An Improvement of the Design Method of Cellular
Neural Networks Based on Generalized Eigenvalue
Minimization

Author(s): Ryoma Bise and Norikazu Takahashi

Journal: |EEE Transactions on Circuits and Systems |
Volume: 50

Number: 12

Pages. 1569-1574

Month: December

Year: 2003

Published Version: http://ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=1257462

©2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be ob-
tained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.


http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1257462

An Improvement of the Design Method of stable output patterns and unstable output patterns of a CNN.
Cellular Neural Networks based on Generalized The method proposed by Grassi [14], [15] is distinct from oth-
Eigenvalue Minimization ers because it makes use of CNNs possessing a unique equi-
librium point which is globally asymptotically stable and input
Ryoma Bise , Norikazu Takahashi, and Tetsuo Nishi ~ patterns are fed into such CNNs as bias vectors.
Park et al. [16] have recently proposed a method to de-
Abstract—Realization of associative memories by cellular neu sign CNNs based on the generalized eigenvalue minimization
ral networks (CNNs) with binary output is studied.yConcerning (GEVM) [17], [18], [19]. T,thQhOUt thls. paper, this method
this problem, a CNN design method based upon generalized eigen_wnl be referred to as Park’s method for simplicity. In the syn-
value minimization (GEVM) has recently been proposed. In this thesis procedure of Park’s method, for each step the feasibility
paper, a new CNN design method which is based on the GEVM- of a set of linear inequalities is first checked. If it is feasible, a
based method will be presented. We first give some analytical re- GEVM problem is solved to find the network parameters which
sults related to the basin of attraction of a memory vector. Wethen o, o ntee hoth that the prototype vectors are stored as memory
derive the design method by combining those analytical results . .
vectors and that the basin of attraction of each prototype vec-

and the GEVM-based method. We finally show through computer ) - ; ) ¢ - )
simulations that the proposed method can achieve higher recall tor is maximized in a certain sense. Otherwise, a linear matrix

probability than the original GEVM-based method. inequality (LMI) problem is solved to find the network parame-
Index Terms— Cellular neural networks, associative memory, (€rS which guarantee just that the prototype vectors are stored as
basin of attraction, generalized eigenvalue minimization. memory vectors. Since both GEVM problems and LMI prob-

lems are solved efficiently by using computer software such as
MATLAB [20], the network parameters can be easily obtained.
|. INTRODUCTION The results of computer simulations carried out by Rstrkl.

A cellular neural network (CNN) is a nonlinear analog circuiPG] Irllave shgﬁn 'E[ha:hPark’sdr?eghoq is s?pe;ior in tht?] a(\j/erage
consisting of a number of locally coupled signal processing e(gcadpgo f “ydOM' iTo T'r']e felgen; ruli:' ure rtr;]edo prg-
ements called cells. Since the first paper of Chua and Yang sed by Liu an Ichel. eretore, ark's method can be
was published in 1988, CNNs have found many applicatio & arded as one of the most effective CNN design techniques

mainly in the field of image processing. In each application gi” associative MEemories. .We note.here that LMIs also play
important roles in the stability analysis of recurrent neural net-

CNNs, it is very important to find optimum values of the net- Ks: f le. LMI di . by Suvkesl
work parameters so that a CNN performs a desired task. So ?,r S, for example, conaitions are given by SUykens.
3#’ [22] in relation to the global asymptotic stability of mul-

there have been many attempts to construct systematic way: | " | network d the basi f attracti f
designing CNNs with space-invariant couplings for image prg_aygr recurrent neural networks and the basins ot attraction o
cessing tasks [2], [3], [4], [5]. eqluntlltq)_rlum points, CNN desi dure based
In this paper, as a fundamental design problem for CNNs, r|'3 Ilf’ papetL, v;e s\r/op}psteqnew elsugn ?roce lture Iatsz
we consider the realization of associative memories by mea ark's method. Vve hirst give some analylical resufts relate

