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Necessary and Sufficient Condition for
a Class of Planar Dynamical Systems
Related to CNNs to be Completely Stable

Norikazu Takahashiviember, IEEEand Tetsuo NishiFellow, IEEE

Abstract—We study global dynamical behavior of cellular % such that thek-th cell belongs to the neighborhood of the
neural networks (CNNs) consisting of two cells. Since the output j-th cell. Since each cell is coupled only with neighboring
characteristic of each cell is expressed by a piecewise Ilnearce”S’ CNNs are suitable for VLSI implementation. Moreover,

function, a CNN with two cells is considered as a planar piecewise - ) .
linear dynamical system. We present the necessary and sufficientdue to their rich dynamical behavior, CNNs have found many

condition for such a CNN to be completely stable under the applications mainly in the field of image processing [14], [15].
assumptions that i) self-coupling coefficients take the same value As well as other neural network models, it is often required

greater than one and ii) biases are set to zero. The condition that a CNN is completely stable because the outputs in the
is ITxpllcnly expressed in terms of coupling coefficients between steady state is regarded as the result of image processing
cetis. carried out by the CNN. Many results on the complete stability
Index Terms—Cellular neural networks, complete stability, of CNNs can be found in the literature [16]-[25], but the
planar dynamical systems relationship between the complete stability and the network
parameters:;; andb; has not been clarified yet, even for the
I. INTRODUCTION simplest case where the CNN consists of only two cells.

In the past two decades, considerable efforts have beerfhe first study of the global dynamical behavior of CNNs
devoted to stability analysis of dynamical systems related €gnsisting of two cells was made by Civalleri and Gilli [18].
recurrent neural networks [1]-[9]. The dynamical behaviorhey considered CNNs described by
of a neural net_work may be convergent, oscillatory, or even i1 = —x1 + a1 f(z1) + araf(z2) @)
chaotic depending on the values of network parameters such as G = —x5 + as1 f(21) + asa f(z2)
coupling coefficients between neurons. In many applications ] ) )
of neural networks, it is often required that a neural network %nd presented detailed analytical results concerning the loca-

completely stablethat is, every trajectory converges to one dfon of equilibrium points, the domain of attraction of each
the equilibrium points [10]-[12]. Thus it is important frome€quilibrium point, and the complete stability under the as-

both theoretical and practical point of view to clarify theUmption that botla;; anda,, are greater than one. Although
relationship between the parameters and the complete stabilfpSt Of their results are correct and valuable, it has recently
In this paper, we study the complete stability of celluldp€en pointed out that. the complete stability analysis for the
neural networks (CNNs) [13]. A CNN is an analog nonlinegf@S€ Whereiizas; < 0 is not correct [26]. o
circuit consisting of many signal processing units called cells, TN purpose of this paper is to clarify the complete stability
The state equation of a CNN with cells is described by the of the planar dynamical system (3) under the assumption that

set of differential equations: a1 =ase >1 and ajpas; < 0. 4)
di=—zi+ Y agyi+b, i=12...,n (1) Itis usually assumed for various CNN models that couplings
JEN: between cells are space-invariant [15]. The first condition in
wherez; represents the state of tleh cell, y; the output of (4) corresponds to this assumption. Exploring the properties
the i-th cell which depends om; through of the phase portrait of the system in detail, we will derive
1 the necessary and sufficient condition for (3) satisfying (4) to
yi = fz;) & 5(|$1: + 1| — |z — 1)), (2) be completely stable. Since the case wheygus, > 0 has

already been solved by Civalleri and Gilli [18], the results of
this paper completes the complete stability analysis for (3)
with a1 = age > 1.

