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Stable Patterns Realized by a Class of
One-Dimensional Two-Layer CNNs

Norikazu Takahashi,Member, IEEE,Makoto Nagayoshi, Susumu Kawabata and Tetsuo Nishi,Fellow, IEEE

Abstract— Stable patterns that can be realized by a class of
one-dimensional two-layer cellular neural networks (CNNs) are
studied in this paper. We first introduce the notions of potentially
stable pattern, potentially stable local pattern, and local pattern
set. We then show that all of 256 possible sets can be realized
as the local pattern set of the two-layer CNN, while only 59 sets
can be realized as the local pattern set of the single-layer CNN.
We also propose a simple way to optimize the template values
of the CNN, which is formulated as a set of linear programming
problems, and present the obtained values for all of 256 sets.

Index Terms— Cellular neural networks, stable patterns, two
layers, hidden layer, template optimization

I. I NTRODUCTION

Cellular neural networks (CNNs) [1] are analog nonlinear
circuits consisting of locally coupled cells. Global dynamical
behavior of a CNN is completely determined by the network
parameters represented by the feedback template, feedforward
template and the bias. By choosing the values of these
parameters appropriately, a CNN can perform various kinds
of image processing tasks [2], [3]. However, as far as the
standard CNN model [1] is concerned, there is a limitation on
the signal processing capability due to their simple structure.
To overcome this difficulty, various extensions of the model
have been proposed so far, e.g., multilayer CNNs [1], [4]–[7],
nonlinear templates [8], CNN universal machines [9], universal
CNN cells [10], RTD-CNNs [11] and so on.

Among these models, the multilayer CNN not only is the
most natural extension of, but also has a potential to perform
more complex signal processing tasks than the original model.
Several applications of multilayer CNNs in image processing
have been proposed so far. Chua and Shi [4] proposed various
multilayer CNNs for corner extraction from a noisy image,
hole extraction, hole figure extraction, Radon transform, and
so on. Wuet al. [5] showed that the Radon transform can be
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done by a two-layer CNN which is simpler than the three-
layer CNN proposed in [4]. Yanget al. [7] have found many
image processing tasks that can be carried out only by two-
layer CNNs. In most of these applications, an input image
is fed into a multilayer CNN as the initial state of or the
input to a certain layer. Then the state of each cell evolves
with time according to its state equation. After the state of the
whole network converges to some steady state, the output of
a specific layer is taken as the output image produced by the
CNN. In this process, each layer plays different roles because
coupling coefficients between cells are space-invariant in each
layer but differ from layer to layer in general. This is the main
advantage of multilayer CNNs.

How good is the signal processing capability of multilayer
CNNs compared to single layer CNNs? This is an important
question from both theoretical and practical points of view.
As for single layer CNNs, there are some attempts to evaluate
their signal processing capability. For example, Osuna and
Moschytz [12] studied the separating capability of the standard
CNN and gave upper and lower bounds for the number
of different tasks that can be done by the standard CNN.
Dogaru and Chua [10] proposed the universal CNN cell and
investigated the number of Boolean functions that can be
realized by the uncoupled CNN consisting of the universal
cells. Chenet al. [13]–[15] have recently studied in detail the
realization of Boolean functions by uncoupled standard CNNs.
On the other hand, however, no attempt has been made so far
for multilayer CNNs, to the best of the authors’ knowledge.
This is because the analysis of multilayer CNNs is much more
difficult than single-layer CNNs due to the increase of the
number of parameters.

The objective of this research is to characterize the sig-
nal processing capability of multilayer CNNs. As the first
step toward the goal, we consider in this paper simple one-
dimensional two-layer CNNs such that 1) there is no input to
each layer (or all components of the feedforward templates
are set to zero) , 2) the first layer is the output layer and
the second layer works as the hidden layer, 3) each cell in
the first layer receives output signals from three neighbors
including itself in the first layer and from the nearest neighbor
in the second layer, 4) each cell in the second layer receives
output signals from itself and three neighbors in the first
layer, and 5) self-coupling coefficients are greater than one.
For this class of CNNs, we first introduce the notions of
potentially stable pattern, potentially stable local pattern, and
local pattern set. We then investigate how many local pattern
sets can be realized by this class of CNNs. Since the set
of all possible output patterns appearing in the first layer is
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Fig. 1. Structure of one-dimensional two-layer CNNs described by (1).

completely determined by the local pattern set, the number
of local pattern sets is a reasonable criterion to evaluate the
signal processing capability of this class of CNNs. As a result,
we show that all of 256 possible sets can be realized as the
local pattern set while only 59 sets can be realized in the
case of single-layer CNNs. This means that two-layer CNNs
have a much higher potential for signal processing than single-
layer CNNs. We finally propose a simple way to optimize the
template values of the two-layer CNN, which is formulated as
a set of linear programming problems, and present the obtained
values for all of 256 sets.

II. PROBLEM FORMULATION

A. CNN Model

Let us consider one-dimensional two-layer CNNs described
by the system of differential equations:

dxi(t)

dt
= −xi(t) +

1∑
j=−1

ajyi+j(t) + u0ŷi(t) + I

dx̂i(t)

dt
= −x̂i(t) + â0ŷi(t) +

1∑
j=−1

djyi+j(t) + Î ,

i = 1, 2, . . . , N (1)

whereN is the number of cells in each layer.xi(t) andyi(t)
represent the state and output of thei-th cell in the first layer,
respectively. The outputyi(t) depends on the statexi(t) via
the piecewise-linear functionf(·) as follows:

yi(t) = f(xi(t)) ,
1

2
(|xi(t) + 1| − |xi(t)− 1|).

Similarly, x̂i(t) and ŷi(t) represent the state and output of the
i-th cell in the second layer, respectively, where the output
ŷi(t) depends on the statêxi(t) as

ŷi(t) = f(x̂i(t)) ,
1

2
(|x̂i(t) + 1| − |x̂i(t)− 1|).

In the following, the state of the first layer, the output
of the first layer, the state of the second layer, and the
output of the second layer are denoted byx(t) = [x1(t),
x2(t), . . . , xN (t)], y(t) = [y1(t), y2(t), . . . , yN (t)], x̂(t) =
[x̂1(t), x̂2(t), . . . , x̂N (t)] and ŷ(t) = [ŷ1(t), ŷ2(t), . . . , ŷN (t)],

respectively1. Also, the state of the whole network is denoted
by s(t) = [x(t), x̂(t)] ∈ R2N . Note that dynamical behavior
of a CNN described by (1) is completely determined by the
following parameters:

a = [a−1, a0, a+1], u0, I, â0, d = [d−1, d0, d+1], Î

and the initial states(0) = [x(0), x̂(0)].
The structure of a CNN described by (1) is shown in Fig.1.

The i-th cell in the first layer receives output signals from
three neighboring cells including itself in the first layer and
the i-th cell in the second layer, but neither from the(i−1)-th
cell nor the(i + 1)-th cell in the second layer. Thei-th cell
in the second layer receives output signals only from three
neighboring cells in the first layer and itself, but not from its
adjacent cells in the second layer.

Throughout this paper, we impose for simplicity the follow-
ing two assumptions on (1).

Assumption 1:Boundary cells satisfy either the periodic
boundary condition:x0(t) = xN (t) and xN+1(t) = x1(t)
or the fixed boundary condition:x0(t) = xN+1(t) = b ∈
{1,−1}.

Assumption 2:Self-feedback coefficientsa0 and â0 are
greater than one.

Note that we do not have to consider the boundary condition
for the second layer. This is because each cell in the second
layer does not receive output signals from the second layer
except itself and thus boundary cells are not required.

It is well known that under Assumption 2 an equilibrium
point s∗ = [x∗, x̂∗] is unstable unless|x∗

i | > 1 and |x̂∗
i | > 1

hold for i = 1, 2, . . . , N [16]. Conversely, it is easily seen that
any equilibrium points∗ = [x∗, x̂∗] such that|x∗

i | > 1 and
|x̂∗

i | > 1 for i = 1, 2, . . . , N is stable. This implies that the
output of each layer corresponding to any stable equilibrium
point is necessarily a binary vector.

B. Potentially Stable Patterns and Potentially Stable Local
Patterns

In this paper, the second layer of a CNN is supposed to work
as the hidden layer. To be more specific, an input image (or
pattern)α ∈ [−1, 1]N is first fed into the CNN as the initial

1Throughout this paper all vectors are assumed to be row vectors.
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Fig. 2. Relationship between potentially stable local patterns and potentially stable patterns. (a) Potentially stable local patterns of a CNN with the parameters
a = [−0.2, 1.3,−0.2], u0 = −1.0, I = 0.5, â0 = 3.0, d = [−3, 1.1,−3] and Î = 6.0. (b) Potentially stable patterns of a 4-cell CNN with the boundary
conditionx0(t) = x4(t) andx5(t) = x1(t) for all t.

state of the first layer, that is,x(0) = α, while the initial state
of the second layer is set to a certain value independent ofα,
e.g. x̂(0) = 0; The state of each cell then evolves according
to the state equation (1); If the states(t) = [x(t), x̂(t)] finally
converges to an equilibrium point then the output of the first
layer corresponding to the equilibrium point is regarded as the
output image (or pattern) produced by the CNN.

Let us now give two definitions.
Definition 1 (Potentially Stable Pattern):An N -

dimensional binary vectorp = [p1, p2, . . . , pN ] ∈ {1,−1}N
is said to be a potentially stable pattern of a CNN if there
exists a stable equilibrium points∗ = [x∗, x̂∗] ∈ R2N such
that f(x∗

i ) = pi for i = 1, 2, . . . , N .
Definition 2 (Potentially Stable Local Pattern):A three-

dimensional binary vectorq = [q−1, q0, q+1] ∈ {1,−1}3 is
said to be a potentially stable local pattern of a CNN if the
system of differential equations:

dx(t)

dt
= −x(t) + a−1q−1 + a0f(x(t)) + a+1q+1

+u0f(x̂(t)) + I

dx̂(t)

dt
= −x̂(t) + â0f(x̂(t)) +

1∑
j=−1

djqj + Î

has a stable equilibrium point[x(t), x̂(t)] = [x∗, x̂∗] ∈ R2

such thatf(x∗) = q0. The set of all potentially stable local
patterns is called the local pattern set.

