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Stable Patterns Realized by a Class of
One-Dimensional Two-Layer CNNs

Norikazu TakahashiMember, IEEEMakoto Nagayoshi, Susumu Kawabata and Tetsuo Ni#low, IEEE

Abstract—Stable patterns that can be realized by a class of done by a two-layer CNN which is simpler than the three-
one-dimensional two-layer cellular neural networks (CNNs) are layer CNN proposed in [4]. Yangt al. [7] have found many
studied in this paper. We first introduce the notions of potentially image processing tasks that can be carried out only by two-

stable pattern, potentially stable local pattern, and local pattern | CNNs. | t of th licati . ti
set. We then show that all of 256 possible sets can be realized,ayer S. In most or thesé applications, an Input Image

as the local pattern set of the two-layer CNN, while only 59 sets IS fed into a multilayer CNN as the initial state of or the
can be realized as the local pattern set of the single-layer CNN. input to a certain layer. Then the state of each cell evolves
We also propose a simple way to optimize the template values with time according to its state equation. After the state of the
of the CNN, which is formulated as a set of linear programming y\ole network converges to some steady state, the output of
problems, and present the obtained values for all of 256 sets. o . -
a specific layer is taken as the output image produced by the
Index Terms—Cellular neural networks, stable patterns, two  CNN. In this process, each layer plays different roles because
layers, hidden layer, template optimization coupling coefficients between cells are space-invariant in each
layer but differ from layer to layer in general. This is the main
advantage of multilayer CNNs.
How good is the signal processing capability of multilayer
Cellular neural networks (CNNs) [1] are analog nonlinea€NNs compared to single layer CNNs? This is an important
circuits consisting of locally coupled cells. Global dynamicajuestion from both theoretical and practical points of view.
behavior of a CNN is completely determined by the networks for single layer CNNs, there are some attempts to evaluate
parameters represented by the feedback template, feedforwtheir signal processing capability. For example, Osuna and
template and the bias. By choosing the values of theb®schytz [12] studied the separating capability of the standard
parameters appropriately, a CNN can perform various kin@NN and gave upper and lower bounds for the number
of image processing tasks [2], [3]. However, as far as thd different tasks that can be done by the standard CNN.
standard CNN model [1] is concerned, there is a limitation ddogaru and Chua [10] proposed the universal CNN cell and
the signal processing capability due to their simple structuiavestigated the number of Boolean functions that can be
To overcome this difficulty, various extensions of the modekalized by the uncoupled CNN consisting of the universal
have been proposed so far, e.g., multilayer CNNs [1], [4]-[73ells. Cheret al. [13]-[15] have recently studied in detail the
nonlinear templates [8], CNN universal machines [9], universedalization of Boolean functions by uncoupled standard CNNSs.
CNN cells [10], RTD-CNNs [11] and so on. On the other hand, however, no attempt has been made so far
Among these models, the multilayer CNN not only is théor multilayer CNNs, to the best of the authors’ knowledge.
most natural extension of, but also has a potential to perforthis is because the analysis of multilayer CNNs is much more
more complex signal processing tasks than the original modéifficult than single-layer CNNs due to the increase of the
Several applications of multilayer CNNs in image processingimber of parameters.
have been proposed so far. Chua and Shi [4] proposed variou$he objective of this research is to characterize the sig-
multilayer CNNs for corner extraction from a noisy imagenal processing capability of multilayer CNNs. As the first
hole extraction, hole figure extraction, Radon transform, alstep toward the goal, we consider in this paper simple one-
so on. Wuet al. [5] showed that the Radon transform can bdimensional two-layer CNNs such that 1) there is no input to
A ) each layer (or all components of the feedforward templates
This work wi rted in part rant-in-Aid for Scientific R r i i
(b) 1;318099 f?in?ut?]zoM?rﬂstrypgf Ebdyu;t?on, Cultclljrg, S?rfo?ts, (S:cieiscza;r?ég sS:(t;otr?ngO) ' 2) the first Iay.er is the output layer anq
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Fig. 1. Structure of one-dimensional two-layer CNNs described by (1).

completely determined by the local pattern set, the numbespectively. Also, the state of the whole network is denoted
of local pattern sets is a reasonable criterion to evaluate e s(t) = [x(t), 2(t)] € R?Y. Note that dynamical behavior
signal processing capability of this class of CNNs. As a resutif a CNN described by (1) is completely determined by the
we show that all of 256 possible sets can be realized as fo#owing parameters:

local pattern set while only 59 sets can be realized in the . .

case of single-layer CNNs. This means that two-layer CNNs ¢ = -1, a0, a+1], w0, I, G0, d = [d-1,do,d11], 1

have a much higher potential for signal processing than singlesq the initial states(0) = [z(0), 2(0)].

layer CNNs. We finally propose a simple way to optimize the 1 gtrycture of a CNN described by (1) is shown in Fig.1.
template values of the two-layer CNN, which is formulated afq ;1 cell in the first layer receives output signals from

a set of linear programming problems, and present the obtaing neighboring cells including itself in the first layer and
values for all of 256 sets. thei-th cell in the second layer, but neither from tfie- 1)-th
cell nor the(i 4 1)-th cell in the second layer. Theth cell
Il. PROBLEM FORMULATION in the second layer receives output signals only from three
A. CNN Model neighboring cells in the first layer and itself, but not from its

) . ) _adjacent cells in the second layer.
Let us consider one-dimensional two-layer CNNs describedThroughout this paper, we impose for simplicity the follow-

by the system of differential equations: ing two assumptions on (1).
o 1 Assumption 1:Boundary cells satisfy either the periodic
da; (¢ N boundary condition:zo(t) = zn(t) and x4 (t) = 21(t)
= —x; t) + Yig i t) + i t) + I - 0 ) .N N+1 1
dt zi(t) _Z agyits () + woli() or the fixed boundary conditionzo(t) = zx41(t) = b €
j=—1
dis (8) 1 R {1,-1}.
(; = —&;(t) + aoy:(t) + Z diyivi(t) +1, Assumption 2:Self-feedback coefficients, and ay are
t j=-—1 greater than one.
i=1,2,...,N (1) Note that we do not have to consider the boundary condition

. _ for the second layer. This is because each cell in the second
where V is the number of cells in each layer;(¢) andyi(t) layer does not receive output signals from the second layer
represent the state and output of thi cell in the first layer, except itself and thus boundary cells are not required.

respectively. The outpu;(t) depends on the state(t) via |t is well known that under Assumption 2 an equilibrium
the piecewise-linear functioyi(-) as follows: point s* = [z*,2*] is unstable unlesgr;| > 1 and |2} > 1
1 hold fori = 1,2,..., N [16]. Conversely, it is easily seen that
A I .
yi(t) = f(2:(t) = 5 (jat) + 1] = |2i(t) — 1)) any equilibrium points* = [«*, &*] such that|z*| > 1 and

¥ > 1fori=1,2,...,N is stable. This implies that the
utput of each layer corresponding to any stable equilibrium
where the outpyhint js necessarily a binary vector.

Similarly, #;(¢) andg;(¢) represent the state and output of th
i-th cell in the second layer, respectively,
9:(t) depends on the state(t) as

1 . .
Gi(t) = f(a5(t) 2 §(|§;i(t) + 1) — |5(t) — 1)). E ttF’otentlally Stable Patterns and Potentially Stable Local
atterns

In the following, the state of the first layer, the output In this paper, the second layer of a CNN is supposed to work

of the first layer, the state of the second layer, and the e higden layer. To be more specific, an input image (or
output of the second layer are denoted di) = [21(t), patern)a e [—1,1]" is first fed into the CNN as the initial

l’g(t), s 71'N(t)]' y(t) = [yl(t)a yQ(t)v s 7yN<t)]! :i:(t) =
[21(t), 22(t), ..., 2n(¢)] @andG(t) = [91(¢), G2(¢), ..., In(B)], IThroughout this paper all vectors are assumed to be row vectors.
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Fig. 2. Relationship between potentially stable local patterns and potentially stable patterns. (a) Potentially stable local patterns of a CNN with the parameters
a=1[-0.2,1.3,-0.2], up = —1.0, I = 0.5, ao = 3.0, d = [-3,1.1,—3] and I = 6.0. (b) Potentially stable patterns of a 4-cell CNN with the boundary
conditionzo(t) = z4(t) andzs(t) = x1(¢) for all ¢.