This work was supported in part by the 21st Century Center of Excellence The technique used for the stability analysis in this paper
(COE) Program “Reconstruction of Social Infrastructure Related to Informgs restricted to two-cell CNNs and cannot be directly applied
tion Science and Electrical Engineering”. | CNNs. H h | h |
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Communication Engineering, Kyushu University, Fukuoka, Japan (emaimportant for the following two reasons. First, stability anal-

norikazu@csce.kyushu-u.ac.jp). _ aySiS of a two-cell CNN plays an important role for that of an
T. Nishi was with the Department of Computer Science and Communication

Engineering, Kyushu University, Fukuoka, Japan. He is now with the Facufﬁfce" CNN in some casgs (for example, see Theqrem 4 _in
of Science and Engineering, Waseda University, Tokyo, Japan. [27] and [28]). Second, since the system (3) satisfying (4) is

a;; the coefficient of the coupling from theth cell to thei-th
cell, b; the bias for thei-th cell, andN; the set of integers
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Fig. 1. Parameter region fay(\/rs, p) > 0. Fig. 2. Two trajectories starting &b.1,0.1) and (0.3, —4.0) for the CNN

considered in Example 1.

a special case of CNNs with the opposite-sign template, the . )

results given in this paper can be regarded as a fundameft@ for the lower one including the curyg/rs, p) = 0. Note
work for the complete stability analysis of such CNNs. I§hat for any fixed value of/rs, the equationy(y/rs,p) = 0
particular, if we try to derive a condition for a CNN with thel@s & unique solution singg/rs, p) is monotone increasing
opposite-sign template to be completely stable independdht?- AlSo, it is easily seen that the value of satisfying
of the number of cells, it suffices for us to consider onlg(v7s,p) = 0 is monotone increasing ifyrs, and less than

parameter values satisfying the complete stability conditionfor any value ofy/rs. We thus can derive a much simpler
given in this paper. complete stability condition from Theorem 1 as follows:

Corollary 1: The system (5) is completely stablepif-1 >
s andp > 2 hold simultaneously.

By combining Theorem 1 with the results given in [18], we
Let us consider the dynamical system (3) under the assumf@we the following theorem.

tion (4). Since we can assume without loss of generality thatTheorem 2:Under the assumption that;; = as > 1,
0 < a1z < —az, the system can be expressed in terms @he system (3) is completely stable if and only if one of the

II. MAIN RESULTS

three parameters, » ands as follows: following two conditions holds.
&1 = —x1 +pf(z1) + sf(z2) 1) aizaz1 >0 .
{ iy = —xo — 1 f(z1) + pf(22) (p>1,725>0)0B)  2) apan < 0, an — 1 > min{lasa|,[az|} and
g(v/—a12a21,a11) >0

where f(-) is a piecewise linear function defined by (2). |n order to show validity of the main result of this paper,
In the following, we denote the solution of the system (S}e now give two illustrative examples.
passing through a poinP € R* att = 0 by ¢(t,P) = Example 1:Let us consider a two-cell CNN with the
(P1(t, P),o(t, P)). The system (5) is said to be completelyarameters given by, = aze = 1.36, a2 = 0.16
stable if for any P the solution (¢, P) converges to some gnd as1 = —5.0. For these parameter values, we have
equilibrium point ast goes to infinity. g(v/—a12021, a11) = g(\/@,l.%) ~ —0.113 < 0. Hence
For the system (5), we define the functigf\/7s,p) as it follows from Theorem 2 that this CNN is not completely
2p—1) stable. This is verified by solving the state equation numeri-
g(\/rs,p) £ exp (p arctan <p>> cally for some appropriate initial conditions. In fact, as shown
Vs Vs in Fig.2, two trajectories starting €0.1,0.1) and (0.3, —4.0)
- 5 (6) converge to the same limit cycle.

(p = 1)*(p* +13) Example 2:Let us increase the self-coupling coefficients
where arctan(-) takes its principal value, that is;7/2 < of the CNN in Example 1 froml.36 to 1.37. In this case
arctan(z) < w/2 for all z € R. This function plays an We haveg(y/—aizas1,a11) = g(v/0.8,1.37) ~ 0.090 > 0.
important role in our stability analysis. So it follows from Theorem 2 that this CNN is completely