We hereafter express three-dimensional binary vectors as

q0 = [−1,−1,−1], q1 = [+1,−1,−1],
q2 = [−1,+1,−1], q3 = [+1,+1,−1],
q4 = [−1,−1,+1], q5 = [+1,−1,+1],
q6 = [−1,+1,+1], q7 = [+1,+1,+1]

for the sake of simplicity.
It is obvious from Definitions 1 and 2 that under Assump-

tion 1 a binary vectorp = [p1, p2, . . . , pN ] ∈ {1,−1}N
is a potentially stable pattern of a CNN if and only if
[pi−1, pi, pi+1] is a potentially stable local pattern of the
CNN for i = 1, 2, . . . , N , where we assumep0 = pN
and pN+1 = p1 for the periodic boundary condition and
p0 = pN+1 = b ∈ {1,−1} for the fixed boundary condition.
In this sense the set of potentially stable patterns is completely
characterized by the local pattern set. For example, let us
consider a CNN with the parametersa = [−0.2, 1.3,−0.2],
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Fig. 3. Arrangements of{qi}7i=0 and {ϕ(qi)}7i=0 in the spaceR3 =
{[r1, r2, r3] | ri ∈ R, i = 1, 2, 3}.

u0 = −1.0, I = 0.5, â0 = 3.0, d = [−3, 1.1,−3] and
Î = 6.0. The local pattern set for this CNN is given by
{q0, q1, q2, q4}. If we assumeN = 4 and the periodic
boundary condition, potentially stable patterns for this CNN
are [−1,−1,−1,−1], [+1,−1,−1,−1], [−1,+1,−1,−1],
[−1,−1,+1,−1] and [−1,−1,−1,+1] (see Fig.2).

The local pattern set of a CNN apparently takes one of
256 subsets of{1,−1}3. The main purpose of this paper is to
determine how many local pattern sets can be realized by the
CNN described by (1).

In the following, the set{1,−1} is denoted byB. For any
q = [q−1, q0, q+1] ∈ B3 we define the mappingϕ(q) as
follows:

ϕ(q) = [ϕ1(q), ϕ2(q), ϕ3(q)] = [q0q−1, q0, q0q1]. (2)

We also applyϕ to any subsetS ⊆ B3 asϕ(S) = {ϕ(q) | q ∈
S}. The arrangements of{qi}7i=0 and {ϕ(qi)}7i=0 in the
spaceR3 = {[r1, r2, r3] | ri ∈ R, i = 1, 2, 3} are shown in
Fig.3. The Hamming distance betweenqi1 andqi2 , which is
defined by

∑1
j=−1 |q

i1
j − qi2j |/2, is denoted bydH(qi1 , qi2).

For example,dH(q0, q2) = 1. The difference between two
setsA andB, which is defined as{x |x ∈ A andx ̸∈ B}, is
denoted byA \ B. Two setsA ⊂ Rn andB ⊂ Rn are said
to be linearly separable if and only if there existw ∈ Rn and
b ∈ R such that

wxT + b

{
> 0, ∀x ∈ A
< 0, ∀x ∈ B .
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III. A NALYSIS OF LOCAL PATTERN SETS

A. Single-Layer CNNs

Let us first consider the case whereu0 = 0. In this case,
the statex(t) of the first layer is independent of the output
ŷ(t) of the second layer, and thus the problem stated in the
previous section corresponds to characterization of the family
of local pattern sets that can be realized by single-layer CNNs.

Lemma 1:For a given setS ⊆ B3 there exists a CNN
described by (1) withu0 = 0 such thatS is the local pattern set
of the CNN if and only ifS1 = ϕ(S)∪{0} andS2 = B3\ϕ(S)
are linearly separable.

Proof: We will prove only necessity because sufficiency
can be proved by reversing the following argument. Suppose
S is the local pattern set of a CNN withu0 = 0. Then for any
vectorq = [q−1, q0, q+1] ∈ S there exists anx such that

−x+

1∑
j=−1

ajqj + I = 0 and x

{
> +1, if q0 = +1
< −1, if q0 = −1

which is equivalent to the inequality

q0(a−1q−1 + a0q0 + a+1q+1 + I) > 1 .

From this inequality we have

[a−1, I, a+1][q0q−1, q0, q0q+1]
T + a0 − 1 > 0,

∀q = [q−1, q0, q+1] ∈ S . (3)

On the other hand, since the inequality

q0(a−1q−1 + a0q0 + a+1q+1 + I) ≤ 1

holds for any vectorq ∈ B3 \ S, we have

[a−1, I, a+1][q0q−1, q0, q0q+1]
T + a0 − 1 ≤ 0,

∀q = [q−1, q0, q+1] ∈ B3 \ S . (4)

It follows from Eqs.(3) and (4) thatϕ(S) andB3 \ ϕ(S) are
linearly separable2. Moreover, sincea0 > 1, we have

[a−1, I, a+1][0, 0, 0]
T + a0 − 1 > 0.

Therefore we can conclude thatS1 = ϕ(S) ∪ {0} andS2 =
B3 \ ϕ(S) are linearly separable.

By using this lemma, we can derive the following theorem.
Theorem 1:The number of subsets ofB3 that can be

realized as the local pattern set of a CNN in the form of (1)
with u0 = 0 is 59.

Proof: In order forS ⊆ B3 to be the local pattern set of a
CNN, at least one of two vectorsqi andqj such thatϕ(qi) =
−ϕ(qj) must belong toS because otherwiseϕ(S) ∪ {0} and
B3 \ S are not linearly separable. Thus|S|, the number of
elements ofS, must be at least 4. In the following, we will
study the condition forS to be the local pattern set for each
value of |S|.

1) Suppose|S| = 8 (i.e., S = B3). In this case, we can
realizeS as the local pattern set by settinga0 to any
value greater than one anda−1 = a1 = I = 0.

2The equal sign in (4) can be removed without affecting (3) by decreasing
a0 slightly.
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Fig. 4. Various cases considered in the proof of Theorem 1. A black (white,
resp.) circle indicates that the three-dimensional binary vector corresponds to
the vertex belongs toS (B3 \ S, resp.).

2) Suppose|S| = 7. It is obvious thatϕ(S) ∪ {0} and
B3 \ϕ(S) are linearly separable. ThusS can be realized
as the local pattern set. The number of differentS such
that |S| = 7 is apparently 8.

3) Suppose|S| = 6 andB3\S = {qi1 , qi2}. There are three
cases according to the value ofdH(ϕ(q

i1), ϕ(qi2)).

a) dH(ϕ(q
i1), ϕ(qi2)) = 1. It is obvious thatϕ(S) ∪

{0} and B3 \ ϕ(S) are linearly separable. Thus
S can be realized as the local pattern set. The
number of different sets{qi1 , qi2} such that
dH(ϕ(q

i1), ϕ(qi2)) = 1 is 12, which is equal to
the number of edges of the cube.

b) dH(ϕ(q
i1), ϕ(qi2)) = 2. There are two patternsqi3

and qi4 such that{qi3 , qi4} ⊂ S and ϕj(q
i1) =

ϕj(q
i2) = ϕj(q

i3) = ϕj(q
i4) = for some j ∈

{−1, 0, 1} as shown in Fig.4(a). Since two sets
ϕ({qi1 , qi2}) and ϕ({qi3 , qi4}) ⊂ ϕ(S) are not
linearly separable,S cannot be realized as the local
pattern set.

c) dH(ϕ(q
i1), ϕ(qi2)) = 3. Sinceϕ(qi1) = −ϕ(qi2)

holds in this case, two setsϕ({qi1 , qi2}) and{0}
are not linearly separable. ThereforeS cannot be
realized as the local pattern set.

4) Suppose|S| = 5 and B3 \ S = {qi1 , qi2 , qi3}.
We assume without loss of generality thatdH(ϕ(q

i1),
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ϕ(qi2)) ≤ dH(ϕ(q
i2), ϕ(qi3)) ≤ dH(ϕ(q

i3), ϕ(qi1)). If
dH(ϕ(q

i3), ϕ(qi1)) = 3 holds,S cannot be realized as
the local pattern set for the same reason as Case 3-
c. Also, if dH(ϕ(qi1), ϕ(qi2)) = dH(ϕ(q

i2), ϕ(qi3)) =
dH(ϕ(q

i3), ϕ(qi1)) = 2 holds, ϕ({qi1 , qi2 , qi3}) and
{0} are not linearly separable because0 is the cen-
ter of the triangle whose vertices areϕ(qi1), ϕ(qi2)
and ϕ(qi3). HenceS cannot be realized as the local
pattern set in this case. So we can concentrate our
attention on the case wheredH(ϕ(qi1), ϕ(qi2)) = 1
anddH(ϕ(qi3), ϕ(qi1)) = 2. Furthermore, we easily see
that dH(ϕ(qi2), ϕ(qi3)) must be1 in this case. Since
ϕ(qi1), ϕ(qi2) andϕ(qi3) are on the same face of the
cube as shown in Fig.4(b), it is obvious thatϕ(S)∪{0}
and B3 \ ϕ(S) are linearly separable. ThusS can be
realized as the local pattern set. The number of differ-
ent sets{qi1 , qi2 , qi3} satisfyingdH(ϕ(qi1), ϕ(qi2)) =
dH(ϕ(q

i2), ϕ(qi3)) = 1 and dH(ϕ(q
i3), ϕ(qi1)) = 2 is

24, which is equal to the number of faces of the cube
times the number of vertices on a face.