of CNNs with space-varying couplings. As is well known, thido the basin of attraction of a memory vector. One of them is

problem has been vigorously studied for fully coupled neur |generalization' of a theqrem given by Patial. [16], and
the others are firstly obtained in the present paper. We then

k h he Hopfiel | f h ly ni -
gg\é\gss ;#g v:r?ofjsedegi%frier?ho(;jdes hrg\r/r; tb:eﬁagz);(l)gzt %éelop the CNN design procedure by modifying a certain part
. of Park’s method by using those analytical results. We finally

far [6], 7], [8], [9], [10], [11]. However, since each cell in a|§how through computer simulations that the proposed method
CNN s connected only with its neighboring cells, these metl n achieve higher recall probability than the original GEVM-

ods cannot be applied directly to CNNs. In order to ma

use of CNNs for associative memories, it is thus required @sed method.

develop design methods suitable for their structural character-

istics. Liu and Michel [12] have proposed a design method [1. PROBLEM FORMULATION

for sparsely interconnected neural networks and applied it 1o, ot ;5 consider CNNs described by the following differential
CNNs. Their method is a modification of the eigenstructur@quaﬂons:
method [10] which is well known as an effective design tech-

nigue for fully connected neural networks. Seieal. [13] de- dz;

veloped an optimization-based method for realizing prescribed gz — % T Z Agyj + 1L, 1=1,2,...,n (1)
JEN;
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often assumed in CNN literature that coupling coefficients bbecome larger, as the total number of spurious memory vectors
tween cells are space-invariant [1], we will not make this abecomes smaller, and vice versa. Note also that there will be
sumption in this paper. Note that the sé&fg i = 1,2,...,n various strategies for designing CNNs depending on what kind
are uniquely determined by the method of numbering cells antiqualitative criterion for the sizes of the basins of attraction
the radius of neighborhood denoted#yin the following, the is considered. For example, Park’s method designs a CNN so
neighborhood of the-th cell excluding itself is represented bythat the smallest basin of attraction is maximized in a certain
N;, thatis,N; £ N; \ {i} for convenience. Also, the set of sense. In this case, the design problem is formulated as a kind
dimensional real vectors, the setrok n real matrices, and the of minmax problem.

set ofn dimensional binary vectors, i.e. the vectors whose ele-

ments are-1 or —1 are denoted bR", R"*" andB", respec- 1. ANALYSIS

tively. By introducing the state vectar = i . . . .
y- BY 9 [21, 22, 20l In this section, we will present some theorems concerning

B T : .
the output vect&yn_ [v1, Y2, -yl the connecnonTmatnx the basin of attraction of a memory vector of a CNN which
A=[A4;]€R the bias vectod = [I1,I,...,1,]", the . ; . . .
T+ play important roles in the CNN design method given in the
piecewise linear mapplng( ) = [f(x1), f(a:g),_. o flan)]t next section.
and the set of matrice$( (N, N, ..., N,) defined by Theorem 1:Supposen sets Ny, Ny, ..., N, and a binary
vectora* = [af,a3,...,ar]T € B" are given. If the con-

M (N1, N, ..., Nn) B nection matrixA = [4;;] € M (N1, Ns,..., N,,) and the bias
£ {8 =[5, eR"™|S;; =0 if j&N,}, vectorT satisfy

we can rewrite (1) and (2) in vector form as follows:
i Pl Aues + 4| > mimax Ayl + (A1) (5)

G- mT AT 3) =

. with A; > 1 and k; > 0, then any vector@ =
y=flz) ) B1,B2,...,6.]T € R™ such that f(5; a’ and
. . ) I ) f 7

where the  connection matrix A belongs to 7. . |f(8;) — aj| < x; has the following properties.

M (N1, Na,...,N,). A vector y° is referred to as a 1) The vectorx = f(3) is not a memory vector.
memory vector of the CNN described by (3) and (4) if the 2) If 2(0) = 3 thenz;(t) moves towardy} att = 0.