state of the first layer, that i%;(0) = «, while the initial state &
of the second layer is set to a certain value independeat, of , 2 4 5
e.g.z(0) = 0; The state of each cell then evolves according -1
to the state equation (1); If the stat@) = [x(t), 2(¢)] finally
converges to an equilibrium point then the output of the first
layer corresponding to the equilibrium point is regarded as the
output image (or pattern) produced by the CNN.
Let us now give two definitions.
Definition 1 (Potentially Stable Pattern)An N- q’ 7 o(q")
dimensional binary vectop = [p1,p2,...,pn] € {1,-1}Y
is said to be a potentially stable pattern of a CNN if there
exists a stable equilibrium point* = [z*,2*] € R* such Fig. 3. Arangements o{g?}7_, and {¢(g?)}7_, in the spaceR® =
that f(z%) = p; for i = 1,2,..., N. {[r1, 72,5 | mi € R, i = 1,2,3).
Definition 2 (Potentially Stable Local PatternA  three-
dimensional binary vectog = [g_1,qo0,q+1] € {1,—1}3 is

said to be a potentially stable local pattern of a CNN if théo = —10, I = 05, a0 = 3.0, d = [-3,1.1,-3] and
system of differential equations: = 6.0. The local pattern set for this CNN is given by

{q ,q*,q% q*}. If we assumeN 4 and the periodic

q!)

da(t) = —z(t) +a_1q_1 + aof(z()) + as1q41 boundary condition, potentially stable patterns for this CNN
de o f(2(0) 4 I are [-1,-1,-1,-1], [+1,-1,-1,-1], [-1,+1,—1,-1],
A 0 [-1,—-1,41,—1] and[-1, -1, -1, +1] (see Fig.2).
d:;gt) —  _&(t) +aof(B(t Z dig+ 1 The local pattern get of a QNN apparently. takes one of
=1 256 subsets of1, —1}°. The main purpose of this paper is to
o ) determine how many local pattern sets can be realized by the
has a stable equilibrium poirjt:(¢), &(t)] = [+*,2*] € R® =NN described by ().

such thatf(z*) = ¢qo. The set of all potentially stable local
patterns is called the local pattern set. _
We hereafter express three-dimensional binary vectors aﬁ)llow

In the following, the sef{1,—1} is denoted byB. For any
[9-1,90,9+1] € B® we define the mapping(q) as

S:

q [ 1771 71]3 q [+1 -1 71]3

q* =[-1,+1,-1], ¢*=[+1,+1,-1], o(q) = [¢1(a), 2(q), ¢3(@)] = [90g-1, 90, q0q1].  (2)
4 _ 5 _

36 _ % i’Ji iH: 37 Ll +1 iH’ We also applyp to any subseb C B? as¢(S) = {4(q) | q €

for the sake of simplicity.

S}. The arrangements ofq‘}!_, and {¢(q')}7_, in the
spaceR? = {[ry,ra, 73] | € R, i = 1,2,3} are shown in

It is obvious from Definitions 1 and 2 that under Assumprig.3. The Hammmg distance betwegh and g2, which is
tion 1 a binary vectorp = [p1,p2,...,pn] € {1,—1}"  defined byy>;_ | |¢"' —q’2|/2 is denoted bydy (g™, ¢').
is a potentlally stable pattern of a CNN if and only ifFor examp|e dH(q q ) = 1. The difference between two
[pi—1,pi,pi+1] is @ potentially stable local pattern of thesetsA and B, which is defined agxz |z € A andz ¢ B}, is
CNN for ¢ = 1,2,...,N, where we assum@, = pn denoted by4 \ B. Two setsA ¢ R" and B ¢ R" are said
and pn4+1 = p1 for the periodic boundary condition andto be linearly separable if and only if there existe R™ and
po = pn+1 = b € {1,—1} for the fixed boundary condition. y ¢ R such that
In this sense the set of potentially stable patterns is completely
characterized by the local pattern set. For example, let us T+b{
consider a CNN with the parametesis= [-0.2,1.3, —0.2],

>0, Vee A
<0, VexeB .



I1l. ANALYSIS OF LOCAL PATTERN SETS
A. Single-Layer CNNs

Let us first consider the case whetg = 0. In this case,
the statex(t) of the first layer is independent of the output
y(t) of the second layer, and thus the problem stated in the
previous section corresponds to characterization of the family
of local pattern sets that can be realized by single-layer CNNs.

Lemma 1:For a given setS C B? there exists a CNN
described by (1) withyy = 0 such thatS is the local pattern set
of the CNN if and only ifS; = ¢(S)U{0} and Sy = B3\ ¢(S)
are linearly separable.

Proof: We will prove only necessity because sufficiency
can be proved by reversing the following argument. Suppose
S is the local pattern set of a CNN withy = 0. Then for any

vectorq = [¢-1, 40, ¢+1] € S there exists ar: such that 3(q)
1 .
_ >4+1, ifgo=+1
-+ E a;q; +1=0 and x{<_1, it go = —1

j=—1
which is equivalent to the inequality
qo(a—1q—1 + aoqo + a41q+1 + 1) > 1.

From this inequality we have

[afla Ia a+1][q0q717q0a CIOqul]T + ap — 1> 07

Vg =q-1,90,9+1] € S. (3)

On the other hand, since the inequality

#(q")

U1

vz |7

Fig. 4. Various cases considered in the proof of Theorem 1. A black (white,

qo(a—1g—1 + aoqo + ay1941 +1) <1

holds for any vectog € B \ S, we have

la—1,1,a41][q0q-1, 90, q0q+1)" +ao—1 <0,
Vg = [g-1, 90, q+1] € B? \S. (4)

resp.) circle indicates that the three-dimensional binary vector corresponds to
the vertex belongs t& (B2 \ S, resp.).

2) Suppos€|S| = 7. It is obvious thatg(S) U {0} and
B3\ ¢(S) are linearly separable. Thuscan be realized

as the local pattern set. The number of differ&néuch

It follows from Egs.(3) and (4) thap(S) andB? \ ¢(S) are
linearly separabfe Moreover, sincei, > 1, we have

[a—lvlv (1+1][0,0,O]T +ag—1>0.

that |S| = 7 is apparently 8.
3) SupposéS| = 6 andB?\S = {q'*, ¢*2}. There are three
cases according to the value @ (#(q™), ¢(q*)).

a) du(é(g™), ¢(q™)) = 1. It is obvious thatp(S) U

Therefore we can conclude th&t = ¢(S) U {0} and .Sy =
B3\ ¢(S) are linearly separable. ]

By using this lemma, we can derive the following theorem.
Theorem 1:The number of subsets dB® that can be
realized as the local pattern set of a CNN in the form of (1)

with ug = 0 is 59.

Proof: In order forS C B? to be the local pattern set of a
CNN, at least one of two vectorg andg’ such thatp(q’) =
—¢(g’) must belong toS because otherwisg(S) U {0} and
B3 \ S are not linearly separable. Thys§|, the number of
elements ofS, must be at least 4. In the following, we will
study the condition foiS to be the local pattern set for each
value of | S].

1) SupposdS| = 8 (i.e., S = B?). In this case, we can
realize S as the local pattern set by setting to any
value greater than one amd; = a; =1 = 0.

b)

c)

2The equal sign in (4) can be removed without affecting (3) by decreasing®) Suppose|S]| _ _ ‘
We assume without loss of generality that(¢(q™ ),

ag slightly.

{0} and B? \ ¢(S) are linearly separable. Thus
S can be realized as the local pattern set. The
number of different sets{q‘,q?} such that
du(é(g™), #(g*2)) = 1 is 12, which is equal to
the number of edges of the cube.

du(p(q™), #(q*?)) = 2. There are two patterng?

and g* such that{g"*,¢"*} C S and ¢;(¢™)
¢i(g"”) = ¢;(g”) = ¢;(g") = for somej €
{-1,0,1} as shown in Fig.4(a). Since two sets
6({g".q"}) and ¢({g".q"*}) C &(S) are not
linearly separable$ cannot be realized as the local
pattern set.

du(6(g"), ¢(g")) = 3. Sinced(q") = —¢(q™)
holds in this case, two set{q**, ¢*2}) and {0}
are not linearly separable. Therefasecannot be
realized as the local pattern set.

5 and B3\ S = {q%,q", q"}.



5)

$(g")) < du(6(¢™),0(g")) < du(d(g™), d(g™)). If versely, if neither¢(q®) nor ¢(g™) is at vs,

du(6(q™), ¢(g"+)) = 3 holds, S cannot be realized as du(é(q™),#(q%)) = 1 holds forj = 1,3 and
the local pattern set for the same reason as Case 3- 4. This case has already been considered in Case
c. Also, if du(o(g™), #(q™)) = du(od(g™2), d(q")) = 5-a.

du(p(q*), #(g")) = 2 holds, ¢({g",¢",g"}) and Total number ofS that can be realized as the local pattern set

{0} are not linearly separable becauBeis the cen- js 1484 12+ 24+ (8+6) = 59. This completes the proof.
ter of the triangle whose vertices afgdq™), ¢(q*?) u

and ¢(g**). Hence S cannot be realized as the local

pattern set in this case. So we can concentrate our

attention on the case wherd;(¢(g™), ¢(q2)) = 1 B. Two-Layer CNNs

anddu(¢(q™), #(g"*)) = 2. Furthermore, we easily see | et us next consider the general case whege# 0. The
that du(¢(q™), #(g**)) must bel in this case. Since following theorem is the main result of this paper.