5) Suppose|S| = 4 and B3 \ S = {qi1 , qi2 , qi3 , qi4}.
We assume without loss of generality thatdH(ϕ(q

i1),
ϕ(qi2)) ≤ dH(ϕ(q

i1), ϕ(qi3)) ≤ dH(ϕ(q
i1), ϕ(qi4)). If

dH(ϕ(q
i1), ϕ(qi4)) = 3 holds,S cannot be realized as

the local pattern set for the same reason as Case 3-c.
Also, if dH(ϕ(qi1), ϕ(qij )) = 2 holds for j = 2, 3 and
4, S cannot be realized as the local pattern set because
the arrangement ofϕ({qi1 , qi2 , qi3 , qi4}) is as shown in
Fig.4(c). From these observations, we can concentrate
our attention on the following three cases.

a) dH(ϕ(q
i1), ϕ(qij )) = 1 for j = 2, 3 and 4. In

this case,ϕ(S) ∪ {0} andB3 \ ϕ(S) are linearly
separable as shown in Fig.4(d), and thusS can be
realized as the local pattern set. The number of
different sets{qi1 , qi2 , qi3 , qi4} corresponding to
this case is8, which is equal to the number of
vertices of the cube.

b) dH(ϕ(q
i1), ϕ(qi2)) = dH(ϕ(q

i1), ϕ(qi3)) = 1
and dH(ϕ(q

i1), ϕ(qi4)) = 2. We assume with-
out loss of generality that the arrangement of
ϕ({qi1 , qi2 , qi3}) is as shown in Fig.4(e). Ifϕ(qi4)
is at v2 or v3, S cannot be realized as the local
pattern set becausedH(ϕ(qi2), ϕ(qi4)) = 3 or
dH(ϕ(q

i3), ϕ(qi4)) = 3 holds, respectively. On the
other hand, ifϕ(qi4) is at v1 thenϕ(qi1), ϕ(qi2),
ϕ(qi3) andϕ(qi4) are on the same face of the cube
and thusS can be realized as the local pattern set.
The number of different sets{qi1 , qi2 , qi3 , qi4}
corresponding to this case is6, which is equal to
the number of faces of the cube.

c) dH(ϕ(q
i1), ϕ(qi2)) = 1 anddH(ϕ(qi1), ϕ(qi3)) =

dH(ϕ(q
i1), ϕ(qi4)) = 2. We assume without loss

of generality that the arrangement ofϕ({qi1 , qi2})
is as shown in Fig.4(f). If eitherϕ(qi3) or ϕ(qi4)
is at v3, S cannot be realized as the local
pattern set becausedH(ϕ(qi2), ϕ(qi3)) = 3 or
dH(ϕ(q

i2), ϕ(qi4)) = 3 holds, respectively. Con-

versely, if neitherϕ(qi3) nor ϕ(qi4) is at v3,
dH(ϕ(q

i2), ϕ(qij )) = 1 holds for j = 1, 3 and
4. This case has already been considered in Case
5-a.

Total number ofS that can be realized as the local pattern set
is 1 + 8 + 12 + 24 + (8 + 6) = 59. This completes the proof.

B. Two-Layer CNNs

Let us next consider the general case whereu0 ̸= 0. The
following theorem is the main result of this paper.

Theorem 2:All of 256 subsets ofB3 can be realized as the
local pattern set of a CNN described by (1).

Comparing Theorem 2 with Theorem 1, we can conclude
that two-layer CNNs have a much higher potential for signal
processing than single-layer CNNs.

The remainder of this subsection is devoted to the proof of
Theorem 2 which consists of seven lemmas. We only consider
S ⊆ B3 such that|S| ≤ 6 because if|S| ≥ 7 then S can
be realized as the local pattern set of a single layer CNN.
First we present Lemma 2 which gives us useful information
on how to determine the values of the parametersâ0, d =
[d−1, d0, d+1] andÎ. Next we present two lemmas (Lemmas 3
and 4) which play key roles in the proof of Theorem 2. In fact,
the realizability ofS as the local pattern set can be proved by
using Lemmas 3 and 4 in most cases, as shown in Lemma 5.
We finally present three lemmas (Lemmas 6–8) in order to
deal with the remaining special cases.

It follows from Definition 2 that a binary vectorq ∈ B3 is
a potentially stable local pattern of a CNN if and only if

[a−1, I, a+1]ϕ(q)
T + a0 + q0u0f(x̂

∗) > 1 (5)

holds, wherêx∗ is any stable equilibrium point of the follow-
ing differential equation:

dx̂(t)

dt
= −x̂(t) + â0f(x̂(t)) +

1∑
j=−1

djqj + Î (6)

Lemma 2: If â0 − 1 < |
∑1

j=−1 djqj + Î| then (6) has a
unique equilibrium point̂x∗ which is stable. Moreoverf(x̂∗)
is given by the following equation:

f(x̂∗) =

{
+1, if

∑1
j=−1 djqj + Î > 0

−1, if
∑1

j=−1 djqj + Î < 0

Proof: Let us denote
∑1

j=−1 djqj+Î by Î ′ for simplicity.
Eq.(6) has an equilibrium point̂x∗ > 1 if and only if −x̂ +
â0 + Î ′ = 0 has a solution in the interval(1,∞) which is
equivalent to

â0 − 1 > −Î ′ . (7)

Similarly, Eq.(6) has an equilibrium point̂x∗ < −1 if and only
if −x̂− â0 + Î ′ = 0 has a solution in the interval(−∞,−1)
which is equivalent to

â0 − 1 > Î ′ . (8)
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On the other hand, Eq.(6) has an equilibrium pointx̂∗ such
that |x̂∗| ≤ 1 if and only if −x̂+ â0x̂+ Î ′ = 0 has a solution
in the interval[−1, 1] which is equivalent to

â0 − 1 ≥ |Î ′| . (9)

Note that0 < â0 − 1 < |Î ′| implies Î ′ ̸= 0. If Î ′ > 0 then
(7) holds while (8) and (9) do not hold. Therefore (6) has a
unique equilibrium point̂x∗ = â0 + Î ′ > 1 which is stable. If
Î ′ < 0 then (8) holds while (7) and (9) do not hold. Therefore
(6) has a unique equilibrium point̂x∗ = −â0+ Î ′ < −1 which
is stable.

Lemma 3:Let S1 be a subset ofB3 such thatϕ(S1)∪ {0}
andB3 \ ϕ(S1) are linearly separable. LetS2 be a subset of
S1 such that i) eitherS2 ⊆ {q ∈ B3 | q0 = +1} or S2 ⊆
{q ∈ B3 | q0 = −1} holds, and ii)S2 andB3 \S2 are linearly
separable. ThenS1 \ S2 can be realized as the local pattern
set of a CNN described by (1).

Proof: Sinceϕ(S1) ∪ {0} andB3 \ ϕ(S1) are linearly
separable, there exist parametersw0 (> 1), w1, w2, andw3

such that

[w1, w2, w3]ϕ(q)
T + w0

{
> 1, if q ∈ S1

< 1, if q /∈ S1
(10)

holds. SinceS2 andB3 \ S2 are linearly separable, it follows
from Lemma 2 that there exists a set of parametersd =
[d−1, d0, d+1], â0 andÎ such that (6) has a unique equilibrium
point x̂∗ for eachq ∈ B3 andf(x̂∗) is given by

f(x̂∗) =

{
1, if q ∈ S2

−1, if q /∈ S2
(11)

Let a−1 = w1, a0 = w0, a+1 = w3, u0 = L and I =
w2 + L whereL is a sufficiently small negative number if
S2 ⊆ {q ∈ B3 | q0 = 1} and a sufficiently large positive
number ifS2 ⊆ {q ∈ B3 | q0 = −1}. Then we have

[a−1, I, a+1]ϕ(q)
T + a0 + q0u0f(x̂

∗)

= [w1, w2 + L,w3]ϕ(q)
T + w0 + q0Lf(x̂

∗)

= [w1, w2, w3]ϕ(q)
T + w0 + q0L(f(x̂

∗) + 1). (12)

It follows from (11) and the definition ofL that

q0L(f(x̂
∗) + 1) =

{
−2|L|, if q ∈ S2

0, if q /∈ S2
(13)

Since |L| is sufficiently large, we have from (10), (12) and
(13)

[a−1, I, a+1]ϕ(q)
T + a0 + q0u0f(x̂

∗){
> 1, if q ∈ S1 \ S2

< 1, if q /∈ S1 \ S2

which meansS1 \ S2 is the local pattern set of the CNN.
In a similar way, we can derive the following lemma.
Lemma 4:Let S1 be a subset ofB3 such thatϕ(S1)∪ {0}

andB3 \ ϕ(S1) are linearly separable. LetS2 be a subset of
B3 \ S1 such that i) eitherS2 ⊆ {q ∈ B3 | q0 = +1} or
S2 ⊆ {q ∈ B3 | q0 = −1} holds, and ii)S2 andB3 \ S2 are
linearly separable. ThenS1 ∪ S2 can be realized as the local
pattern set of a CNN described by (1).
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q
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Fig. 5. How to realize{q0, q1} as the local pattern set by using Lemma 3.
(a) Linear separation ofϕ(S1) ∪ {0} andB3 \ ϕ(S1). (b) Linear separation
of S2 andB3 \ S2.

φ(q7)
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r3
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φ(q6)
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q
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q
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q
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0

Fig. 6. How to realize{q0, q1, q2, q4, q7} as the local pattern set by using
Lemma 4. (a) Linear separation ofϕ(S1)∪ {0} andB3 \ ϕ(S1). (b) Linear
separation ofS2 andB3 \ S2.

Fig. 5 shows howS = {q0, q1} is realized as the local
pattern set of a CNN by using Lemma 3. LetS1 = {q0, q1,
q6, q7} andS2 = {q6, q7}. ThenS2 is a subset of bothS1

and{q ∈ B3 | q0 = +1}. As shown in Fig. 5(a),ϕ(S1) ∪ {0}
andB3 \ϕ(S1) are linearly separable with the plane indicated
by gray. Also, as shown in Fig. 5(b),S2 and B3 \ S2 are
linearly separable with the plane indicated by gray. Therefore,
according to Lemma 3,S1 \ S2 = S can be realized as the
local pattern set.

Fig. 6 shows howS = {q0, q1, q2, q4, q7} is realized
as the local pattern set of a CNN by using Lemma 4. Let
S1 = {q0, q1, q4, q7} and S2 = {q2}. ThenS2 is a subset
of {q ∈ B3 | q0 = +1}. As shown in Fig. 6(a),ϕ(S1) ∪ {0}
andB3 \ϕ(S1) are linearly separable with the plane indicated
by gray. Also, as shown in Fig. 6(b),S2 and B3 \ S2 are
linearly separable with the plane indicated by gray. Therefore,
according to Lemma 4,S1 ∪ S2 = S can be realized as the
local pattern set.