The following theorem is the main result of this paper. stable. In fact, as shown in Fig.3, two trajectories starting at
Theorem 1:The system (5) is completely stable if and onlyhe same points as Example 1, i.@,1,0.1) and (0.3, —4.0),
if p—1>sandg(y/rs,p) > 0 hold simultaneously. converge to two distinct equilibrium points ét.21, —6.37)
The second condition specifies the relationship betwe&fd (—1.21,6.37).
the self-coupling coefficienp and the geometric average of
mutual coupling coefficients and s. By solving the equation IIl. PROOF OFTHEOREM 1
9(y/rs,p) = 0for p numerically for each value qf/rs, we can  We first show some known results on the complete stability
draw the curvey(y/7s,p) = 0 as shown in Fig.1. The/rs-p of the system (5).
space is divided into two regions by the cumg/rs, p) = 0; Lemma 1:If the system (5) satisfies — 1 < s then it is
the system (5) is completely stable for the upper region babt completely stable.

rs
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Fig. 3. Two trajectories starting 0.1,0.1) and (0.3, —4.0) for the CNN
considered in Example 2.

Fig. 4. Phase portrait of the system (5) with (7).
Proof: See [18].

Lemma 2:If the system (5) satisfies — 1 > /rs then it
is completely stable.

Proof: See [26]. n ECD e (e, 1)
From these two lemmas, we can hereafter concentrate our (3,1)
attention on the case where 7

s<p—1</rs. @)

Note that this condition implies > s.

The phase portrait of the system (5) with (7) is shown in
Fig.4 where nuliclines, equilibrium points and directions of
the flow at some points are drawn. Let

RO 2 {(zy,20) |21 € JD, 20 € JU}, i j € {—,0,+} BOTIN4—
be nine regions in the state space of the system (5) where o= —1 o =1
J) = (=00, —1), JO = [~1,1] and JF) = (1,00). If s <
p—1, there are five equilibrium point®, E(**) = (—s/(p—
,p+rs/(p—1), E-Y) = (=p+s,p+7), EO7) = Fig. 5 Possible limit cycle.
(s/(p—1),—p—rs/(p—1)) and E+7) = (p —5,—p — 1)
where O is an unstable focust(®+) and E(--) are saddle
points, andE(— 1) and E(+-) are stable nodes. J§ — 1 = Proof: See [26]. [ ]
s, on the other hand, there are only three equilibrium pointsAccording to Lemmas 1-3, the final step to prove The-
0, E©®1) and E©~). In this case,E(>1) and E(>~) are orem 1 is to show that the system (5) is completely stable

unstable but they are not saddle points. Four breaking poiift€7) and g(/rs,p) > 0 hold. Since the heteroclinic orbit
of the nullclines on the boundary @(®:9) are expressed by connectingE(*:*) and E(>~) does not exist in this case, it
A=(-s/(p—1),1),B=((p—1)/r,1),C =(s/(p—1),—1) suffices for us to show that the system (5) satisfying (7) and
andD =(—(p—1)/r,—1). g(v/rs,p) > 0 does not have a limit cycle passing through

It is easily seen from Fig.4 that for any € R? if the the line segment®©)A, AB, EOHB, OC, CD, E®-)D
trajectory ¢ (¢, P) once satisfiedi;(t, P)| > s/(p — 1), it and OD consecutively (see Fig.5). The proof will be done
necessarily converges to one of the equilibrium points. Thby contradiction, that is, we first assume there exists such a
the system (5) satisfying (7) is not completely stable if anlmit cycle and then show this leads to a contradiction. Let
only if there exists a trajectory which stays in the regiofiy,1) and (3,1) be the intersections of the limit cycle with
{(z1,22) | |x1| < s/(p— 1)} and never converges. the line segmentl B, and the line segment connectifiyand

In the previous work [26], the authors investigated thél, 1), respectively. Them and 8 satisfy —s/(p — 1) < a <
behavior of the unstable manifold &) and showed that (p — 1)/r < 3. In addition, the following four lemmas hold.
it touches the line segmemC if and only if g(1/rs,p) < 0. Lemma 4:Assume that the system (5) satisfying (7) and
In particular, it passes through the poiit which implies that g(1/7s,p) > 0 has a limit cycle shown in Fig.5. Thefi <
there exists a heteroclinic orbit connecti’ ™) and E®:~), s+ p(p —1)/r.
if and only if g(y/rs,p) = 0. From these results and the Proof: Suppose first that+p(p—1)/r > 1 Theng < s+
Poincaé-Bendixon theorem, the following lemma is derivedp(p—1)/r apparently holds becaugemust be at least smaller