¢(q"), ¢(q") and ¢(q"*) are on the same face of the Theorem 2:All of 256 subsets o33 can be realized as the
cube as shown in Fig.4(b), it is obvious thelS) U{0} |ocal pattern set of a CNN described by (1).

and B® \ ¢(S) are linearly separable. ThuS can be  comparing Theorem 2 with Theorem 1, we can conclude
realized as the local pattern set. The number of diffefhat two-layer CNNs have a much higher potential for signal
ent sets{q", q"*, ¢"*} satisfyingdu(é(q"),¢(¢")) = processing than single-layer CNNs.

du(9(q”),¢(¢*)) = 1 anddu(¢(q*),#(¢™)) = 211 The remainder of this subsection is devoted to the proof of
24, which is equal to the number of faces of the cubgheorem 2 which consists of seven lemmas. We only consider
times the number of vertices on a face. S C B3 such that|S| < 6 because iflS| > 7 then S can
Suppose|S| = 4 and B> \ S = {q".¢™,4",q"}. pe realized as the local pattern set of a single layer CNN.
We assume without loss of generality thét(¢(¢" ), First we present Lemma 2 which gives us useful information
$(q)) < du(o(g"),¢(q")) < du(¢(q"),¢(q")).- I on how to determine the values of the parametajsd =
du(¢(g™),¢(g")) = 3 holds, S cannot be realized as(q_, 4, d,,] and]. Next we present two lemmas (Lemmas 3
the local pattern set for the same reason as Case 3ifq 4) which play key roles in the proof of Theorem 2. In fact,
Also, if du(d(g™),¢(q")) = 2 holds forj = 2,3 and  the realizability ofS as the local pattern set can be proved by
4, S cannot be realized as the local pattern set becalb|'5’§?ng Lemmas 3 and 4 in most cases, as shown in Lemma 5.
the arrangement af({q"*, ¢"*, ">, ¢" }) is as shown in e finally present three lemmas (Lemmas 6-8) in order to
Fig.4(c). From these observations, we can concentrg{€a| with the remaining special cases.

our attention on the following three cases. It follows from Definition 2 that a binary vectag € B3 is

. , a potentially stable local pattern of a CNN if and only if
a) du(p(g"),6(g")) = 1 for j = 2,3 and 4. In

this case@(S) U {0} andB? \ ¢(S) are linearly [a_1,1,a41] 0(q)T + ao + qoug f(&*) > 1 (5)
separable as shown in Fig.4(d), and ttfusan be i . .
realized as the local pattern set. The number bplds, wheret* is any stable equilibrium point of the follow-

different sets{q’, g, q’s, g4} corresponding to ing differential equation:

this case is8, which is equal to the number of di(t) 1
vertices of the cube. _ ' :th = —&(t) +aof(3(t) + Y_ dig;+1  (6)
b) du(¢(q). ¢(q"?)) = du(p(q"),¢(q”?)) = 1 j=—1

and dy(o(q™), ¢(g*t)) = 2. We assume with- . .

out loss of generality that the arrangement of Lemma 2:1f o — 1 < [37;_ , d;q; + I| then (6) has a
#({qg", q", ¢’ }) is as shown in Fig.4(e). f(g’+) unique equilibrium point:* which is stable. Moreovey (")
is at vs OF v3, S cannot be realized as the localS given by the following equation:

attern set becaus 2) ¢(q™)) = 3 or _ .
p 8u(p(q), 9(g")) f(A*){ 11, if 2;271 dig; +1>0

du(¢(q™), #(g™)) = 3 holds, respectively. On the %
—1, it Y, dig;+1<0

other hand, if¢(q*) is atv, theno(q™), ¢(q%),
#(q*) and¢(q*) are on the same face of the cube

_Ia_ﬂd thusSbcan t]?ed_rf(?allzetd ast thi loial pz;a\tteizn Sl proof: Letus denot&™.__, d;q;+1 by I’ for simplicity.
e number of different set¢q™, ¢, ¢, g%} Eq.(6) has an equilibrium point* > 1 if and only if —2 +

corresponding to this case (s which is equal to ao + 1’ = 0 has a solution in the intervall, co) which is
the number of faces of the cube.

; , A , equivalent to
©) du(9(q").6(q")) = 1 anddu(6(g"), o(q)) = °
du(¢(q™), #(¢'*)) = 2. We assume without loss
of generality that the arrangementof{q*,q"})  gimilarly, Eq.(6) has an equilibrium poitt < —1 if and only

is as shown in Fig.4(f). If eithep(g™) or ¢(q™) it _5 _ ao + I' = 0 has a solution in the intervgl-oo, —1)
is at vz, S cannot be realized as the localyhich is equivalent to

pattern set becauséy(¢(q'?),¢(q*)) = 3 or X
du(6(q™), ¢(g™)) = 3 holds, respectively. Con- ap—1>1". (8)

ao—1>—1". 7)



On the other hand, Eq.(6) has an equilibrium paintsuch s
that|z*| < 1 if and only if —& + aoZ + I’ = 0 has a solution ,I/L"z é(q")

6 4 6
in the interval[—1, 1] which is equivalent to o(a) o4 ? a
q 5 ‘
N ‘ . q :
ap—1>|I'|. (9) o |9 : q’
Note that0 < ao — 1 < |I’| implies I’ # 0. If I’ > 0 then -t iqo ,
(7) holds while (8) and (9) do not hold. Therefore (6) has a e o(q*) S 1
: I AN L o)
unique equilibrium point:* = Go + I’ > 1 which is stable. If A A
I' < 0 then (8) holds while (7) and (9) do not hold. Therefore #(q) &(q’) q 7
(6) has a unique equilibrium poitt: = —ay+1’ < —1 which (a) (b)
is stable. ]

Lemma 3:Let 5, t.)e a subset oB” such thatng(Sl) U {O} Fig. 5. How to realize{q®, q' } as the local pattern set by using Lemma 3.
andB® \ ¢(S,) are linearly separable. Lef; be a subset of (a) Linear separation ap(S1) U {0} andB? \ ¢(S1). (b) Linear separation
S1 such that i) eitherS, C {q € B®|qo = +1} or Sy C of Sz andB?\ Sa.

{q € B®|qo = —1} holds, and ii)S; andB?\ S, are linearly
separable. Thei$; \ Sy can be realized as the local pattern ry
set of a CNN described by (1).

Proof: Since ¢(S;) U {0} andB? \ #(S;) are linearly h a ¢
separable, there exist parametarg(> 1), w1, w2, andws; q° -
such that q

T > 1, if qc Sl 0

[w17w27w3] ¢(q) + wo { <1, if q ¢ S, (10) q L) q*

holds. SinceS, andB? \ S, are linearly separable, it follows ql @

from Lemma 2 that there exists a set of parameiérs-
[d_1,do,d 1], Go @andI such that (6) has a unique equilibrium
point £* for eachq € B3 and f(2*) is given by
) Fig. 6. How to realize{q°, q*, g%, q*, q"} as the local pattern set by using
axy 1, if g€ Sy 11 Lemma 4. (a) Linear separation ¢{S1) U {0} andB? \ ¢(S1). (b) Linear
(@) = —1, if q¢ S 11) separation ofSo andB3 \ Sa.

Let a_1 = wy, a9 = wo, ay; = w3, Uy = L andl =
we + L where L is a sufficiently small negative number if Fig. 5 shows howS = {¢°,q'} is realized as the local
Sy C {q € B*|qo = 1} and a sufficiently large positive pattern set of a CNN by using Lemma 3. L8{ = {q°, ¢',
number if S, € {g € B*|qo = —1}. Then we have a®.q"} and S, = {g® q"}. Then S, is a subset of botls;
T . and{q € B?|q = +1}. As shown in Fig. 5(a)p(S;) U {0
la-1, L a1} ¢(g)” + a0+ qgu()f(x ) » and]slga3 \ q5(51|) are Iingarly separable with the pl(ané ingligated

= [wi,wy + L, w] ¢(q)" +wo + qoLf(27) by gray. Also, as shown in Fig. 5(b)f, and B? \ S, are
= [wi,wa,w3] p(q)" +wo + qoL(f(2*) +1). (12) linearly separable with the plane indicated by gray. Therefore,
according to Lemma 35; \ S; = S can be realized as the
local pattern set.