The following lemma follows from Lemmas 1, 3 and 4.
Lemma 5: If S ⊂ B3 satisfies one of the following con-

ditions, S can be realized as the local pattern set of a CNN
described by (1).

1) S = ∅.
2) |S| = 1.
3) S = {qi1 , qi2} where one of the following conditions

holds.
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a) qi10 ̸= qi20
b) qi10 = qi20 , dH(qi1 , qi2) = 1

4) S = {qi1 , qi2 , qi3} where one of the following condi-
tions holds.

a) qi10 = qi20 = qi30
b) qi10 = qi20 ̸= qi30 , dH(qi1 , qi2) = 1
c) dH(q

i1 , qi2) = dH(q
i2 , qi3) = dH(q

i3 , qi1) = 2

5) S = {qi1 , qi2 , qi3 , qi4} ⊂ B3 where one of the follow-
ing conditions holds.

a) qi10 = qi20 = qi30 = qi40
b) qi10 = qi20 = qi30 ̸= qi40
c) qi10 = qi20 ̸= qi30 = qi40 , dH(q

i1 , qi2) = dH(q
i3 ,

qi4) = 1
d) qi10 = qi20 ̸= qi30 = qi40 , dH(qi1 , qi2) = 1, dH(qi3 ,

qi4) = 2

6) |S| = 5.
7) |S| = 6.

Proof: For each case the claim can be proved as follows.

1) LetS1 = S2 = {q2, q3, q6, q7}. SinceS1 andS2 satisfy
the conditions in Lemma 3,S1 \S2 = ∅ can be realized
as the local pattern set.

2) Let S = {qi}. If we setS1 = {q ∈ B3 | q0 = qi0} and
S2 = S1 \ S then S1 and S2 satisfy the conditions in
Lemma 3. ThereforeS1 \S2 = S can be realized as the
local pattern set.

3) We setS1 and S2 as follows. It is easily seen for all
cases thatS1 andS2 satisfy the conditions in Lemma 3
and thatS1 \ S2 = S. HenceS can be realized as the
local pattern set.

a) S1 = {q ∈ B3 | q0 = qi10 } ∪ {qi2}, S2 = S1 \ S
b) S1 = {q ∈ B3 | q0 = qi10 }, S2 = S1 \ S

4) We setS1 and S2 as follows. It is easily seen for all
cases thatS1 andS2 satisfy the conditions in Lemma 3
and thatS1 \ S2 = S. HenceS can be realized as the
local pattern set.

a) S1 = {q ∈ B3 | q0 = qi10 }, S2 = S1 \ S
b) S1 = {q ∈ B3 | q0 = qi10 } ∪ {qi3}, S2 = S1 \ S
c) S1 = S ∪ {q∗}, S2 = {q∗} whereq∗ ∈ B3 such

that dH(ϕ(q∗), ϕ(qi1)) = dH(ϕ(q
∗), ϕ(qi2)) =

dH(ϕ(q
∗), ϕ(qi3)) = 1

5) a) Sinceϕ(S1) = {q ∈ B3 | q0 = qi10 } holds,ϕ(S1)∪
{0} andB3 \ ϕ(S1) are linearly separable. Hence
it follows from Lemma 1 thatS can be realized by
a CNN with u0 = 0.

b) Let S1 = {q ∈ B3 | q0 = qi10 } ∪ {qi4} andS2 =
S1 \ S. ThenS1 andS2 satisfy the conditions in
Lemma 3 and henceS1 \ S2 = S can be realized
as the local pattern set.

c) Let S1 = {q ∈ B3 | q0 = qi10 } ∪ {qi3 , qi4} and
S2 = S1 \ S. Since dH(ϕ(q

i3), ϕ(qi4)) = 1, it
is apparent thatϕ(S1) ∪ {0} andB3 \ ϕ(S1) are
linearly separable. Also, since|S2| = 2 and the
Hamming distance between two vectors belonging
to S2 is 1,S2 satisfies the conditions in Lemma 3.
ThereforeS1 \S2 = S can be realized as the local
pattern set.

d) We assume without loss of generality that
dH(ϕ(q

i1), ϕ(qi3)) = 1. Let S1 = S ∪ {q∗}
where q∗ ∈ B3 satisfies q∗0 = qi30 and
dH(ϕ(q

i2), ϕ(q∗)) = 1 and letS2 = {q∗}. Then
S1 andS2 satisfy the conditions in Lemma 3 and
henceS1 \ S2 = S can be realized as the local
pattern set.

6) Let S = {qi1 , qi2 , qi3 , qi4 , qi5}. If ϕ(S)∪{0} andB3 \
ϕ(S) are linearly separable, it follows from Theorem 1
that S can be realized by a CNN withu0 = 0. We
therefore assume hereafter thatϕ(S)∪{0} andB3\ϕ(S)
are not linearly separable. We further assume without
loss of generality thatqi10 = qi20 = qi30 ̸= qi40 = qi50 . Let
us first consider the case wheredH(qi4 , qi5) = 1. Let
S1 = {q ∈ B3 | q0 = qi10 } ∪ {qi4 , qi5} andS2 = S1 \S.
ThenS1 andS2 satisfy the conditions in Lemma 3 and
henceS1 \ S2 = S can be realized as the local pattern
set. Let us next consider the case wheredH(q

i4 , qi5) =
2. This case is further divided into the subcases i)
dH(q

i1 , qi2) = dH(q
i1 , qi3) = dH(q

i1 , qi4) = 1 and ii)
dH(q

i1 , qi2) = dH(q
i1 , qi3) = 1 and dH(q

i1 , qi4) = 2.
In Subcase i), letS1 = S \ {qi5} and S2 = {qi5}.
Since S1 and S2 satisfy the conditions in Lemma 4,
S1 ∪ S2 = S can be realized by a CNN as the local
pattern set. In Subcase ii), letS1 = S ∪ {q∗} and
S2 = {q∗} whereq∗ is the vector satisfyingq∗ /∈ S and
dH(q

i1 , q∗) = 1. ThenS1 andS2 satisfy the conditions
in Lemma 3 and henceS1 \ S2 = S can be realized as
the local pattern set.

7) LetS1 be a subset ofB3 such that|S1| = 7 andS ⊂ S1.
Let S2 = S1 \S. ThenS1 andS2 satisfy the conditions
in Lemma 3 and henceS1 \ S2 = S can be realized as
the local pattern set.

Lemma 5 shows that many but not all subsets ofB3 can
be realized as the local pattern set of a CNN described by
(1). The cases not covered by Theorem 1 and Lemma 5 are
summarized as follows:

1) S = {qi1 , qi2} whereqi10 = qi20 anddH(qi, qj) = 2.
2) S = {qi1 , qi2 , qi3} where qi10 = qi20 ̸= qi30 , dH(q

i1 ,
qi2) = 2 anddH(qi1 , qi3) = 1.

3) S = {qi1 , qi2 , qi3 , qi4} where qi10 = qi20 ̸= qi30 = qi40
anddH(qi1 , qi2) = dH(q

i3 , qi4) = 2.
Note that we do not have to consider the case whereS =

{qi1 , qi2 , qi3}, qi10 = qi20 ̸= qi30 , dH(qi1 , qi2) = 2 anddH(qi1 ,
qi3) = 2 because these conditions lead todH(qi2 , qi3) =
2 which means this case falls into Case 4-c in Lemma 3.
Also we do not have to consider the case whereS = {qi1 ,
qi2 , qi3}, qi10 = qi20 ̸= qi30 , dH(q

i1 , qi2) = 2 and dH(q
i1 ,

qi3) = 3 because these conditions lead todH(qi2 , qi3) = 1
which means this case falls into Case 2 above.

We will finally show that anyS falls into one of these three
classes can be realized as the local pattern set.

Lemma 6:Any S = {qi1 , qi2} such thatqi10 = qi20 and
dH(q

i1 , qi2) = 2 can be realized as the local pattern set of a
CNN described by (1).

Proof: We will prove this lemma only forS = {q2, q7}.
Remaining three cases:S = {q0, q5}, S = {q1, q4} and
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Fig. 7. How to realize{q2, q7} as the local pattern set by using Lemma 6. (a)
The plane defined byσ([r1, r2, r3]) = [0.2, 1, 0.2][r1, r2, r3]T + 1.2 = 1.
(b) Linear separation ofS2 andB3 \ S2.

S = {q3, q6} can be proved in a similar way. LetS2 =
{q3, q6, q7}. Since S2 and B3 \ S2 are linearly separable
(see Fig.7(b)), it follows from Lemma 2 that there exist
d = [d−1, d0, d+1], â0 andÎ such that the differential equation
(6) has a unique equilibrium point̂x∗ for eachq and f(x̂∗)
is given by (11). Leta = [0.2, 1.2, 0.2], u0 = 0 and
I = 1. Then the values of the left-hand side of (5) for
q = qi, which is denoted asσ(ϕ(qi)), for i = 0, 1, . . . , 7
are σ(ϕ(q0)) = [a−1, I, a+1]ϕ(q

0)T + a0 + q0u0f(x̂
∗) =

[0.2, 1, 0.2][1,−1, 1]T + 1.2 + 0 = 0.6, σ(ϕ(q1)) = 0.2,
σ(ϕ(q2)) = 1.8, σ(ϕ(q3)) = 2.2, σ(ϕ(q4)) = 0.2,
σ(ϕ(q5)) = −0.2, σ(ϕ(q6)) = 2.2 and σ(ϕ(q7)) = 2.6
(see Fig.7(a) where the plane defined byσ([r1, r2, r3]) = 1
is indicated by gray). Now we increase the values ofu0 and
I by L whereL is a constant whose value will be determined
later. Thenσ(ϕ(qi)) increases by2L for i = 3, 6 and7, and
remains the same fori = 0, 1, 2, 4 and5. Therefore, by setting
L = −0.7, we can make the value ofσ(ϕ(qi)) greater than1
only for i = 2 and 7. This means thatS = {q2, q7} can be
realized as the local pattern set.

Lemma 7:Any S = {qi1 , qi2 , qi3} such thatqi10 = qi20 ̸=
qi30 , dH(qi1 , qi2) = 2 anddH(qi1 , qi3) = 1 can be realized as
the local pattern set of a CNN described by (1).