CNN has an asymptotically stable equilibrium poift such Proof: It follows from the state equation of a CNN that
that y¢ = f(x¢). The set of initial states:(0) such that

lim;_,, (t) = x¢ is called the basin of attraction of the mem- de:

ory vectory®. As is well known, if every diagonal element of «; -

A is greater than or equal to unity, then asymptotically stable

equilibrium points can exist only in the total saturation region

which is defined by{x € R™ | |x;| > 1, Vi} [1], [23]. Thus, in ok y _ N -

this case, all memé{ry vecto|r|s a|re binary}j “ Z A f(B) + i | = aifi (8)
Based on the design problem given by Michel and Liu [11]

for fully coupled neural networks, we formulate the CNN deBy applying the conditions to the first term on the right-hand

=a; | =B+ Z Aijf(Bj) +1

di z=p JEN;

JEN;

sign problem for associative memories as follows: side, we have
CNN Design Problem: For given prototype vectors
al,a? ... a™ e {1,—1}" and the set&V;, N, ..., N, find
the connect|on matrid € M (N1, N, ..., N,) and the bias o Z Aij f(B;) +1
vectorI such that the synthesized CNN has the following prop- JEN;
erties.
1) All prototype vectorsx!, a2,..., a™ are memory vec- = Aol f(Bi) +ai Z Aiif(B) + 1
tors. JEN;
2) The total number of spurious memory vectors, that
is, the memory vectors of the CNN not contained in = Aua; f(8i) + o5 (Z Aija +
{al,a?,...,a™},is as small as possible. JEN;
3) The basin of attraction of each prototype vector is as large N
as possible. + Z Aij j )>

4) The CNN has no oscillatory solution. JEN;

Since we will not assume that the connection matixs

symmetric or satisfies other stability conditions obtained so far = A f(8:) + o > Aijoj + 1
[24], [25], [26], the fourth property is not satisfied in general. JEN

We will thus focus our attention only on the first three proper-

ties. Note here that the second and third properties are closely - Z Ay (f(By) —aj)

related because the basins of attraction of the prototype vectors JEN;



> u 7 A1 + [ — g A’L j Z A’L — R Az j
= a; f(B:) 7% JO‘ ’fjné%| il Z]; J _7 njrrel%\ il
= (1+o¢;‘f(ﬂz))A“—l+a;k Z ALJ j = Ol;( Z A”Oé + I; 7I{LH181X‘AU|+(A”71)+].
JEN; jEN; JEN:
—Himax | A — (A — 1) i 1 )
> (T4+ai f(Bi)Aiu—1 = %SV
> ol f(B). (7) The rest of the proof is same as Theorem 1. |
- The following theorem follows from Theorems 1 and 2.
From (6) and (7) the following inequality is obtained. Theorem 3:Let 7; andZ; be two sets such tha; UZ; =
{1,2,...,n} andZ; NZ, = ¢. Suppose: setsNy, N, ..., N,
o da; « . and ablnary vecton* = [af, a3, ..., az]T € B™ are given. If
4T op > o f(Bi) — o (8) the connection matrid € M (Ny, Na, ..., N,,) and the bias

vector I of a CNN satisfy (5) with4;; > 1 andx; > 0 for all
Since it is assumed that(3;) # «f, there are two possible i € 71, and satisfy (9) withe; > 0 for all i € 7, thena™ is a
cases whergf(3;)| < 1 andf(53;) = —«f. In the former case, memory vector of the CNN and any vecidrc R" satisfying
the right-hand side of (8) vanishes becay¢g;) = 5; holds.

In the latter case, the right-hand side of (8) takes a nonnega- Z £(B)) = aj] < ki, Vie Ty

tive value because; f(5;) = —1 > «}f; holds. Therefore, JEN: . ‘ (10)
(6) always takes a positive value. This means tha not an Z If(Bj) — aj| < ki, Vi€ Iy

equilibrium point and that ifc(0) = 8 thenz;(t) tends toa; JEN;

att = 0. u belongs to the basin of attraction af .