Fig. 6 shows howS = {q° q',q% q* q"} is realized
as the local pattern set of a CNN by using Lemma 4. Let
1 = 1{4d%q%,¢* q"} and S, = {q*}. Then S, is a subset

f {q € B3| g = +1}. As shown in Fig. 6(a)¢(S;) U {0}
andB?\ ¢(S;) are linearly separable with the plane indicated
by gray. Also, as shown in Fig. 6(b)f, and B3 \ S, are
linearly separable with the plane indicated by gray. Therefore,

It follows from (11) and the definition of. that

qoL<f<5c*>+1>={ I °%

Since |L| is sufficiently large, we have from (10), (12) an
(13)

[a_1,1,a:1]9(q)" + ao + qouo f(2*)

{ > 1, ?f q €51\ 5 according to Lemma 45, U Sy = S can be realized as the

<1, if g¢5i\5, local pattern set.

which meansS; \ S, is the local pattern set of the CNNm The following Iemm? fO”QW_S from Lemmas 1, 3 'and 4.
In a similar way, we can derive the following lemma. Lemma 5:1f S C B° satisfies one of the following con-

Lemma 4:Let S be a subset oB?® such thatp(S;) U {0} ditions, S can be realized as the local pattern set of a CNN
andB3 \ ¢(S;) are linearly separable. Let, be a subset of described by (1).
B3 \ S; such that i) eitherS, C {q € B3|q = +1} or 1) S=0.
Sy C {q € B3| qo = —1} holds, and ii)S; andB? \ S, are 2) |5]=1.
linearly separable. Thef; U S, can be realized as the local 3) S = {q™, q2} where one of the following conditions
pattern set of a CNN described by (1). holds.



a) qp' # qy o
b) 5" = g5’ du(g™,q") =1
4) S = {q",q",q"} where one of the following condi-
tions holds.
a) qél — q(l)z — q(l)s 4 .
b) @' =q¢° # @’ dulq™,q*) =1
¢) du(q'.q") =du(q", q") = du(q*”,q") =2
5) S ={q",q",q"*,q"} C B> where one of the follow-
ing conditions holds.

a) ¢ = q¢* = 4y’ = q'
b) ¢ =@’ =45’ # a* - _
©) @ =4 # 4 = %' du(g™,q”) = du(q®,
q) =1
d) @ =’ # ¢ = ' dulg".q?) = 1, du(q”,
q) =2
6) |S| = 5.
7) |S| =6.

Proof: For each case the claim can be proved as follows.

1) LetS; =S = {q? q?,q°% q"}. SinceS; andsS; satisfy
the conditions in Lemma 35 \ S3 = () can be realized
as the local pattern set.
Let S = {q'}. If we setS; = {q € B®|q = ¢} and
Sy = 51\ S thenS; and S, satisfy the conditions in
Lemma 3. Therefore; \ S; = S can be realized as the
local pattern set.
We setS; and S as follows. It is easily seen for all
cases that; and.S; satisfy the conditions in Lemma 3
and thatS; \ Sy = S. HenceS can be realized as the
local pattern set.

a) S1={qgeB®|q=q}U{g"”}, S2=51\9

b) S1={qeB?|q=q}, Sa=51\5
We setS; and S; as follows. It is easily seen for all

2)

3)

4)

d) We assume without loss of generality that
du(p(q"),¢(q")) = 1. Let & = S U {q"}
where ¢* ¢ B® satisfies g; q¢ and
du(¢(q),#(g*)) = 1 and letSy = {g*}. Then
S1 and S, satisfy the conditions in Lemma 3 and
henceS; \ S; = S can be realized as the local
pattern set.

6) LetS = {q",q",q",q",q"}. If $(5)U{0} andB?\
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¢(S) are linearly separable, it follows from Theorem 1
that S can be realized by a CNN withhyy = 0. We
therefore assume hereafter tig) U{0} andB3\ ¢(S)
are not linearly separable. We further assume without
loss of generality that! = 2> = ¢i* # qi* = q¢if . Let
us first consider the case whetg (g™, q"*) = 1. Let
Si={qe€B’|q =q'}U{qg",¢"} andS; = 51\ S.
ThenS; and S, satisfy the conditions in Lemma 3 and
henceS; \ S2 = S can be realized as the local pattern
set. Let us next consider the case whéggq™, ¢**) =
2. This case is further divided into the subcases i)
du(g'',q"?) = du(q",q"*) = du(g",¢") = 1 and i)
du(q",q") = du(g",q"*®) =1 anddu(q",q") = 2.
In Subcase i), letS; = S\ {¢*°} and Sy = {q"°}.
Since S; and S; satisfy the conditions in Lemma 4,
S1USy = S can be realized by a CNN as the local
pattern set. In Subcase ii), It = S U {qg*} and
Sy = {q*} whereg* is the vector satisfying* ¢ S and
du(g™,q*) = 1. ThenS; and S, satisfy the conditions
in Lemma 3 and henc#; \ Sy = S can be realized as
the local pattern set.
Let S; be a subset dB® such thatS;| = 7 andS C 5.
Let So = 51\ S. ThenS; and S, satisfy the conditions
in Lemma 3 and henc#; \ S; = S can be realized as
the local pattern set.

[ |

cases thab; ands5; satisfy the conditions in Lemma 3 | oy 13 5 shows that many but not all subsetsBafcan
and thats, \ 5> = 5. HencesS can be realized as thebe realized as the local pattern set of a CNN described by

local pattern set.
a) S1={qgeB®|q =q'}, Sy =81\S
b) S1={qeB’|q=0q}U{g"}, S2=51\8
c) S = SU{q*}, S2 = {q*} whereq* € B* such
that du(¢(q”),¢(q")) = du(o(q”),d(q")) =
du(o(q), ¢(q")) =1

5) a) Sincep(S1) = {q € B>|q = ¢i*} holds,$(S;) U

1)

(). The cases not covered by Theorem 1 and Lemma 5 are
summarized as follows:

S ={q", g2} whereq)' = ¢* anddu(q’,¢’) = 2.

2) S = {q¢".q",q"} whereqy’ = qi # q, du(q™,

q?) =2 anddH(qil,.qiS) =1.

3) S ={q",q", q" q"} whereqy' = ¢ # 45’ = g;'

anddu(q™, ) = du(g™,q") = 2.

{0} andB? \ ¢(S51) are linearly separable. Hence Note that we do not have to consider the case wisere
it follows from Lemma 1 thatS can be realized by {q’1, ¢'2, q%}, ¢! = ¢i> # ¢, du(q™,q") = 2 anddyu(q™,

a CNN with ug = 0.

q") = 2 because these conditions lead dg(q™2, ¢%) =
2 which means this case falls into Case 4-c in Lemma 3.

S1\ S. ThenS; and S, satisfy the conditions in Also we do not have to consider the case whére- {q",
Lemma 3 and hencé, \ S, = S can be realized g% g%}, ¢i' = ¢ # ¢, du(q™,q”?) = 2 and du(q",

q™) = 3 because these conditions leaddg(q’2, ¢**) = 1

b) Let S, = {q c B? |(I0 = qal} U {qi4} and Sy =
as the local pattern set. -
c) Let Sy = {q € B*|q = ¢y} U{q",¢"} and which means this case falls into Case 2 above.

Sy = Si\ S. Sincedu(d(qg), d(g)) = 1, it

We will finally show that anyS falls into one of these three

is apparent that)(S1) U {0} andB? \ ¢(S:1) are classes can be realized as the local pattern set.

linearly separable. Also, sinckS:| = 2 and the

Lemma 6:Any S = {q"*,q"} such thatg}!
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= ¢y and

Hamming distance between two vectors belongingy; (g, g*2) = 2 can be realized as the local pattern set of a
to S is 1, S, satisfies the conditions in Lemma 3.CNN described by (1).

ThereforeS; \ S2 = S can be realized as the local
pattern set.

Proof: We will prove this lemma only folS = {q?,q"}.
Remaining three casesi = {q",¢°}, S = {q',q*} and



Fig. 7. Howto realizg{ g2, q”} as the local pattern set by using Lemma 6. (aFig. 8. How to realize {q°, q%,q%,q"} as the local pattern set
The plane defined by ([r1,r2,r3]) = [0.2,1,0.2][r1,72,73]7 +1.2=1. by using Lemma 8. (a) The plane defined by([ri,r2,73]) =
(b) Linear separation ofs andB? \ S,. [0.2,0,0.2][r1,r2, 73] +1.1 = 1. (b) Linear separation af2 andB= \ S.