Proof: We will prove this lemma only forS =
{q0, q2, q7}. Remaining seven cases:S = {q2, q5, q7}, S =
{q1, q3, q6}, S = {q3, q4, q6}, S = {q0, q2, q5}, S =
{q0, q5, q7}, S = {q1, q3, q4} andS = {q1, q4, q6} can be
proved in a similar way. LetS2 = {q3, q6, q7}. SinceS2

andB3 \ S2 are linearly separable, it follows from Lemma 2
that there existd = [d−1, d0, d+1], â0 and Î such that the
differential equation (6) has a unique equilibrium pointx̂∗ for
eachq and f(x̂∗) is given by (11). Leta = [0.2, 1.8, 0.2],
u0 = 0 and I = 1. Then the values of the left-hand side
of (5) for q = qi, which is denoted asσ(ϕ(qi)), for i =
0, 1, . . . , 7 areσ(ϕ(q0)) = 1.2, σ(ϕ(q1)) = 0.8, σ(ϕ(q2)) =
2.4, σ(ϕ(q3)) = 2.8, σ(ϕ(q4)) = 0.8, σ(ϕ(q5)) = 0.4,
σ(ϕ(q6)) = 2.8 and σ(ϕ(q7)) = 3.2. Now we increase the
values ofu0 andI by L. Thenσ(ϕ(qi)) increases by2L for
i = 3, 6 and 7, and remains the same fori = 0, 1, 2, 4 and
5. Therefore, by settingL = −1, we can make the value of
σ(ϕ(qi)) greater than1 only for i = 0, 2 and 7. This means
thatS = {q0, q2, q7} can be realized as the local pattern set.
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Fig. 8. How to realize {q0, q2, q5, q7} as the local pattern set
by using Lemma 8. (a) The plane defined byσ([r1, r2, r3]) =
[0.2, 0, 0.2][r1, r2, r3]T +1.1 = 1. (b) Linear separation ofS2 andB3 \S2.

Lemma 8:Any S = {qi1 , qi2 , qi3 , qi4} such thatqi10 =
qi20 ̸= qi30 = qi40 and dH(q

i1 , qi2) = dH(q
i3 , qi4) = 2 can be

realized as the local pattern set of a CNN described by (1).

Proof: There are four possible cases to be considered:
i) S = {q0, q2, q5, q7}, ii) S = {q1, q3, q4, q6}, iii) S =
{q0, q3, q5, q6} and iv) S = {q1, q2, q4, q7}. We first con-
sider Case i). LetS2 = {q3, q5, q6, q7}. SinceS2 andB3 \S2

are linearly separable (see Fig.8(b)), it follows from Lemma 2
that there existd = [d−1, d0, d+1], â0 and Î such that the
differential equation (6) has a unique equilibrium pointx̂∗ for
eachq and f(x̂∗) is given by (11). Leta = [0.2, 1.1, 0.2]
and u0 = I = 0. Then the values of the left-hand side
of (5) for q = qi, which is denoted asσ(ϕ(qi)), for i =
0, 1, . . . , 7 areσ(ϕ(q0)) = 1.5, σ(ϕ(q1)) = 1.1, σ(ϕ(q2)) =
0.7, σ(ϕ(q3)) = 1.1, σ(ϕ(q4)) = 1.1, σ(ϕ(q5)) = 0.7,
σ(ϕ(q6)) = 1.1 andσ(ϕ(q7)) = 1.5 (see Fig.8(a) where the
plane defined byσ([r1, r2, r3]) = 1 is indicated by gray).
Now we increase the value ofu0 by L. Then σ(ϕ(qi))
increases byL for i = 0, 1, 4 and 7, and decreases byL
for i = 2, 3, 5 and 6. Therefore, by settingL = −0.4,
we can make the value ofσ(ϕ(qi)) greater than1 only for
i = 0, 2, 5 and 7. This means thatS = {q0, q2, q5, q7}
can be realized as the local pattern set. Next we consider
Case iii). Let S2 = {q5, q7}. Since S2 and B3 \ S2 are
linearly separable, it follows from Lemma 1 that there exist
d = [d−1, d0, d+1], â0 andÎ such that the differential equation
(6) has a unique equilibrium point̂x∗ for eachq andf(x̂∗) is
given by (11). Leta = [0.2, 1.1, 0.2], u0 = 0 and I = −0.2.
Then we haveσ(ϕ(q0)) = 1.7, σ(ϕ(q1)) = 1.3, σ(ϕ(q2)) =
0.5, σ(ϕ(q3)) = 0.9, σ(ϕ(q4)) = 1.3, σ(ϕ(q5)) = 0.9,
σ(ϕ(q6)) = 0.9 and σ(ϕ(q7)) = 1.3. Now we increase the
value ofu0 by L. Thenσ(ϕ(qi)) increases byL for i = 0, 1, 4
and 7, and decreases byL for i = 2, 3, 5 and 6. Therefore,
by settingL = −0.4, we can make the value ofσ(ϕ(qi))
greater than1 only for i = 0, 3, 5 and 6. This means that
S = {q0, q3, q5, q6} can be realized as the local pattern set.
Cases ii) and iv) can be proved in a similar way as Cases i)
and iii) respectively.
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C. Summary and Comparison to Related Work

Let us first summarize the approach taken in the proof of
Theorem 2. For givenS ⊆ B3, we first separate{ϕ(qi)}7i=0

into two classes by the plane[a−1, I, a+1][r1, r2, r3]
T +

a0 − 1 = 0, and {qi}7i=0 into two classes by the plane
d[r1, r2, r3]

T + Î = 0. We then adjust the parameter values so
that

sgn
(
[a−1, I, a+1]ϕ(q)

T + a0 − 1 + q0u0sgn
(
dqT + Î

))
(14)

takes1 if and only if q ∈ S, where sgn(u) takes1 if u > 0,
0 if u = 0, and−1 if u < 0. The role of the second layer is
represented by the termq0u0sgn(dqT+Î). Owing to this term,
the separation (14) becomes nonlinear and we can realize any
subset ofB3 as the local pattern set.

The most important step in our approach is how to separate
{qi}7i=0 into two classesS2 and {qi}7i=0 \ S2 by the plane
d[r1, r2, r3]

T + Î = 0. We have determined this linear
separation manually for each case, but this is possible only
when the number of cases to be considered is small. If we
apply our approach to more general case, it will be necessary
to develop a systematic way to find the linear separation.

Let us next compare the results of this paper to related
work. Theorem 1 is related to some results on equilibrium
analysis of single-layer CNNs [12], [17]–[20]. These results
are general in the sense that they can be applied to general two-
dimensional CNNs. On the other hand, only a class of simple
one-dimensional CNNs is considered in Theorem 1. However,
this allows us to provide a complete characterization of the
set of stable patterns that can be realized by those CNNs.

Nonlinear separation of binary vectors via CNNs was also
studied by Dogaru and Chua [10]. They considered the prob-
lem of separatingn-dimensional binary vectors with a class
of piecewise-linear functions called multi-nested discriminant
functions, and showed that all of22

n

separation can be realized
for n ≤ 4. However, they did not prove it analytically but just
presented parameter values which were found by a computer
program. In this paper, on the other hand, we have given an
analytical proof of Theorem 2 from which we can see how
each subset ofB3 is realized as the local pattern set.

IV. T EMPLATE OPTIMIZATION

We have shown in the previous section that for every subset
S of B3 there exists a set of templates such thatS is the
local pattern set of the CNN. However, the optimality of the
templates was not considered at all. In this section, we propose
a simple method to find the template values which maximize
the robustness, and present the obtained values for all of 256
subsets ofB3.

Let us first consider 59 subsets ofB3 which can be realized
as the local pattern set of a CNN withu0 = 0. In these cases,
we only have to determine the values ofa = [a−1, a0, a+1]
andI. By normalizing the value ofa0−1 to 1, we can express
the conditions for a subsetS of B3 to be the local pattern set
of a CNN with u0 = 0 as follows:

[a−1, I, a+1]ϕ(q)
T + 1

{
> 0, ∀q ∈ S
< 0, ∀q ∈ B3 \ S (15)

When a CNN is implemented with the analog circuit, the
template values cannot be realized exactly but suffer from
perturbations [21], [22]. It is thus important to make the set of
templates robust against the perturbation [21]–[26]. A simple
approach to finding robust templates is to maximize

min
q∈B3

|[a−1, I, a+1]ϕ(q)
T + 1|

within a certain parameter region, which is formulated as the
following linear programming problem.

Problem 1: Maximize δ1 subject to

[a−1, I, a+1]ϕ(q)
T + 1 ≥ δ1, ∀q ∈ S

[a−1, I, a+1]ϕ(q)
T + 1 ≤ −δ1, ∀q ∈ B3 \ S

|a−1| ≤ U1, |a+1| ≤ U1, |I| ≤ U1, δ1 ≥ 0

whereU1 is a positive constant.
Note that Problem 1 does not always have a feasible solution

because the second constraint will not be satisfied ifU1 is
too small. We have verified with numerical calculations that
Problem 1 has a feasible solution ifU1 ≥ 1.

Let us next consider the remaining 197 subsets ofB3 which
cannot be realized as the local pattern set of a CNN with
u0 = 0. In each of these 197 cases, we first choose the set
S2 ⊆ B3 such thatS2 andB3 \ S2 are linearly separable, as
shown in the proofs of Lemmas 4-8. We then determine the
values of the parametersa = [a−1, a0, a+1], u0 andI so that

[a−1, I, a+1]ϕ(q)
T + a0 + q0u0ŷ

∗(q){
> 1, ∀q ∈ S
< 1, ∀q ∈ B3 \ S (16)

is satisfied wherêy∗(q) is defined as follows:

ŷ∗(q) =

{
1, if q ∈ S2

−1, if q ∈ B3 \ S2
(17)

We also determine the values of the parametersâ0, d =
[d−1, d0, d+1] and Î so that the differential equation (6) has
a unique equilibrium point̂x∗ satisfying (11). According to
Lemma 2, the value of̂a0 is set to1+ϵ whereϵ is a sufficiently
small positive number, and the values of the parametersd and
Î are determined so that

dqT + Î

{
> 0, ∀q ∈ S2

< 0, ∀q ∈ B3 \ S2
(18)

is satisfied. Taking the robustness of the parameters against
perturbation into account, we derive the following linear
programming problems from (16) and (18).