Although Theorem 1 is very similar to a theorem given by  proof: We first prove thatx* is a memory vector. Since
Parket al. [16], these two results are different at the follow{s5) is satisfied withd,; > 1 andx; > 0 for anyi € Z;, we have
ing two points. One is that Theorem 1 contains the condition
A;; > 1 while in the theorem of Parkt al. no condition is
assumed on the value df;;. Since, as far as only binary out- a; Z Aija + I | = Aii + o Z Ajag +

put is concerned, it is common in designing CNNs to assume ~ \7i€N: JEN;

A;; > 1, adding this condition will not lose generality. In fact, > Aj; + ki max | A + (A — 1)
A;; > 1is assumed even in Park's method. The other isfhat JEN

is assumed to be a real vector in Theorem 1 while restricted >2A; -1

to a binary vector in the theorem of Pagkal.. Because of this >1

difference, Theorem 1 can be considered as an extension offthe I fied with; f
theorem of Parket al. or all i € Z,. Since (9) is satisfied witk; > 0 for anyi € 7,

Theorem 2:Supposen sets N1, Na, ..., N, and a binary W€ alsohave

vectora* = [of,a3,...,a;]" € B" are given. If the con-
nection matrixA = [4;,] € M (Nl, Na,...,N,) and the bias o] Z Ajja; +1; | = Aji + o Z Aija +
vectorI satisfy JEN, JEN;
> Ay + K max |A”| — (A” — ].)
JEN;
oy Z Aijag > rymax [A] — (A — 1) (9) >1
JEN; JEN; -

for all i € Z,. It follows from the above two inequalities that
with k; > 0, then any vectoB € R™ such thatf(5;) # o} and
> (Bj) — aj| < k; has the followings properties.
1) The vectoix = f(3) is not a memory vector.
2) If z(0) = B thenz;(t) moves towardy} att = 0.
Proof: By applying the condition to the first term on thewhich means that there exists an equilibrium painhisuch that
right-hand side of (6), we have f(z*) = a*. Since this equilibrium point lies inside the total
saturation region, it is asymptotically stable. Therefaté,is
a memory vector of the CNN. Next, we will prove the second
a; Z A f(B5) + 1 statement of the theorem. L& be the set of vector$ <
JEN; R™ satisfying (10). It follows from Theorems 1 and 2 that if
x(tp) € R then

T | A e 2 A0 ) dg [f(zi(t)) —af| <0, i=1,2,.. (11)

£ — on
JEN; JEN; )

af | D Ayes+ 1| >1, i=12....n

JEN;



holds att = ¢,. The condition (11) holds with an equal sign ifis solved, wherd, andU (L < U) are positive constants spec-
and only if f(z;(to)) = af. As a consequence, if(0) € R ified by users. The optimization problef6) is in the form of
thenz(t) € R forallt > 0 and f(xz(¢)) converges ta* the GEVM problem. If, on the other hand, (15) is not feasible,

monotonically. B since (14) is not feasible with, > 0 and A;; > 1 in this case,
A;; is settol +¢ (¢ > 0) and the values of;;, j € N; andl;
IV. DESIGN satisfying (12) withA;; = 1 + ¢ are found. One can easily see
In the CNN design problem given in Section Il, the most imthat this is an LMI problem.
portant thing is to store: prototype vectorax!, a2, ..., a™ as Although computer simulation results [16] show that Park’s

memory vectors. This is achieved by choosing the connectipfethod can achieve much higher average recall probability than
matrix A € M (N, Na,...,N,) and the bias vectal such the modified eigenstructure method [12], it is still insufficient
that the set of inequalities because the basins of attraction of prototype vectors are not
taken into account at all in the case where (15) is not feasi-
o Z A+ L >1. k=12 m (12) ble. In order to solve this problem, we make use of Theorem 2
1 1] 7 K3 b - b y . oy
o~ in addition to Theorem 1.
I ) _ _ Let us consider the set of inequalities
holds fori = 1,2,...,n. Note that (12) is feasible with
Ai;i = 1+ ¢ (¢ > 0) for any set of the prototype vectors
1 2 m i
al,ab ..« because thg left-hand side of (12)_ becomes ot Z Aija? 41| > kimax |[Ay] — (Au — 1),
l1+eifweputd;; =0, Vj € N;andI; = 0. Itis also : jeN:
important in the CNN design problem to guarantee that mem-
ory vectors are restricted to be binary. As we have mentioned

