.7257 0.6319 0.5369

r = 2
Proposed method 0.9584 0.8898 0.8046 0.7080 0.6026

Park’s method 0.9812 0.9576 0.9347 0.9058 0.8651
r = 3

Proposed method 0.9937 0.9766 0.9585 0.9298 0.8891

can realize larger basins of attraction of the prototype vectors
than Park’s method. Moreover, since the optimization problems
(16) and (18) are in the form of the GEVM problem, they can
be efficiently solved numerically, as in Park’s method, by using
interior-point algorithms.

Let us now consider the computational complexity of the pro-
posed method. First, the GEVM problems (16) and (18) can be
solved in polynomial time in the size of the problem, which is
determined by the number of prototype vectors and the radius of
neighborhood, by using some efficient optimization techniques
[18]. Second, the computation time of the proposed method is
proportional to the number of cells as far as both the number
of prototype vectors and the radius of neighborhood are fixed.
From these facts, we can conclude that the proposed method
can be solved in linear time in the number of cells, and in poly-
nomial time in the number of prototype vectors and the radius
of neighborhood. It is thus expected that the proposed method
is applicable for CNNs with a large number of cells.

V. COMPUTERSIMULATIONS

In order to verify efficiency of the proposed method, we ap-
ply Park’s method and the proposed method to the same set of
prototype vectors, and compare the performance of synthesized
CNNs in terms of the average recall probability [16] which is
defined as follows: Letαk be any prototype vector of a CNN.
The probability that the CNN converges toαk when the initial
statex(0) is randomly chosen from the binary vectors such that
the Hamming distance betweenαk and them isd is called the
recall probability ofαk from the Hamming distanced, and is
denoted byP (αk, d). Moreover, the average ofP (αk, d) over

all the prototype vectorsα1,α2, . . . ,αm is referred to as the
average recall probability from Hamming distanced, and is de-
noted byPav(d).

The prototype vectors used in this experiment are 26 English
capital letters shown in Fig. 1. Each pattern has49 (= 7 × 7)
pixels where black and white pixels represent+1 and−1, re-
spectively. For each value of the radius of neighborhood (r = 1,
2 and3), we have determined the network parameters by apply-
ing Park’s method and the proposed method to the prototype
vectors. In both design methods, GEVM problems were solved
by using the function “gevp ” in MATLAB LMI Control Tool-
box [20] with the same values of constantsL = 1, U = 10 and
ε = 0.1.

The simulation results are shown in Table 1. Here we have
estimated the average recall probabilityPav(d), d = 1, 2, . . . , 5
by investigating the final output for all possible initial states in
the case whered ≤ 2 and by investigating the final output for
randomly chosen 3,000 vectors from the possible initial states
for each prototype vector in the case whered ≥ 3. As shown in
Table 1, the average recall probability of the proposed method
is higher than that of Park’s method in all cases. From these
results, we can conclude that the proposed method is in fact
superior to Park’s method and therefore regarded as an efficient
CNN design method for associative memories. Also, as shown
in Table 1, the smaller the radius of neighborhood, the bigger
the difference between the proposed method and Park’s method.
This is because the smaller the value ofr, the more frequently
the case where (15) is not feasible happens.
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VI. CONCLUDING REMARKS

We have developed a CNN design method for associative
memories by modifying the optimization-based method re-
cently proposed by Parket al. with some analytical results pre-
sented in this paper. The proposed method tries to maximize the
basins of attraction of the prototype vectors in any case, while
the method proposed by Parket al. tries just to store the proto-
type vectors as memory vectors if a certain condition is not sat-
isfied. As the computer simulation results show, the proposed
method can achieve higher recall probability in all cases, and is
effective in particular for CNNs with a small neighborhood.

We finally give some comments on the circuit implementa-
tion and the robustness of the proposed method. In the imple-
mentation of a CNN on an analog chip, the values of the pa-
rameters obtained numerically by the proposed method are not
realized exactly due to inherent inaccuracy of analog devices. It
is thus expected that the average recall probability achieved by
a CNN chip is lower than that derived by computer simulations.
However, since the proposed method chooses the values of the
parameters so thatκi in (14) or (17) is maximized, the small
deviation of the parameter values will not affect those inequal-
ities, that is, there will still exist a positiveκi satisfying (14) or
(17). In this sense, the proposed method is robust for parameter
deviations. Moreover, it is obvious that the proposed method
has a higher degree of robustness than Park’s method. Quanti-
tative investigation of the effect of the parameter deviation on
the average recall probability is a future problem.
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