Problem 2: Maximize δ1 subject to

[a−1, I, a+1]ϕ(q)
T + 1 + q0u0ŷ

∗(q) ≥ δ1, ∀q ∈ S

[a−1, I, a+1]ϕ(q)
T + 1 + q0u0ŷ

∗(q) ≤ −δ1, ∀q ∈ B3 \ S
|a−1| ≤ U1, |a+1| ≤ U1, |I| ≤ U1, |u0| ≤ U1, δ1 ≥ 0

whereU1 is a positive constant.
Problem 3: Maximize δ2 subject to

dqT + Î ≥ δ2, ∀q ∈ S2

dqT + Î ≤ −δ2, ∀q ∈ B3 \ S2

|d−1| ≤ U2, |d0| ≤ U2, |d+1| ≤ U2, |Î| ≤ U2, δ2 ≥ 0
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whereU2 is a positive constant.
Note that in deriving Problem 2 the value ofa0−1 was set

to 1 for the purpose of normalization. Note also that Problem 2
does not always have a feasible solution because the second
constraint will not be satisfied ifU1 is too small. We have
verified with numerical calculations that Problem 2 has a
feasible solution ifU1 ≥ 2.

Tables I-VI show the optimal values of the templates for all
of 256 subsets ofB3, which are derived by solving Problem 1
with U1 = 3 and Problems 2 and 3 withU1 = 3 andU2 = 1.
The first column is the ID of each subsetS of B3 which is
expressed by an integer between0 and255. More specifically,
ID number is determined by ID=

∑7
i=0 2

ibi where bi = 1
if qi ∈ S and bi = 0 if qi ∈ B3 \ S. The second column
is S ⊆ B3 itself; The value1 (0, resp.) under an integeri ∈
{0, 1, . . . , 7} indicates thatqi belongs (does not belong, resp.)
to S. For example,01100100 meansS = {q1, q2, q5}. The
third column isS2 ⊆ B3 which appears in (17) and Problem 3.
The meanings of1 and0 are same as the second column. A
blank entry inS2 column means the setS can be realized by
a single-layer CNN. There are 59 blank entries as we have
seen in Theorem 1. The 4th to 13th columns are the optimal
values of the templates. The 14th and 15th columns are the
optimal values ofδ1 in Problems 1 and 2, andδ2 in Problem 3,
respectively. As shown in the table, the minimum values ofδ1
in Problem 1,δ1 in Problem 2 andδ2 in Problem 3 are1, 0.5
and0.5, respectively, which means that high level robustness
was achieved by the proposed method.

Finally we should note that in generalS2 is not uniquely
determined for each of 197 subsets ofB3. Therefore the
template values in Tables I-VI are optimal as far asS2 is
chosen as in the third column. In other words, it is possible that
a larger value ofδ1 is obtained if a differentS2 is employed.

V. CONCLUSION

As an attempt to make clear the signal processing capability
of two-layer CNNs, the variety of local pattern sets realized
by a class of one-dimensional two-layer CNNs was studied.
It was shown that any of 256 subsets ofB3 can be realized
as the local pattern set of such a CNN, while only 59 can be
realized by one-dimensional single-layer CNNs. Also, a simple
way to optimize the template values was proposed, which is
formulated as a set of linear programming problems, and the
obtained values were presented for all of 256 sets.

Since dynamical behavior of CNNs is not considered in
this paper, the results cannot be directly applied to signal pro-
cessing. However, Theorem 2 indicates the potential of two-
layer CNNs in, for example, associative memories, because
two-layer CNNs can store much more patterns than one-layer
CNNs. Also, since it follows from Theorem 2 that the variety
of stable patterns of one-dimensional two-layer CNNs is as
diverse as one-dimensional cellular automata [27], it may be
possible to apply two-layer CNNs to the modeling of various
nonlinear phenomena.

Analysis of the dynamical behavior of the designed one-
dimensional CNNs and the generalization of the results to two-
dimensional case are future problems.
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TABLE I

OPTIMAL VALUES OF THE TEMPLATES (PART 1 OF 4).

ID S S2

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 a−1 a0 a+1 u0 I â0 d−1 d0 d1 Î δ1 δ2
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 2 0 −3 0 1 + ϵ 0 1 0 0 2 1
1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 2 0 3 0 1 + ϵ 0.5 −1 0.5 −0.5 2 0.5
2 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 2 0 3 0 1 + ϵ −0.5 −1 0.5 −0.5 2 0.5
3 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 0 3 0 1 + ϵ 0 −1 1 −1 2 1
4 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 2 0 −3 0 1 + ϵ 0.5 1 0.5 −0.5 2 0.5
5 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 2 1 −3 −1 1 + ϵ 0.5 1 0.5 −0.5 1 0.5
6 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 −1 2 1 −3 −1 1 + ϵ 0.5 1 0.5 −0.5 1 0.5
7 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 −1 2 −1 3 1 1 + ϵ 0 −1 1 −1 1 1
8 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 2 0 −3 0 1 + ϵ −0.5 1 0.5 −0.5 2 0.5
9 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 2 1 −3 −1 1 + ϵ −0.5 1 0.5 −0.5 1 0.5

10 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 −1 2 1 −3 −1 1 + ϵ −0.5 1 0.5 −0.5 1 0.5
11 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 2 −1 3 1 1 + ϵ 0 −1 1 −1 1 1
12 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 −3 0 1 + ϵ 0 1 1 −1 2 1
13 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1 −3 −1 1 + ϵ 0 1 1 −1 1 1
14 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 −1 2 1 −3 −1 1 + ϵ 0 1 1 −1 1 1
15 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 2 −1 2 1 1 + ϵ 0 −1 1 −1 1 1
16 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 2 0 3 0 1 + ϵ 0.5 −1 −0.5 −0.5 2 0.5
17 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 2 0 3 0 1 + ϵ 1 −1 0 −1 2 1
18 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 2 −1 3 −1 1 + ϵ −0.5 −1 0.5 −0.5 1 0.5
19 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 2 0 3 0 1 + ϵ 0.5 −0.5 0.5 −1 2 0.5
20 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 2 −1 −3 −1 1 + ϵ 0.5 1 0.5 −0.5 1 0.5
21 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 −1 2 −1 3 1 1 + ϵ 1 −1 0 −1 1 1
22 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 −1.5 2 −1.5 3 1.5 1 + ϵ 0.5 −0.5 0.5 −1 0.5 0.5
23 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 −1 2 −1 3 1 1 + ϵ 0.5 −0.5 0.5 −1 1 0.5
24 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 2 2 −2 −3 0 1 + ϵ −0.5 1 0.5 −0.5 2 0.5
25 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 2 2 −2 3 0 1 + ϵ 1 −1 0 −1 2 1
26 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 2 −1 2 0 1 + ϵ −0.5 −1 0.5 −0.5 1 0.5
27 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 2 −1 2 0 1 + ϵ 0.5 −0.5 0.5 −1 1 0.5
28 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 2 2 −2 −3 0 1 + ϵ 0 1 1 −1 2 1
29 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 2 −1 2 1 1 + ϵ 1 −1 0 −1 1 1
30 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 −1 2 −2 3 2 1 + ϵ 0.5 −0.5 0.5 −1 1 0.5
31 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 2 −1 2 1 1 + ϵ 0.5 −0.5 0.5 −1 1 0.5
32 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 2 0 3 0 1 + ϵ −0.5 −1 −0.5 −0.5 2 0.5
33 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 −1 2 −1 3 −1 1 + ϵ 0.5 −1 0.5 −0.5 1 0.5
34 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 2 0 3 0 1 + ϵ −1 −1 0 −1 2 1
35 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 2 0 3 0 1 + ϵ −0.5 −0.5 0.5 −1 2 0.5
36 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 −2 2 −2 −3 0 1 + ϵ 0.5 1 0.5 −0.5 2 0.5
37 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 −1 2 −1 2 0 1 + ϵ 0.5 −1 0.5 −0.5 1 0.5
38 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 −2 2 −2 3 0 1 + ϵ −1 −1 0 −1 2 1
39 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 −1 2 −1 2 0 1 + ϵ −0.5 −0.5 0.5 −1 1 0.5
40 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 −1 2 −1 −3 −1 1 + ϵ −0.5 1 0.5 −0.5 1 0.5
41 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1.5 2 −1.5 3 1.5 1 + ϵ −0.5 −0.5 0.5 −1 0.5 0.5
42 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 2 −1 3 1 1 + ϵ −1 −1 0 −1 1 1
43 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 2 −1 3 1 1 + ϵ −0.5 −0.5 0.5 −1 1 0.5
44 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 −2 2 −2 −3 0 1 + ϵ 0 1 1 −1 2 1
45 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 2 −2 3 2 1 + ϵ −0.5 −0.5 0.5 −1 1 0.5
46 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 2 −1 2 1 1 + ϵ −1 −1 0 −1 1 1
47 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 2 −1 2 1 1 + ϵ −0.5 −0.5 0.5 −1 1 0.5
48 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 2 0 3 0 1 + ϵ 0 −1 −1 −1 2 1
49 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 2 0 3 0 1 + ϵ 0.5 −0.5 −0.5 −1 2 0.5
50 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 2 0 3 0 1 + ϵ −0.5 −0.5 −0.5 −1 2 0.5
51 1 1 0 0 1 1 0 0 0 2 0 0 −3 2
52 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 −2 2 −2 3 0 1 + ϵ 0 −1 −1 −1 2 1
53 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 −1 2 −1 2 0 1 + ϵ 0.5 −0.5 −0.5 −1 1 0.5
54 0 1 1 0 1 1 0 0 −3 2 −3 0 −3 2
55 1 1 1 0 1 1 0 0 −1 2 −1 0 −2 1
56 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 2 2 −2 3 0 1 + ϵ 0 −1 −1 −1 2 1
57 1 0 0 1 1 1 0 0 3 2 −3 0 −3 2
58 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 2 −1 2 0 1 + ϵ −0.5 −0.5 −0.5 −1 1 0.5
59 1 1 0 1 1 1 0 0 1 2 −1 0 −2 1
60 0 0 1 1 1 1 0 0 0 2 −3 0 0 2
61 1 0 1 1 1 1 0 0 1 2 −2 0 −1 1
62 0 1 1 1 1 1 0 0 −1 2 −2 0 −1 1
63 1 1 1 1 1 1 0 0 0 2 −1 0 −1 1
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TABLE II

OPTIMAL VALUES OF THE TEMPLATES (PART 2 OF 4).