before, this is achieved by choosing the values of the diagonal. . _
elements ofd such that Wa}nch corresponds to (9) in Theorem 2. If we st = 1 +

e (e >0),A; =0, Vj € N;, I; = 0andx; = 0 then
Ay >1, i=12,...,n. (13) the left-hand side of (17) becom@swhile the right-hand side
The main idea of Park’s method is to try to make the basi§¢comes—c. This means that the set of inequalities (17) is

of attraction of the prototype vectors as large as possible fgasiPle for any set of prototype vectass, o®, ..., a™ under
making use of Theorem 1 while guaranteeing the above two $8€ conditions thatl;; > 1 andx; > 0. Therefore, even if
quirements, i.e., (12) and (13). The total number of spurio&%S) is not feasible, we can make th_e basins of attraction of the
memory vectors is expected to be reduced if the basins of BEPIOYPe vectors as large as possible by setting= 1 + ¢
traction become large. Let us consider the set of inequalities2nd Solving the optimization problem

JEN;
k=1,2,....m (17)

Minimize —k;
OéiC Z Amozf + L; > Ky Hééjl\?( |A7J| + (A“ — 1),

jem J Subjectto —r;q; + af Z Aok + I | > —e,
_ JEN;
k=1,2,...,m (14) k=12 .m (18)
which corresponds to (5) in Theorem 1. 4f can be maxi- |[Aijl < qi, YjEN;
mized under the constraints (14); > 0 and A;; > 1 for |I;| < U
i = 1,2,...,n, then the basins of attraction of the prototype L<q¢g<U

vectors are maximized in some sense. Note heresthiatmaxi-

mized when4,; = 1. Note also that (14) is feasible with > 0 whereL andU (L < U) are positive constants specified by

andA;; = 1if and only if users. The optimization problem (18) is in the form of the
GEVM problem.

From the above considerations, we derive the following CNN
o | S Ayak 4| >0, k=12...,m  (15) design method. 9
JEN: CNN Design Method: Givenn setsNi, Ns,..., N, C

is feasible. Furthermore it is apparent that (12) is feasible Wi{h, 2,...,n} andm prototype vectorsx', a?,...,a™ € B",
A;; = 1ifand only if (15) is feasible. Park’s method thus firskxecute the following procedure foe= 1,2, ..., n.

checks the feasibility of (15). If (15) is feasibld,; is set tol 1) Check whether the set of inequalities (15) is feasible. If

and the optimization problem: it is feasible go to Step 2), otherwise go to Step 3).
Minimize —k; 2) SetA;; =1, andfind4,;, j € N; andl; by solving the
optimization problem (16).
Subjectto —r;q; + af Z Aija;? +I1; | >0, 3) Setd;; =1+¢ (¢ > 0),andfind4;;, j € N; andl; by
JEN; solving the optimization problem (18).
k=1,2,....m (16) The proposed method tries to maximizg in Theorem 2
|[Aijl < qi, YjEN; even in the case where the set of inequalities (15) is not feasi-
|I;| < U ble, while Park’s method just tries to satisfy the condition (12).