Lemma 3:If the system (5) satisfies (7) and+/rs,p) <0 than 1 in order for)(¢,(5,1)) to cross the line segmeniC.
then it is not completely stable. Suppose next that + p(p — 1)/r < 1. In this case, it was



shown in [26] that the points + p(p — 1)/r,1) is on the Also, sincev — (p —1)/r asu — (p — 1)/r, we have
unstable manifold of2(°*). Since two different trajectories

: li(u,v) =0.
never intersecty must be smaller thag+ p(p — 1)/r. N

Lemma 5:Assume that the system (5) satisfying (7) an . L .
g(\rs,p) > 0 has a limit cycle shown in Fig.5. Thenﬁ,ﬂakmg use of the implicit function theorem and the assump-

lim (12)

u—(p—1)/r

h(a, 8) = 0 holds where tion p > 2, we have
—1
a}p

) = (a+ ) s+ O
1){ JJ@—ﬁ}pil. (8)

i

Proof: Let t; be the smallest positive value of for
which v (t, (a, 1)) is on the line segmeBE (1), By solving
the differential equation (5) for the regioR(0>+> with the
initial condition (z1(0), z2(0)) = («, 1), we derive the explicit
formula for the trajectory) (¢, (o, 1)) (0 < ¢t < t1) as follows:

Y1, (o, 1)) :(a + ﬁ)e(zﬂ—l)t _ S

p—1
ba(t, (@, 1)) :Z%{oz _s— @}gt

_r (a+8> (D T ()
p—1

-1
Since(t, (o, 1)) vanishes at = t;, we have
1 s+ 2=l _
fh=-log |l %)
T\ a1 s

Thus )y (t1, (o, 1)) is expressed in terms of as

wl(tla (Oé, 1))
s s+ p(p;l) —a
p*l){(p*Da+8

Next let to be the largest negative value of for which
Y(t,(8,1)) is on the line segmerB E(%+), Then, in a similar
way as above, we can express(ts, (3,1)) in terms of 3 as

}(p—l)/p s
p—1~

Yi(ta, (8,1))
s s+ @ — By (@-1)/p s
:<6+p—1){ (p—l)ﬁ—&—s} T p—1°
Since ¥ (t1, (o, 1)) = ¥1(t2, (8,1)), we haveh(a, ) = 0.
[

Lemma 6:Assume that the system (5) satisfying (7) and

g9(y/7s,p) > 0 has a limit cycle shown in Fig.5. |f > 2 then
B2 > o2 holds.

Proof: Letl; (u,v) = v2—u?. We shall show thal; (u, v)
is positive for allu andv satisfying

1)

s p—1
———<u< —— <v<s+
—1 T
andh(u, v) = 0. Note that/; (u, v) is intrinsically a function of
u only because is defined byu implicitly through h(u,v) =

p(p— (10)
;

0. Sincev — s+ p(p—1)/r asu — —s/(p — 1), we have
. pp—1)3? s )2
1 = a0 (=
uﬁfir/I(lpfl) ll(u’ U) {S * r } ( p— 1) >0
(11)

dly(u,v) dv
du v du 2u
Oh/Ou
=2 (_ah/av) -2

p—1 _ p(p—1) \P—2
Ly () eyt
('U_E) {_U+S+p(p_1)}p 2

p_l_r r
S_QU'UT_E_QU
2p—1) wv—u
== e
<0. (13)

From (11)—(13), we can conclude thatu,v) > 0 for all u
andwv satisfying (10) andi(u,v) =0 if p > 2. [ ]

Lemma 7:Assume that the system (5) satisfying (7) and
g(v/rs,p) > 0 has a limit cycle shown in Fig.5. |§ < 2 then
B> (p—1)(p/r — ) holds.