ID S S2

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 a−1 a0 a+1 u0 I â0 d−1 d0 d1 Î δ1 δ2
64 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 2 0 −3 0 1 + ϵ 0.5 1 −0.5 −0.5 2 0.5
65 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 2 1 −3 −1 1 + ϵ 0.5 1 −0.5 −0.5 1 0.5
66 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 −2 2 2 −3 0 1 + ϵ 0.5 1 −0.5 −0.5 2 0.5
67 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 −2 2 2 3 0 1 + ϵ 0 −1 1 −1 2 1
68 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 2 0 −3 0 1 + ϵ 1 1 0 −1 2 1
69 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 2 1 −3 −1 1 + ϵ 1 1 0 −1 1 1
70 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 −2 2 2 −3 0 1 + ϵ 1 1 0 −1 2 1
71 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 −1 2 0 2 1 1 + ϵ 0 −1 1 −1 1 1
72 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 −1 2 1 −3 1 1 + ϵ −0.5 1 0.5 −0.5 1 0.5
73 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1.5 2 1.5 −3 −1.5 1 + ϵ 0.5 0.5 0.5 −1 0.5 0.5
74 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 −1 2 1 −2 0 1 + ϵ −0.5 1 0.5 −0.5 1 0.5
75 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 2 2 −3 −2 1 + ϵ 0.5 0.5 0.5 −1 1 0.5
76 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 2 0 −3 0 1 + ϵ 0.5 0.5 0.5 −1 2 0.5
77 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 2 1 −3 −1 1 + ϵ 0.5 0.5 0.5 −1 1 0.5
78 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 −1 2 1 −2 0 1 + ϵ 0.5 0.5 0.5 −1 1 0.5
79 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 2 1 −2 −1 1 + ϵ 0.5 0.5 0.5 −1 1 0.5
80 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 2 −1 −3 −1 1 + ϵ 0.5 1 −0.5 −0.5 1 0.5
81 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 −1 2 1 3 1 1 + ϵ 1 −1 0 −1 1 1
82 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 −1 2 1 2 0 1 + ϵ 0.5 −1 −0.5 −0.5 1 0.5
83 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 −1 2 1 2 0 1 + ϵ 0.5 −0.5 0.5 −1 1 0.5
84 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 2 −1 −3 −1 1 + ϵ 1 1 0 −1 1 1
85 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 −1 2 0 2 1 1 + ϵ 1 −1 0 −1 1 1
86 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 −2 2 −1 3 2 1 + ϵ 0.5 −0.5 0.5 −1 1 0.5
87 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 −1 2 0 2 1 1 + ϵ 0.5 −0.5 0.5 −1 1 0.5
88 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 2 −1 −2 0 1 + ϵ 0.5 1 −0.5 −0.5 1 0.5
89 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 2 2 1 −3 −2 1 + ϵ 0.5 0.5 0.5 −1 1 0.5
90 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 2 −1 −2 0 1 + ϵ 1 1 −1 0 1 1
91 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 2 1 −2 −2 1 + ϵ 0.5 0.5 0.5 −1 1 0.5
92 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 2 −1 −2 0 1 + ϵ 0.5 0.5 0.5 −1 1 0.5
93 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 2 0 −2 −1 1 + ϵ 0.5 0.5 0.5 −1 1 0.5
94 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 −1 2 −1 2 2 1 + ϵ 0.5 −0.5 0.5 −1 1 0.5
95 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 −0.5 2 −0.5 1.5 1 1 + ϵ 0.5 −0.5 0.5 −1 0.5 0.5
96 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 −1 2 −1 −3 −1 1 + ϵ 0.5 1 −0.5 −0.5 1 0.5
97 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 −1.5 2 1.5 3 1.5 1 + ϵ 0.5 −0.5 −0.5 −1 0.5 0.5
98 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 −2 2 2 3 0 1 + ϵ −1 −1 0 −1 2 1
99 1 1 0 0 0 1 1 0 −3 2 3 0 −3 2

100 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 −2 2 −2 −3 0 1 + ϵ 1 1 0 −1 2 1
101 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 −2 2 1 3 2 1 + ϵ 0.5 −0.5 −0.5 −1 1 0.5
102 0 1 1 0 0 1 1 0 −3 2 0 0 0 2
103 1 1 1 0 0 1 1 0 −2 2 1 0 −1 1
104 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 −1.5 2 −1.5 −3 −1.5 1 + ϵ −0.5 0.5 −0.5 −1 0.5 0.5
105 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1.5 2 1.5 −3 −1.5 1 + ϵ 1 0 1 −1 0.5 1
106 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 −2 2 −1 −3 −2 1 + ϵ −0.5 0.5 −0.5 −1 1 0.5
107 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 −2 2 2 3 1 1 + ϵ 0.5 0.5 −0.5 −1 1 0.5
108 0 0 1 1 0 1 1 0 −3 2 −3 0 3 2
109 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 −2 2 −2 −3 −1 1 + ϵ −0.5 −0.5 −0.5 −1 1 0.5
110 0 1 1 1 0 1 1 0 −2 2 −1 0 1 1
111 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 −0.5 2 −0.5 3 2.5 1 + ϵ −0.5 −0.5 0.5 −1 0.5 0.5
112 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 −1 2 1 3 1 1 + ϵ 0 −1 −1 −1 1 1
113 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 −1 2 1 3 1 1 + ϵ 0.5 −0.5 −0.5 −1 1 0.5
114 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 −1 2 1 2 0 1 + ϵ −0.5 −0.5 −0.5 −1 1 0.5
115 1 1 0 0 1 1 1 0 −1 2 1 0 −2 1
116 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 2 −1 −2 −1 1 + ϵ 1 1 0 −1 1 1
117 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 −1 2 0 2 1 1 + ϵ 0.5 −0.5 −0.5 −1 1 0.5
118 0 1 1 0 1 1 1 0 −2 2 −1 0 −1 1
119 1 1 1 0 1 1 1 0 −1 2 0 0 −1 1
120 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 −1 2 −2 −3 −2 1 + ϵ −0.5 0.5 −0.5 −1 1 0.5
121 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 2 2 −2 3 1 1 + ϵ −0.5 0.5 0.5 −1 1 0.5
122 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 −1 2 −1 −2 −2 1 + ϵ −0.5 0.5 −0.5 −1 1 0.5
123 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 −0.5 2 −0.5 −1 −1.5 1 + ϵ −0.5 0.5 −0.5 −1 0.5 0.5
124 0 0 1 1 1 1 1 0 −1 2 −2 0 1 1
125 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 −0.5 2 −0.5 1 0.5 1 + ϵ 0.5 −0.5 −0.5 −1 0.5 0.5
126 0 1 1 1 1 1 1 0 −1 2 −1 0 0 1
127 1 1 1 1 1 1 1 0 −0.5 2 −0.5 0 −0.5 0.5
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TABLE III

OPTIMAL VALUES OF THE TEMPLATES (PART 3 OF 4).