S = {q% q°} can be proved in a similar way. Lef, =
{q®,q% q"}. Since S, and B® \ S, are linearly separable
(see Fig.7(b)), it follows from Lemma 2 that there exist u
d= [d_l,do,_cl+1], Qo a_r_1dI_A such t_ha*t the differential equgtion Lemma 8:Any S = {q",q’,¢", q"} such thatqél _
_(6) has a unique equilibrium point* for eachq and f(&*) qéQ 4 qég _ qf{* anddi (g, ¢'2) = du(q™,q") = 2 can be
is given by (11). Leta = [0.2,1.2,0.2], uo = 0 and rezjizad as the local pattern set of a CNN described by (1).
I = 1. Then the values of the left-hand side of (5) for
q = q', which is denoted a®(¢4(q')), for i = 0,1,...,7 Proof: There are four possible cases to be considered:
are o(¢(q°)) = la_1,1,a11]¢(¢°)" + ao + qouof(i*) = 1) S = {¢°,¢* ¢°,q"}, i) S = {q",¢° q*, ¢}, iii) S =
[0.2,1,0.2][1,-1,1]T + 1.2 + 0 = 0.6, o(¢(q")) = 0.2, {q° 4> q° q°} and iv) S = {q', 4> q* q"}. We first con-
a(d(g@®) = 18, a(¢(q®) = 22, o(¢(g*)) = 0.2, sider Case ). Leb> = {q>, q°,q° q"}. SinceS; andB?\ S,
o(p(q®)) = —0.2, a(¢(q®)) = 2.2 and o(4(q”)) = 2.6 are linearly separable (see Fig.8(b)), it follows from Lemma 2
(see Fig.7(a) where the plane defined dfr1,7,73]) = 1 that there exisid = [d_1,do,d1], ao and I such that the
is indicated by gray). Now we increase the valuesugfand differential equation (6) has a unique equilibrium pairitfor
I by L whereL is a constant whose value will be determinedachq and f(2*) is given by (11). Leta = [0.2,1.1,0.2]
later. Theno(¢(q")) increases by L for i = 3,6 and7, and and uy = I = 0. Then the values of the left-hand side
remains the same far= 0, 1, 2,4 and5. Therefore, by setting of (5) for ¢ = ¢, which is denoted as(¢(q')), for i =
L = —0.7, we can make the value of(¢(q)) greater than  0,1,...,7 areo(¢(q°)) = 1.5, o(é(q')) = 1.1, o(¢(q?)) =
only for i = 2 and 7. This means that = {q?,q"} can be 0.7, o(¢(q*)) = 1.1, o(¢(q*)) = 1.1, o(¢(g®)) = 0.7,
realized as the local pattern set. B o(6(q°%)) =1.1ando(¢(qg")) = 1.5 (see Fig.8(a) where the
Lemma 7:Any S = {¢*, q?,q"} such thatg' = ¢i> # plane defined by ([ri,7,73]) = 1 is indicated by gray).
¢, du(q™, ¢™) = 2 anddy(q™, ¢®) = 1 can be realized as Now we increase the value af, by L. Then o(¢(q"))

the local pattern set of a CNN described by (1). increases byl for i = 0,1,4 and 7, and decreases by

Proof: We will prove this lemma only forS = for ¢ = 2,3,5 and 6. Therefore, by settingl = —0.4,
{q°,¢%,q"}. Remaining seven caseS:= {q°,q°,q"}, S = we can make the value ef(¢(q’)) greater thanl only for
{d*,¢%,¢°}, S = {a® q¢*q¢°}, S = {d°,¢* ¢°}, S = i = 0,2,5 and 7. This means thatS = {q°,q¢% ¢°,¢"}

{¢°,q°,q"}, S = {q¢',q> q*} and S = {q',q*,q°} can be can be realized as the local pattern set. Next we consider
proved in a similar way. LetS; = {g>,q% q"}. Since S, Case iii). LetS: = {q° q"}. Since S, and B® \ S, are
andB? \ S, are linearly separable, it follows from Lemma Zinearly separable, it follows from Lemma 1 that there exist
that there existd = [d_y,dy,d+1], o and I such that the d = [d_1,dy, d41], ao and] such that the differential equation
differential equation (6) has a unique equilibrium pairitfor  (6) has a unique equilibrium poidt* for eachg and f(z*) is
eachq and f(2*) is given by (11). Leta = [0.2,1.8,0.2], given by (11). Leta = [0.2,1.1,0.2], up = 0 andI = —0.2.

up = 0 and I = 1. Then the values of the left-hand sideéThen we haver(4(q°)) = 1.7, o(¢(q')) = 1.3, o(é(g?)) =

of (5) for ¢ = ¢°, which is denoted as(¢(q’)), for i = 0.5, o(¢(q)) = 0.9, o(é(q*)) = 1.3, o(o(q°)) = 0.9,
0,1,...,7arec(¢(q")) = 1.2, o(é(q')) = 0.8, o(¢(q?)) = o(¢(q°)) = 0.9 ando(¢(q")) = 1.3. Now we increase the
2.4, o(p(g®)) = 2.8, o(é(q?)) = 0.8, o(¢(q°)) = 0.4, value ofug by L. Theno(¢(q')) increases by. fori =0, 1,4
o(¢(q%) = 2.8 ando(¢(q")) = 3.2. Now we increase the and 7, and decreases by for i = 2,3,5 and 6. Therefore,
values ofug and by L. Theno(¢(q')) increases bpL for by settingL = —0.4, we can make the value of(¢(q'))

i = 3,6 and 7, and remains the same for= 0,1,2,4 and greater thanl only for i = 0,3,5 and 6. This means that

5. Therefore, by settind. = —1, we can make the value of S = {q°, ¢>, ¢°, ¢®} can be realized as the local pattern set.
o(¢(q')) greater thanl only for i = 0,2 and 7. This means Cases ii) and iv) can be proved in a similar way as Cases i)
thatS = {q°, ¢, q"} can be realized as the local pattern seand iii) respectively. [



C. Summary and Comparison to Related Work When a CNN is implemented with the analog circuit, the

Let us first summarize the approach taken in the proof tgmplate values cannot be realized exactly but suffer from
Theorem 2. For givers C B3, we first separatd¢(g)}7 perturbations [21], [22]. It is thus important to make the set of

=0 . . .
into two classes by the plang_i, I, ay1][r1, 72,737 + templates robust against the perturbation [21]-[26]. A simple

a — 1 = 0, and {g'}7_, into two classes by the p|émeapproach to finding robust templates is to maximize
d[ri,r9,73]T +1 = 0. We then adjust the parameter values so min |[a_1,1,a41] d(q)" + 1]
that qEeB3
T _ T s within a certain parameter region, which is formulated as the
sgn([a_h Laplél@) +ao—1+ qouosgn(dq + I)) following linear programming problem.

. . . Problem 1: Maximize 6, subject to
takesl if and only if g € S, where sgfu) takesl if u > 0,

0 if u=0, and—1 if u < 0. The role of the second layer is la_1,I,a11]¢(q)" +1> 61, Vge S
representeq by the terqauosgr(qu_+f). Owing to this term, [a_1,1,a:1] 6(q)T +1< =01, Vg e B>\ S
the separa;c))lon (14) becomes nonlinear and we can realize any la_1| < Uy, lag1| < Uy, |I| <UL, 61> 0
subset ofB° as the local pattern set.
The most important step in our approach is how to separatbereU, is a positive constant.
{q'}1_, into two classesS, and {g'}7_, \ S by the plane  Note that Problem 1 does not always have a feasible solution
dlry, o, r3)T + I = 0. We have determined this linearbecause the second constraint will not be satisfieti;ifis
separation manually for each case, but this is possible oty small. We have verified with numerical calculations that
when the number of cases to be considered is small. If wgoblem 1 has a feasible solutionlif > 1.
apply our approach to more general case, it will be necessary-et us next consider the remaining 197 subset®ivhich
to develop a systematic way to find the linear separation. cannot be realized as the local pattern set of a CNN with
Let us next compare the results of this paper to related = 0. In each of these 197 cases, we first choose the set
work. Theorem 1 is related to some results on equilibrius: C B* such thatS, andB® \ S, are linearly separable, as
analysis of single-layer CNNs [12], [17]-[20]. These resultshown in the proofs of Lemmas 4-8. We then determine the
are general in the sense that they can be applied to general tualues of the parametets= [a_1, ag, ay1], up andI so that
dimensional CNNs. On the other hand, only a class of simple - »
one-dimensional CNNss is considered in Theorem 1. However,9-1: 1, a+1] ¢(@)" + ao + qouod™(q)
this allows us to provide a complete characterization of the { >1, VYqe s (16)
set of stable patterns that can be realized by those CNNs. <1, VgeB\S
Nonlinear separation of binary vectors via CNNs was al i chl N - :
studied by Dogaru and Chua [10]. They considered the prjl%)—satISfled whergy”(q) is defined as follows:
lem of separating:-dimensional binary vectors with a class 7*(q) = { L, ?f qe s
of piecewise-linear functions called multi-nested discriminant —1, ifqgeB’\S,
functions, and showed that all 2" separation can be realizedywe also determine the values of the parametersd =
for n < 4. However, they did not prove it analytically but justig_, 4, d,,] and so that the differential equation (6) has
presented parameter values which were found by a compuefinique equilibrium point:* satisfying (11). According to
program. In this paper, on the other hand, we have given pBmma 2, the value af, is set tol +¢ wheree is a sufficiently
analytical proof of Theorem 2 from which we can see hogmall positive number, and the values of the parametesd
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each subset dB? is realized as the local pattern set. [ are determined so that
~[ >0, Vqe5S
IV. TEMPLATE OPTIMIZATION dq" + 1{ <0, VgeBi\S, (18)