Proof: Let ly(u,v) 2 v — (p — 1)(p/r — u). We shall
show in the following that;(u,v) is nonnegative for alk
andwv satisfying (10) andi(u,v) = 0. Sincev — (p — 1)/r
asu — (p—1)/r, we have

P (25 <o o

lim
—(p=1)/r
Let us consider the value of
) dls(u, v) dv
1 —1 L =(p-1 li
u%(;rill)/r du (p ) + u—)(;zl)ml)/r du’
Applying the implicit function theorem and the De Ligital’'s
theorem to the second term of the right-hand side, we have

1m @
u—(p—1)/r du

Ia(u,v) =

1. Oh/ou
—(p—1)/r 8h/8v
(L —w) {—u+ s+ 222
71) {_U+S+ p(p—l) }})—2

= - hm

u—(p—1)/r (1}

p 1 _u

lim —

—(p— 1)/Tv— —
1

li —_—
u%(;)rill)/r dv/du

which implieslim,, _, , 1)/, dv/du = —1 becauselv/du < 0
for all » satisfying (10) andw(u,v) = 0. Hence we have

dls(u,v)
N (p—1) —
u—(p—1)/r du (p )
It follows from (14) and (15) that there exists a positive

numbere such thatls(u,v) > 0 for all v satisfying (p —
1)/r—e<u<(p—1)/r. Assume now thats(u,v) < 0 for

l=p—2<0. (15)



someu satisfying—s/(p—1) < u < (p—1)/r—e. Then there Solving this equation for, we have the explicit formula for

must exist au such that t1 as
W) =0, D) =0 and 920 o (g 1 p—1 6+ i
du t; = —— arctan (0 <t < 27> .
However, we can show that there is mosatisfying (16) as Vs \/78 5 Vs
follows. Taking (8) into account, we have Substitutingt = ¢, into (20) and simplifying the formula, we
dla(u, v) derive
du h(u, 11)*0 (p — ].) VS + 7'62
(p—1) ¢2(t13(5a1)):7
(22 =) (v+ 52) {o+ s+ 2] s{p—1)2 —H“S}
=p=1- p—1 pp=1) | p—1 =
( r )( ){7u+3+7} X exp \/Earctan \/? ﬂ ;
Substitutingy = (p — 1)(p/r — u) into the right-hand side of
the above equation, we have which completes our proof fory, = —m(5). The second
equationws = m(«) is derived in a similar way. [ |
M By analyzing the functionn(u) defined by (18) itself, we
du R (u,0)=0, ls(u,v)=0 obtain the following two lemmas.
p(2—p) (p—1)2+rs Lemma 9:The functionm(u) is monotone increasing for
=) r(p— 12 _y4 g4 22D > -1/
T Proof: We will show the monotonicity ofn?(u) instead

Since the right-hand side is negativgik 2 and—s/(p—1) < of m(u) itself. Differentiatingm?(u), we have
u < (p —1)/r, there is nou which satisfies (16). This is a
contradiction. ] dm?(u) 9

Let (71,72) and(wy, wo) be the intersections of the possible g, m(u)q 2ru+ (s +ru”) - JTs
limit cycle with the line segmen©C and O A, respectively s
(See Fig.5). Then, since the flow is symmetric with respect to w4 tan (P -1 ut ) } (21)

the origin, these two intersections must satisfy Vs u— p%l
(w1, w2) = (=71, —72) - (17 wherem(u) is defined by
By using the same technique as in the proof of Lemma 5,
we can derive the following lemma. (u) £ _ -1
Lemma 8:Assume that the system (5) satisfying (7) and s{(p—1)% +rs}
g(v/rs,p) > 0 has a limit cycle shown in Fig.5. Thep, and 20(p—1) p—1 u+ pjl
wo are expressed ag = —m(3) andw, = m(a) where X exp Jrs arctan s u— 2L (22)
— 1 2 "
(u) & (p—1) S;rm It is apparent thatn(u) > 0 for v > (p — 1)/r. Taking
s{lp—1)? +rs} arctan’(x) = 1/(2 4 1) into account, we have
p—1 p—1 ut =%
X ex arctan . . (18
P N Vs u— L (18) diarctan (p i) 2—7\/782' (23)
Proof: Let us consider the trajectory(t,(3,1)) = u Vs u- v s+ru