ID S S2

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 a−1 a0 a+1 u0 I â0 d−1 d0 d1 Î δ1 δ2
128 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 2 0 −3 0 1 + ϵ −0.5 1 −0.5 −0.5 2 0.5
129 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 2 2 2 −3 0 1 + ϵ −0.5 1 −0.5 −0.5 2 0.5
130 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 −1 2 1 −3 −1 1 + ϵ −0.5 1 −0.5 −0.5 1 0.5
131 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 2 2 2 3 0 1 + ϵ 0 −1 1 −1 2 1
132 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 2 1 −3 1 1 + ϵ 0.5 1 0.5 −0.5 1 0.5
133 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 2 1 −2 0 1 + ϵ 0.5 1 0.5 −0.5 1 0.5
134 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 −1.5 2 1.5 −3 −1.5 1 + ϵ −0.5 0.5 0.5 −1 0.5 0.5
135 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 −1 2 2 −3 −2 1 + ϵ −0.5 0.5 0.5 −1 1 0.5
136 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 2 0 −3 0 1 + ϵ −1 1 0 −1 2 1
137 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 2 2 2 −3 0 1 + ϵ −1 1 0 −1 2 1
138 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 −1 2 1 −3 −1 1 + ϵ −1 1 0 −1 1 1
139 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 2 0 2 1 1 + ϵ 0 −1 1 −1 1 1
140 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 2 0 −3 0 1 + ϵ −0.5 0.5 0.5 −1 2 0.5
141 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 2 1 −2 0 1 + ϵ −0.5 0.5 0.5 −1 1 0.5
142 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 −1 2 1 −3 −1 1 + ϵ −0.5 0.5 0.5 −1 1 0.5
143 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 2 1 −2 −1 1 + ϵ −0.5 0.5 0.5 −1 1 0.5
144 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 2 −1 −3 −1 1 + ϵ −0.5 1 −0.5 −0.5 1 0.5
145 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 2 2 2 3 0 1 + ϵ 1 −1 0 −1 2 1
146 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1.5 2 1.5 3 1.5 1 + ϵ −0.5 −0.5 −0.5 −1 0.5 0.5
147 1 1 0 0 1 0 0 1 3 2 3 0 −3 2
148 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1.5 2 −1.5 −3 −1.5 1 + ϵ 0.5 0.5 −0.5 −1 0.5 0.5
149 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 2 2 −1 −3 −2 1 + ϵ 0.5 0.5 −0.5 −1 1 0.5
150 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1.5 2 1.5 3 1.5 1 + ϵ −1 0 −1 −1 0.5 1
151 1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 2 2 2 3 1 1 + ϵ −0.5 0.5 −0.5 −1 1 0.5
152 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 2 2 −2 −3 0 1 + ϵ −1 1 0 −1 2 1
153 1 0 0 1 1 0 0 1 3 2 0 0 0 2
154 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 2 2 1 3 2 1 + ϵ −0.5 −0.5 −0.5 −1 1 0.5
155 1 1 0 1 1 0 0 1 2 2 1 0 −1 1
156 0 0 1 1 1 0 0 1 3 2 −3 0 3 2
157 1 0 1 1 1 0 0 1 2 2 −1 0 1 1
158 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 2 2 −2 −3 −1 1 + ϵ 0.5 −0.5 −0.5 −1 1 0.5
159 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0.5 2 −0.5 1 0.5 1 + ϵ 0.5 −0.5 0.5 −1 0.5 0.5
160 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 −1 2 −1 −3 −1 1 + ϵ −0.5 1 −0.5 −0.5 1 0.5
161 1 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 1 2 1 2 0 1 + ϵ −0.5 −1 −0.5 −0.5 1 0.5
162 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 2 1 3 1 1 + ϵ −1 −1 0 −1 1 1
163 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 2 1 2 0 1 + ϵ −0.5 −0.5 0.5 −1 1 0.5
164 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 −1 2 −1 −2 0 1 + ϵ −0.5 1 −0.5 −0.5 1 0.5
165 1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 2 1 −2 0 1 + ϵ 1 1 1 0 1 1
166 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 −2 2 1 −3 −2 1 + ϵ −0.5 0.5 0.5 −1 1 0.5
167 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 −1 2 1 −2 −2 1 + ϵ −0.5 0.5 0.5 −1 1 0.5
168 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 −1 2 −1 −3 −1 1 + ϵ −1 1 0 −1 1 1
169 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 2 2 −1 3 2 1 + ϵ −0.5 −0.5 0.5 −1 1 0.5
170 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 2 0 2 1 1 + ϵ −1 −1 0 −1 1 1
171 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 2 0 2 1 1 + ϵ −0.5 −0.5 0.5 −1 1 0.5
172 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 −1 2 −1 −2 0 1 + ϵ −0.5 0.5 0.5 −1 1 0.5
173 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 2 −1 2 2 1 + ϵ −0.5 −0.5 0.5 −1 1 0.5
174 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 −1 2 0 −2 −1 1 + ϵ −0.5 0.5 0.5 −1 1 0.5
175 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0.5 2 −0.5 1.5 1 1 + ϵ −0.5 −0.5 0.5 −1 0.5 0.5
176 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 2 1 3 1 1 + ϵ 0 −1 −1 −1 1 1
177 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 2 1 2 0 1 + ϵ 0.5 −0.5 −0.5 −1 1 0.5
178 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 2 1 3 1 1 + ϵ −0.5 −0.5 −0.5 −1 1 0.5
179 1 1 0 0 1 1 0 1 1 2 1 0 −2 1
180 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 2 −2 −3 −2 1 + ϵ 0.5 0.5 −0.5 −1 1 0.5
181 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 2 −1 −2 −2 1 + ϵ 0.5 0.5 −0.5 −1 1 0.5
182 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 1 −2 2 −2 3 1 1 + ϵ 0.5 0.5 0.5 −1 1 0.5
183 1 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0.5 2 −0.5 −1 −1.5 1 + ϵ 0.5 0.5 −0.5 −1 0.5 0.5
184 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 2 −1 −2 −1 1 + ϵ −1 1 0 −1 1 1
185 1 0 0 1 1 1 0 1 2 2 −1 0 −1 1
186 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 2 0 2 1 1 + ϵ −0.5 −0.5 −0.5 −1 1 0.5
187 1 1 0 1 1 1 0 1 1 2 0 0 −1 1
188 0 0 1 1 1 1 0 1 1 2 −2 0 1 1
189 1 0 1 1 1 1 0 1 1 2 −1 0 0 1
190 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0.5 2 −0.5 1 0.5 1 + ϵ −0.5 −0.5 −0.5 −1 0.5 0.5
191 1 1 1 1 1 1 0 1 0.5 2 −0.5 0 −0.5 0.5
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TABLE IV

OPTIMAL VALUES OF THE TEMPLATES (PART 4 OF 4).

ID S S2

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 a−1 a0 a+1 u0 I â0 d−1 d0 d1 Î δ1 δ2
192 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 2 0 −3 0 1 + ϵ 0 1 −1 −1 2 1
193 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 2 2 2 −3 0 1 + ϵ 0 1 −1 −1 2 1
194 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 −2 2 2 −3 0 1 + ϵ 0 1 −1 −1 2 1
195 1 1 0 0 0 0 1 1 0 2 3 0 0 2
196 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 2 0 −3 0 1 + ϵ 0.5 0.5 −0.5 −1 2 0.5
197 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 2 1 −2 0 1 + ϵ 0.5 0.5 −0.5 −1 1 0.5
198 0 1 1 0 0 0 1 1 −3 2 3 0 3 2
199 1 1 1 0 0 0 1 1 −1 2 2 0 1 1
200 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 2 0 −3 0 1 + ϵ −0.5 0.5 −0.5 −1 2 0.5
201 1 0 0 1 0 0 1 1 3 2 3 0 3 2
202 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 −1 2 1 −2 0 1 + ϵ −0.5 0.5 −0.5 −1 1 0.5
203 1 1 0 1 0 0 1 1 1 2 2 0 1 1
204 0 0 1 1 0 0 1 1 0 2 0 0 3 2
205 1 0 1 1 0 0 1 1 1 2 1 0 2 1
206 0 1 1 1 0 0 1 1 −1 2 1 0 2 1
207 1 1 1 1 0 0 1 1 0 2 1 0 1 1
208 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 2 −1 −3 −1 1 + ϵ 0 1 −1 −1 1 1
209 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 2 1 2 1 1 + ϵ 1 −1 0 −1 1 1
210 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 2 2 3 2 1 + ϵ −0.5 −0.5 −0.5 −1 1 0.5
211 1 1 0 0 1 0 1 1 1 2 2 0 −1 1
212 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 2 −1 −3 −1 1 + ϵ 0.5 0.5 −0.5 −1 1 0.5
213 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 2 0 −2 −1 1 + ϵ 0.5 0.5 −0.5 −1 1 0.5
214 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 −2 2 2 −3 −1 1 + ϵ −0.5 −0.5 0.5 −1 1 0.5
215 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0.5 2 0.5 −1 −0.5 1 + ϵ 0.5 0.5 −0.5 −1 0.5 0.5
216 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1 2 −1 −2 0 1 + ϵ −0.5 0.5 −0.5 −1 1 0.5
217 1 0 0 1 1 0 1 1 2 2 1 0 1 1
218 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1 2 1 2 2 1 + ϵ −0.5 −0.5 −0.5 −1 1 0.5
219 1 1 0 1 1 0 1 1 1 2 1 0 0 1
220 0 0 1 1 1 0 1 1 1 2 −1 0 2 1
221 1 0 1 1 1 0 1 1 1 2 0 0 1 1
222 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0.5 2 0.5 1 1.5 1 + ϵ −0.5 −0.5 −0.5 −1 0.5 0.5
223 1 1 1 1 1 0 1 1 0.5 2 0.5 0 0.5 0.5
224 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 −1 2 −1 −3 −1 1 + ϵ 0 1 −1 −1 1 1
225 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 −1 2 2 3 2 1 + ϵ 0.5 −0.5 −0.5 −1 1 0.5
226 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 2 1 2 1 1 + ϵ −1 −1 0 −1 1 1
227 1 1 0 0 0 1 1 1 −1 2 2 0 −1 1
228 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 −1 2 −1 −2 0 1 + ϵ 0.5 0.5 −0.5 −1 1 0.5
229 1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 −1 2 1 2 2 1 + ϵ 0.5 −0.5 −0.5 −1 1 0.5
230 0 1 1 0 0 1 1 1 −2 2 1 0 1 1
231 1 1 1 0 0 1 1 1 −1 2 1 0 0 1
232 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 −1 2 −1 −3 −1 1 + ϵ −0.5 0.5 −0.5 −1 1 0.5
233 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 2 2 2 −3 −1 1 + ϵ 0.5 −0.5 0.5 −1 1 0.5
234 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 −1 2 0 −2 −1 1 + ϵ −0.5 0.5 −0.5 −1 1 0.5
235 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 −0.5 2 0.5 −1 −0.5 1 + ϵ −0.5 0.5 −0.5 −1 0.5 0.5
236 0 0 1 1 0 1 1 1 −1 2 −1 0 2 1
237 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 −0.5 2 0.5 1 1.5 1 + ϵ 0.5 −0.5 −0.5 −1 0.5 0.5
238 0 1 1 1 0 1 1 1 −1 2 0 0 1 1
239 1 1 1 1 0 1 1 1 −0.5 2 0.5 0 0.5 0.5
240 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 2 1 2 1 1 + ϵ 0 −1 −1 −1 1 1
241 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 2 1 2 1 1 + ϵ 0.5 −0.5 −0.5 −1 1 0.5
242 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 2 1 2 1 1 + ϵ −0.5 −0.5 −0.5 −1 1 0.5
243 1 1 0 0 1 1 1 1 0 2 1 0 −1 1
244 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 2 −1 −2 −1 1 + ϵ 0.5 0.5 −0.5 −1 1 0.5
245 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 −0.5 2 0.5 1.5 1 1 + ϵ 0.5 −0.5 −0.5 −1 0.5 0.5
246 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 −0.5 2 0.5 3 2.5 1 + ϵ −0.5 −0.5 −0.5 −1 0.5 0.5
247 1 1 1 0 1 1 1 1 −0.5 2 0.5 0 −0.5 0.5
248 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 2 −1 −2 −1 1 + ϵ −0.5 0.5 −0.5 −1 1 0.5
249 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0.5 2 0.5 1 0.5 1 + ϵ 0.5 −0.5 −0.5 −1 0.5 0.5
250 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0.5 2 0.5 1.5 1 1 + ϵ −0.5 −0.5 −0.5 −1 0.5 0.5
251 1 1 0 1 1 1 1 1 0.5 2 0.5 0 −0.5 0.5
252 0 0 1 1 1 1 1 1 0 2 −1 0 1 1
253 1 0 1 1 1 1 1 1 0.5 2 −0.5 0 0.5 0.5
254 0 1 1 1 1 1 1 1 −0.5 2 −0.5 0 0.5 0.5
255 1 1 1 1 1 1 1 1 0 2 0 0 0 1