We have shown in the previous section that for every sub§gtsarisfied. Taking the robustness of the parameters against

3 .
S of B® there exists a set of templates such thais the o rhation into account, we derive the following linear
local pattern set of the CNN. However, the optimality of thﬁrogramming problems from (16) and (18).

templates was not copsidered at all. In this sectioln, We PropoSesroplem 2: Maximize §; subject to

a simple method to find the template values which maximize .

the robustness, and present the obtained values for all of 256 [a—1,1,a+1]¢(q)" + 1+ qouod*(q) > 01, Vg € S

subsets ?33_ » bsets B which b lized la_1,1,a:1] 8(q)" + 1+ qouod*(q) < —61, Vg € B>\ S
Let us first consider 59 subsets t which can be realize la_1| <UL, lasa| < Us, 1] < Uy, Juo| < Ui, 61> 0

as the local pattern set of a CNN withy = 0. In these cases,

we only have to determine the values @f= [a_1,a9,a,,] WhereU, is a positive constant.

andI. By normalizing the value of,—1 to 1, we can express Problem 3: Maximize d, subject to

it 3 .
the condltlorjs for a subsét of B° to be the local pattern set dqT +1> 6, Vge S,
of a CNN withug = 0 as follows: . )
0 Yees dq’ +1< -6y, Vge B3\ S,
> 0, € .
la_1,1,a41]) (q)" + 1{ <0, Vg €B3\ S (15) |d_1| < Us, |do| < Us, |di1| < Us, [I| <Us, 62 >0
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TABLE |
OPTIMAL VALUES OF THE TEMPLATES(PART 1 OF 4).

>/

S So

01234567 01234567 a_1 ao a1 uo 1 ao d_1 do dy 1
0 00000000 00110011 0 2 0 -3 0 1+4e 0 1 0 2
1 10000000 01001100 0 2 0 3 0 1+4e 0.5 -1 0.5 2
2 01000000 10001100 0 2 0 3 0 1+4+e -0.5 -1 0.5 2
3 11000000 00001100 0 2 0 3 0 1+4e 0 -1 1 2
4 00100000 00010011 0 2 0 -3 0 1+4e€ 0.5 1 0.5 2
5 10100000 00010011 1 2 1 -3 -1 1+e¢ 0.5 1 0.5 1
6 01100000 00010011 -1 2 1 -3 -1 1+c¢€ 0.5 1 0.5 1
7 11100000 00001100 -1 2 -1 3 1 1+4e€ 0 -1 1 1
8§ 00010000 00100011 0 2 0o -3 0 1+4+e¢ =05 1 0.5 2
9 10010000 00100011 1 2 1 -3 -1 14¢e¢ =05 1 0.5 1

01010000 00100011 -1 2 1 -3 -1 14e¢ =05 1 0.5 1

11010000 00001100 1 2 -1 3 1 1+e 0 -1 1 1

00110000 00000011 0 2 0 =3 0 1+4e€ 0 1 1 2

10110000 00000011 1 2 1 -3 -1 1+ce 0 1 1 1

01110000 00000011 -1 2 1 -3 -1 1+e¢€ 0 1 1 1

11110000 00001100 0 2 -1 2 1 1+e€ 0 -1 1 1

00001000 11000100 0 2 0 3 0 1+4e 0.5 -1 =05 2

10001000 01000100 0 2 0 3 0 1+e 1 -1 0 2

01001000 10001100 1 2 -1 3 -1 14€¢ -05 -1 0.5 1

11001000 00000100 0 2 0 3 0 1+e 0.5 -0.5 0.5 2

00101000 00010011 1 2 -1 -3 -1 1+4ce€ 0.5 1 0.5 1

10101000 01000100 -1 2 -1 3 1 1+4e€ 1 -1 0 1

01101000 00000100 —1.5 2 —15 3 15 1+4e 0.5 -0.5 0.5 .5

11101000 00000100 -1 2 -1 3 1 1+e€ 0.5 -0.5 0.5 1

00011000 00100011 2 2 -2 -3 0 1+4+e -0.5 1 0.5 2

10011000 01000100 2 2 -2 3 0 1+4e 1 -1 0 2

01011000 10001100 1 2 -1 2 0 14e¢ =05 -1 0.5 1

11011000 00000100 1 2 -1 2 0 1+e 0.5 —-0.5 0.5 1

00111000 00000011 2 2 -2 -3 0 1+4e 0 1 1 2

10111000 01000100 0 2 -1 2 1 1+e€ 1 -1 0 1

01111000 00000100 -1 2 -2 3 2 1+e 0.5 -0.5 0.5 1

11111000 00000100 0 2 -1 2 1 1+e€ 0.5 -0.5 0.5 1

00000100 11001000 0 2 0 3 0 14e¢ =05 -1 =05 2

10000100 01001100 -1 2 -1 3 -1 1+4e 0.5 -1 0.5 1

01000100 10001000 0 2 0 3 0 1+4e€ -1 -1 0 2

11000100 00001000 0 2 0 3 0 14e¢ -05 —05 0.5 2

00100100 00010011 -2 2 -2 -3 0 1+4e 0.5 1 0.5 2

10100100 01001100 -1 2 -1 2 0 1+4e€ 0.5 -1 0.5 1

01100100 10001000 -2 2 -2 3 0 1+e -1 -1 0 2

11100100 00001000 -1 2 -1 2 0 1+4+e¢ -05 -0.5 0.5 1

00010100 00100011 -1 2 -1 -3 -1 14€¢ =05 1 0.5 1

10010100 00001000 1.5 2 —1.5 3 15 1+e¢ -05 -05 0.5 .5

01010100 10001000 1 2 -1 3 1 1+e -1 -1 0 1

11010100 00001000 1 2 -1 3 1 14+4e¢ -05 -05 0.5 1

00110100 00000011 -2 2 -2 -3 0 1+e 0 1 1 2

10110100 00001000 1 2 -2 3 2 1+¢ -05 -0.5 0.5 1

01110100 10001000 0 2 -1 2 1 1+e€ -1 -1 0 1

11110100 00001000 0 2 -1 2 1 1+e¢ -05 -05 0.5 1

00001100 11000000 0 2 0 3 0 1+4e€ 0 -1 -1 2

10001100 01000000 0 2 0 3 0 1+e 05 -05 —0.5 2

01001100 10000000 0 2 0 3 0 14+e¢ -05 -05 -05 2

11001100 0 2 0 0 -3 2

00101100 11000000 -2 2 -2 3 0 1+e 0 -1 -1 2

10101100 01000000 -1 2 -1 2 0 1+4e 05 -05 -0.5 1

01101100 -3 2 -3 0 -3 2

11101100 -1 2 -1 0o -2 1

00011100 11000000 2 2 -2 3 0 1+4e 0 -1 -1 2

10011100 3 2 -3 0 -3 2

01011100 10000000 1 2 -1 2 0 14+e¢ -05 -05 -05 1

11011100 1 2 -1 0o -2 1

00111100 0 2 -3 0 0 2

10111100 1 2 -2 0 -1 1

01111100 -1 2 -2 0o -1 1

11111100 0 2 -1 0 -1 1




TABLE I
OPTIMAL VALUES OF THE TEMPLATES (PART 2 OF 4).