L<qg<U It is thus expected from Theorem 3 that the proposed method
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Fig. 1. Prototype vectors

TABLE |
COMPARISON OF THE AVERAGE RECALL PROBABILITYPay (d) BETWEEN PARK’S METHOD AND THE PROPOSED METHOD

: . . Average recall probabilityPay(d)
radius of neighborhood design method -1 d=2 d=3 d—1 d=3
S Park's method | 0.4623 0.2239 0.1109 0.0566 0.0288
Proposed method 0.5479 0.2969 0.1623 0.0879 0.0455
r =9 Park’s method | 0.9082 0.8186 0.7257 0.6319 0.5369
Proposed method 0.9584 0.8898 0.8046 0.7080 0.6026
;=3 Park’'s method | 0.9812 0.9576 0.9347 0.9058 0.8651
Proposed method 0.9937 0.9766 0.9585 0.9298 0.8891
can realize larger basins of attraction of the prototype vectah the prototype vectora!, a?, ..., a™ is referred to as the

than Park’s method. Moreover, since the optimization probleragerage recall probability from Hamming distant@nd is de-

(16) and (18) are in the form of the GEVM problem, they canoted byPay(d).

be efficiently solved numerically, as in Park’s method, by using

Interior-point algor_|thms. . . The prototype vectors used in this experiment are 26 English
Let us now consider the computational complexity of the pro—a ital letters shown in Fig. 1. Each pattern Hasi— 7 x 7)

posed method. First, the GEVM problems (16) and (18) can k&P 9. ~ P

solved in polynomial time in the size of the problem, which iglxels where black and white pixels represerit and 1, re-

determined by the number of prototype vectors and the radiussg}gctlvely. For each value of the radius of neighborhaod .,

neighborhood, by using some efficient optimization techniqugsand?’)' we have determined the network parameters by apply-

[18]. Second, the computation time of the proposed method"’i]sq Park's met:od gnd thehproposed metho? to the protoltype
roportional to the number of cells as far as both the num \éerCtO.rS' In bot d§S|gn met 'ods, GEVM problems were solved
P bb using the functiondevp ” in MATLAB LMI Control Tool-

of prototype vectors and the radius of neighborhood are fixeb .

From these facts, we can conclude that the proposed method [20] with the same values of constaits- 1, U = 10 and

can be solved in linear time in the number of cells, and in polﬁ?-: 0-1.
nomial time in the number of prototype vectors and the radius
of neighborhood. It is thus expected that the proposed methodrhe simulation results are shown in Table 1. Here we have
is applicable for CNNs with a large number of cells. estimated the average recall probabily(d), d = 1,2,...,5
by investigating the final output for all possible initial states in
the case wheré < 2 and by investigating the final output for
randomly chosen 3,000 vectors from the possible initial states
In order to verify efficiency of the proposed method, we ager each prototype vector in the case whére 3. As shown in
ply Park’s method and the proposed method to the same seTable 1, the average recall probability of the proposed method
prototype vectors, and compare the performance of synthesizetiigher than that of Park's method in all cases. From these
CNNs in terms of the average recall probability [16] which isesults, we can conclude that the proposed method is in fact
defined as follows: Letx* be any prototype vector of a CNN. superior to Park’s method and therefore regarded as an efficient
The probability that the CNN convergesdd when the initial  CNN design method for associative memories. Also, as shown
statex(0) is randomly chosen from the binary vectors such that Table 1, the smaller the radius of neighborhood, the bigger
the Hamming distance betweert and them isi is called the the difference between the proposed method and Park’s method.
recall probability ofa* from the Hamming distancé, and is This is because the smaller the value-pthe more frequently
denoted byP(a*, d). Moreover, the average @t(a”, d) over the case where (15) is not feasible happens.

V. COMPUTERSIMULATIONS
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parameters so thaf; in (14) or (17) is maximized, the small [26] N. Takahashi and L.O. Chua, “On the complete stability of nonsymmetric

deviation of the parameter values will not affect those inequal- cellular neural networksJEEE Trans. Circuits Syst, V0l.45, pp.754-758,
ities, that is, there will still exist a positive; satisfying (14) or Jul. 1998.

(17). In this sense, the proposed method is robust for parameter

deviations. Moreover, it is obvious that the proposed method

has a higher degree of robustness than Park’s method. Quanti-

tative investigation of the effect of the parameter deviation on

the average recall probability is a future problem.
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