S Sa
01234567 01234567 a_1 ao a1 uo 1 ag d_1 do dy 01
00000010 00110001 0 2 0 -3 0 1+4e 0.5 1 -05 2
10000010 00110001 1 2 1 -3 -1 1+4e€ 0.5 1 -05 1
01000010 00110001 -2 2 2 -3 0 1+e 0.5 1 =05 2
11000010 00001100 -2 2 2 3 0 1+4e 0 -1 1 2
00100010 00010001 0 2 0 =3 0 1+4e 1 1 0 2
10100010 00010001 1 2 1 -3 -1 1+4e 1 1 0 1
01100010 00010001 -2 2 2 =3 0 1+4e 1 1 0 2
11100010 00001100 -1 2 0 2 1 1+4e€ 0 -1 1 1
00010010 00100011 -1 2 1 -3 1 14+e¢ -05 1 0.5 1
10010010 00000001 1.5 2 1.5 -3 —-15 1+e¢€ 0.5 0.5 0.5 0.5
01010010 00100011 -1 2 1 =2 0 1+4+¢e¢ =05 1 0.5 1
11010010 00000001 1 2 2 -3 -2 1+4e 0.5 0.5 0.5 1
00110010 00000001 0 2 0 -3 0 1+4e 0.5 0.5 0.5 2
10110010 00000001 1 2 1 -3 -1 1+4e 0.5 0.5 0.5 1
01110010 00000001 -1 2 1 -2 0 1+4e 0.5 0.5 0.5 1
11110010 00000001 0 2 1 -2 -1 1+4c¢€ 0.5 0.5 0.5 1
00001010 00110001 1 2 -1 -3 -1 1+4e 0.5 1 =05 1
10001010 01000100 -1 2 1 3 1 1+e 1 -1 0 1
01001010 11000100 -1 2 1 2 0 1+4e 0.5 -1 =05 1
11001010 00000100 -1 2 1 2 0 1+4e 05 -0.5 0.5 1
00101010 00010001 1 2 -1 -3 -1 1+4e 1 1 0 1
10101010 01000100 -1 2 0 2 1 1+4e€ 1 -1 0 1
01101010 00000100 -2 2 -1 3 2 1+4e 0.5 -0.5 0.5 1
11101010 00000100 -1 2 0 2 1 1+4e€ 0.5 -0.5 0.5 1
00011010 00110001 1 2 -1 -2 0 1+e 0.5 1 =05 1
10011010 00000001 2 2 1 -3 -2 1l+4e 0.5 0.5 0.5 1
01011010 01110001 1 2 -1 -2 0 1+4e 1 1 -1 1
11011010 00000001 1 2 1 -2 -2 1+4e 0.5 0.5 0.5 1
00111010 00000001 1 2 -1 =2 0 1+4e 0.5 0.5 0.5 1
10111010 00000001 1 2 0 -2 -1 1+4e€ 0.5 0.5 0.5 1
01111010 00000100 -1 2 -1 2 2 1+4e 05 -0.5 0.5 1
11111010 00000100 —0.5 2 -05 15 1 1+4e€ 0.5 -0.5 0.5 0.5
00000110 00110001 -1 2 -1 -3 -1 1+4c¢€ 0.5 1 -0.5 1
10000110 01000000 -—1.5 2 1.5 3 1.5 1+4e 05 -0.5 -05 0.5
01000110 10001000 -2 2 2 3 0 1+4e -1 -1 0 2
11000110 -3 2 3 0 -3 2
00100110 00010001 -2 2 -2 -3 0 1+4e 1 1 0 2
10100110 01000000 -2 2 1 3 2 1l+4e 0.5 -05 0.5 1
01100110 -3 2 0 0 0 2
11100110 —2 2 1 0 -1 1
00010110 00100000 —1.5 2 =15 -3 -15 14€¢ =05 0.5 -0.5 0.5
10010110 00000101 1.5 2 1.5 -3 —-15 1+4e 1 0 1 0.5
01010110 00100000 -2 2 -1 -3 -2 1+4+e¢ =05 0.5 -0.5 1
11010110 00010000 -2 2 2 3 1 1+4e€ 0.5 0.5 -0.5 1
00110110 -3 2 -3 0 3 2
10110110 10000000 -2 2 -2 -3 -1 14e¢ -05 -05 -0.5 1
01110110 -2 2 -1 0 1 1
11110110 00001000 —0.5 2 =05 3 25 14e¢ -05 -05 0.5 0.5
00001110 11000000 -1 2 1 3 1 1+4e€ 0 -1 -1 1
10001110 01000000 -1 2 1 3 1 1+e 05 =05 —0.5 1
01001110 10000000 -1 2 1 2 0 1+4+e¢ -05 -05 -05 1
11001110 -1 2 1 0 -2 1
00101110 00010001 0 2 -1 -2 -1 1+4e 1 1 0 1
10101110 01000000 -1 2 0 2 1 1+e€ 0.5 -0.5 0.5 1
01101110 -2 2 -1 0 -1 1
11101110 -1 2 0 0 -1 1
00011110 00100000 -1 2 -2 =3 -2 1+4+e¢ 05 0.5 -0.5 1
10011110 00000010 2 2 -2 3 1 14e¢ =05 0.5 0.5 1
01011110 00100000 -1 2 -1 -2 -2 14e¢ -05 0.5 —-0.5 1
11011110 00100000 —0.5 2 -05 -1 —-15 14€¢ =05 0.5 -0.5 0.5
00111110 -1 2 -2 0 1 1
10111110 01000000 0.5 2 =05 1 0.5 1+e€ 0.5 -05 0.5 0.5
01111110 -1 2 -1 0 0 1
11111110 —0.5 2 —0.5 0 —0.5 0.5




TABLE Il
OPTIMAL VALUES OF THE TEMPLATES (PART 3 OF 4).

ID S So

01234567 01234567 a-1 ago at1 uo I ao d_1 do dy I 01
128 00000001 00110010 0 2 0o -3 0 1+e¢ -05 1 -05 -05 2
129 10000001 00110010 2 2 2 -3 0 1+¢ 05 1 -05 -05 2
130 01000001 00110010 -1 2 1 -3 -1 1+4¢e¢ =05 1 -05 -05 1
131 11000001 00001100 2 2 2 3 0 1l+4e 0 -1 1 -1 2
132 00100001 00010011 1 2 1 -3 1 1+4e€ 0.5 1 0.5 -0.5 1
133 10100001 00010011 1 2 1 -2 0 1+e 0.5 1 0.5 —0.5 1
134 01100001 00000010 —1.5 2 1.5 -3 —-15 1+4+e¢ -05 0.5 0.5 -1 0.5
135 11100001 00000010 -1 2 2 -3 -2 1+4+e¢ =05 0.5 0.5 -1 1
136 00010001 00100010 0 2 0 -3 0 1+ce —1 1 0 —1 2
137 10010001 00100010 2 2 2 -3 0 1l+4e -1 1 0 -1 2
138 01010001 00100010 -1 2 1 -3 -1 1+4c¢e -1 1 0 -1 1
139 11010001 00001100 1 2 0 2 1 1+e 0 -1 1 -1 1
140 00110001 00000010 0 2 0o -3 0 1+4+e¢ -05 0.5 0.5 -1 2
141 10110001 00000010 1 2 1 =2 0 1+4+e¢ -05 0.5 0.5 -1 1
142 01110001 00000010 -1 2 1 -3 -1 1+4e¢ -05 0.5 0.5 -1 1
143 11110001 00000010 0 2 1 -2 -1 1+4e¢ =05 0.5 0.5 -1 1
144 00001001 00110010 1 2 —1 -3 -1 1+4e¢ —-0.5 1 —0.5 —0.5 1
145 10001001 01000100 2 2 2 3 0 1+4e 1 -1 0 -1 2
146 01001001 10000000 1.5 2 1.5 3 1.5 14e¢ -05 —-05 —0.5 -1 0.5
147 11001001 3 2 3 0 -3 2
148 00101001 00010000 1.5 2 —-15 -3 -—-15 1+4e 0.5 0.5 —-0.5 -1 0.5
149 10101001 00010000 2 2 -1 -3 -2 1l+4e 0.5 0.5 —0.5 -1 1
150 01101001 10100000 1.5 2 1.5 3 1.5 1+4¢e -1 0 -1 -1 05
151 11101001 00100000 2 2 2 3 1 14e¢ -05 0.5 —0.5 -1 1
152 00011001 00100010 2 2 -2 -3 0 1+4ce -1 1 0 -1 2
153 10011001 3 2 0 0 0 2
154 01011001 10000000 2 2 1 3 2 14¢ -05 -05 —-05 -1 1
155 11011001 2 2 1 0 -1 1
156 00111001 3 2 -3 0 3 2
157 10111001 2 2 -1 0 1 1
158 01111001 01000000 2 2 -2 -3 -1 1+4+€ 0.5 —-0.5 —0.5 —1 1
159 11111001 00000100 0.5 2 —-05 1 05 1+4e 0.5 —0.5 0.5 -1 0.5
160 00000101 00110010 -1 2 -1 -3 -1 1+4+e¢ =05 1 -05 -05 1
161 10000101 11001000 1 2 1 2 0 1+ce —0.5 —1 —0.5 —0.5 1
162 01000101 10001000 1 2 1 3 1 1+4e -1 -1 0 -1 1
163 11000101 00001000 1 2 1 2 0 14+e¢ -05 —-0.5 0.5 -1 1
164 00100101 00110010 -1 2 -1 -2 0 1+4+e¢ -05 1 -05 -05 1
165 10100101 00010111 1 2 1 —2 0 1+e€ 1 1 1 0 1
166 01100101 00000010 -2 2 1 -3 -2 1+4+€e¢ =05 0.5 0.5 -1 1
167 11100101 00000010 -1 2 1 -2 -2 1+4e¢ -05 0.5 0.5 -1 1
168 00010101 00100010 -1 2 -1 -3 -1 1+4c¢e -1 1 0 -1 1
169 10010101 00001000 2 2 —1 3 2 1+4e¢ —-0.5 —0.5 0.5 —1 1
170 01010101 10001000 1 2 0 2 1 1+e€ -1 -1 0 -1 1
171 11010101 00001000 1 2 0 2 1 14+4e¢ -05 -05 0.5 -1 1
172 00110101 00000010 —1 2 -1 —2 0 1+e —0.5 0.5 0.5 —1 1
173 10110101 00001000 1 2 -1 2 2 14e¢ -05 —-0.5 0.5 -1 1
174 01110101 00000010 -1 2 0o -2 -1 1+4+e¢ -05 0.5 0.5 -1 1
175 11110101 00001000 0.5 2 —-05 15 1 14e¢ -05 -05 0.5 -1 0.5
176 00001101 11000000 1 2 1 3 1 1+4e 0 -1 -1 -1 1
177 10001101 01000000 1 2 1 2 0 1+4ce 05 -0.5 —-0.5 -1 1
178 01001101 10000000 1 2 1 3 1 1+¢ —-05 -05 —-05 -1 1
179 11001101 1 2 1 0 —2 1
180 00101101 00010000 1 2 -2 -3 -2 1+4e€ 0.5 0.5 —0.5 -1 1
181 10101101 00010000 1 2 -1 -2 -2 1l+4e 0.5 0.5 —-0.5 -1 1
182 01101101 00000001 -2 2 -2 3 1 1+4e€ 0.5 0.5 0.5 -1 1
183 11101101 00010000 0.5 2 —-0.5 —1 —1.5 1+4€ 0.5 0.5 —0.5 -1 0.5
184 00011101 00100010 0 2 -1 -2 -1 1+4c¢e -1 1 0 -1 1
185 10011101 2 2 -1 0 —1 1
186 01011101 10000000 1 2 0 2 1 1+4+€ —0.5 —-0.5 —0.5 —1 1
187 11011101 1 2 0 0 —1 1
188 00111101 1 2 —2 0 1 1
189 10111101 1 2 —1 0 0 1
190 01111101 10000000 0.5 2 —05 1 05 14¢ —-05 -05 —0.5 -1 0.5
191 11111101 0.5 2 —-0.5 0 -0.5 0.5




TABLE IV

OPTIMAL VALUES OF THE TEMPLATES(PART 4 OF 4).

ID S Sa

01234567 01234567 a_1 0 at1 uo I ao d_1 do dy I 01 02
192 00000011 00110000 0 2 0o -3 0 1+4e 0 1 -1 -1 2 1
193 10000011 00110000 2 2 2 -3 0 1+4e 0 1 -1 -1 2 1
194 01000011 00110000 -2 2 2 -3 0 1+4e€ 0 1 -1 -1 2 1
195 11000011 0 2 3 0 0 2
196 00100011 00010000 0 2 0 -3 0 1+4e 0.5 05 —-05 -1 2 05
197 10100011 00010000 1 2 1 —2 0 1+4+€ 0.5 0.5 —-05 -1 1 0.5
198 01100011 -3 2 3 0 3 2
199 11100011 —1 2 2 0 1 1
200 00010011 00100000 0 2 0o -3 0 1+e¢ —-0.5 0.5 —-05 -1 2 05
201 10010011 3 2 3 0 3 2
202 01010011 00100000 -1 2 1 -2 0 14e¢ -05 05 -05 -1 1 05
203 11010011 1 2 2 0 1 1
204 00110011 0 2 0 0 3 2
205 10110011 1 2 1 0 2 1
206 01110011 —1 2 1 0 2 1
207 11110011 0 2 1 0 1 1
208 00001011 o0O0110000 1 2 —1 -3 -1 1+4+€ 0 1 —1 —1 1 1
209 10001011 01000100 0 2 1 2 1 1+4e€ 1 -1 0 -1 1 1
210 01001011 10000000 1 2 2 3 2 14+e¢ -05 —-05 -05 -1 1 05
211 11001011 1 2 2 0 —1 1
212 00101011 00010000 1 2 -1 =3 -1 1+4e 0.5 05 —-05 -1 1 05
213 10101011 00010000 1 2 0o -2 -1 1+4e 0.5 05 —-05 -1 1 05
214 01101011 00001000 —2 2 2 -3 —1 1+e¢ —0.5 —0.5 0.5 -1 1 05
215 11101011 00010000 0.5 2 05 -1 —-05 1+4e 0.5 05 —-05 -1 05 05
216 00011011 00100000 1 2 -1 =2 0 14e¢ -05 05 —-05 -1 1 05
217 10011011 2 2 1 0 1 1
218 01011011 10000000 1 2 1 2 2 14+e¢ -05 —-05 -05 -1 1 05
219 11011011 1 2 1 0 0 1
220 00111011 1 2 —1 0 2 1
221 10111011 1 2 0 0 1 1
222 01111011 10000000 0.5 2 0.5 1 1.5 1+e¢ —-0.5 —0.5 -05 -1 05 0.5
223 11111011 0.5 2 0.5 0 0.5 0.5
224 00000111 00110000 —1 2 -1 -3 -1 1+e 0 1 -1 -1 1 1
225 10000111 01000000 —1 2 2 3 2 1+4+€ 0.5 —0.5 —-05 -1 1 0.5
226 01000111 10001000 0 2 1 2 1 1+e —1 —1 0o -1 1 1
227 11000111 -1 2 2 0 -1 1
228 00100111 00010000 -1 2 -1 =2 0 1+4e 0.5 05 —-05 -1 1 05
229 10100111 01000000 -1 2 1 2 2 1l+4e 05 -05 —-05 -1 1 05
230 01100111 -2 2 1 0 1 1
231 11100111 —1 2 1 0 0 1
232 00010111 00100000 -1 2 -1 -3 -1 1+e¢ -05 05 —-05 -1 1 05
233 10010111 00000100 2 2 2 -3 -1 14 € 0.5 —0.5 05 -1 1 0.5
234 01010111 00100000 -1 2 0o -2 -1 1+4+e¢ -05 05 -05 -1 1 05
235 11010111 00100000 —0.5 2 05 -1 —-05 14e¢ -05 05 —-05 -1 05 05
236 00110111 —1 2 —1 0 2 1
237 10110111 01000000 —0.5 2 0.5 1 1.5 1+4e 05 -05 —-05 -1 05 05
238 01110111 —1 2 0 0 1 1
239 11110111 —0.5 2 0.5 0 0.5 0.5
240 00001111 11000000 0 2 1 2 1 1+e 0 —1 -1 —1 1 1
241 10001111 01000000 0 2 1 2 1 1+e€ 05 -05 —-05 -1 1 05
242 01001111 10000000 0 2 1 2 1 14¢ -05 -05 -05 -1 1 05
243 11001111 0 2 1 0 —1 1
244 00101111 00010000 0 2 -1 =2 -1 1+4c¢€ 0.5 05 —-05 -1 1 05
245 10101111 01000000 —0.5 2 0.5 1.5 1 1+4e€ 05 -05 —-05 -1 05 05
246 01101111 10000000 —0.5 2 0.5 3 25 14e¢ —-05 -05 —-05 -1 05 0.5
247 11101111 —0.5 2 0.5 0 —-0.5 0.5
248 00011111 00100000 0 2 -1 =2 -1 1+e¢ -05 05 —-05 -1 1 05
249 10011111 01000000 0.5 2 0.5 1 0.5 1+e€ 05 —-05 —-05 -1 05 0.5
250 01011111 10000000 0.5 2 05 1.5 1 1+e¢ —-0.5 —0.5 -05 -1 05 0.5
251 11011111 0.5 2 0.5 0 —-0.5 0.5
252 00111111 0 2 -1 0 1 1
253 10111111 0.5 2 —0.5 0 0.5 0.5
254 01111111 —0.5 2 —0.5 0 0.5 0.5
255 11111111 0 2 0 0 0 1
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