(Y1(t, (B,1)),2(t,(8,1))). Let t; be the smallest positive
value of¢ satisfyingy (¢, (3,1)) = 0. Then~, is expressed by
~va = a(t1, (8,1)). By solving the differential equation (5) for
the regionR(:9) under the initial condition(z,(0), z2(0)) =
(8,1), we can obtain the explicit formulae faf (¢, (5,1))
ands(t, (5,1)) as follows:

Substituting (23) into (21), we havelm?(u)/du =
2rm(u)(u — (p — 1)/r) which is positive foru > (p — 1) /r.
]
Lemma 10:If p < 2 and g(y/rs,p) > 0 then m?((p —
1)(p/r —u)) > m?(u) for anyu satisfying—s/(p—1) < u <
(p-1/r. . , _
0t (50 = (Seos(vis) + [ sim(ran)ag)y Prool Letol) £ mi(p- 1)) )~ (), Since
have

Ga(t, (8,1) =@ V" (cos(vrst) - B/ sin(vst) ) (20)
s lim  o(u)
Differentiating the right-hand side of (19) with respecttto “——s/(r—1)

and setting it to), we have o p(p—1) ) s
(o= st ) T;<1>+<p+> )- mmg _pn_ ) ;
+ {(p - 1)\/5 - 6\/78} sin(v/rst) =0. ; ; rs P ( — arctan (\/Fs>> -1



where the last inequality holds from(y/rs,p) > 0. Also, conditions thatn?(a) < m?(3). In the case wherg < 2 and
since(p — 1)(p/r —u) —» (p—1)/r asu — (p—1)/r, we g(y/rs,p) > 0, we also have from Lemmas 7, 9 and 10 that

have
p
m?(a) < m? ((p— 1) (f — a)) <m?(p).
. r
lim  o(u) o
u—(p—1)/r Note thatm?(a) < m?(B) implies ws < —v2. However,
= lim m2(u) — lim m?(u) this contradicts (17). Thus there is no limit cycle if either
u=(p=1)/r+0 u=(p—1)/r=0 ) p>2ori) p<2andg(yrs,p) > 0 holds. Sincep > 2
_ (-1 2p—1) implies g(1/7s, p) > 0, these two conditions can be unified as
= eXp Pp—
TS Vrs 2 g(\/rs,p) > 0. [ |
(p-1)? exp 2(p—1) (_z)
rs Jrs 9 IV. EXTENSION TOFULL-RANGE CNN MODEL
> 0 Corinto and Gilli [29] studied the complete stability of a

more general CNN model described by
whereu — (p—1)/r+0 andu — (p—1)/r — 0 mean that

approaches tép — 1)/r from above and below, respectively. | 41 = —(1+ p)z1 + (a1 + p)f(21) + a1z f(22)
From the above two inequalities, it suffices for us to show | @2 = —(1 + p)zo 4 ag f(x1) + (age + p) f(22)
that for anyu satisfyingo’(u) = 0 the functiono(u) takes a
positive value. Differentiating(u), we have

(24)

wherep > 0 is an additional parameter. This is a special case
of the so-called full-range CNNs (FRCNNs). By extending

do(u) d P d , some results given in [26], they have shown that the dynamical
do du (< -1 (; - “)) T du (u) behavior of the system (24) is not equivalent to that of (3)
_ - _ P for someyp > 0. In addition, they have given the following
= 2rm (<p 1 ( u)) theorem.
P p—1 Theorem 3:If the parameters in (24) satis
o= (E-u) -2 - 1) P (24) satisfy
) 11 = A2 =P, a2 =8, as; = -1, 0<s<p—1<r (25)
—2rm(u) (u _P ; ) and
p—1 2(p—1) p
= 2 —_ —_—
T (u . ) exp ( Jrs arctan N
~ p - 2
< {p—1%m (=1 (2 —u)) = m(w)} L ) S T
(0= 1)*{(p+p)?+rs}
whereim(u) is given by (22). Thus/(u) = 0 if and only if  then the system (24) is completely stable.
m((p—1)(p/r —u)) = 1m(u)/(p — 1)*. We therefore have It is easily seen that Theorem 3 is a generalization of
Theorem 1. In order to prove Theorem 3, Corinto and Gilli
0() o (uy=0 first showed that if
- p 2 (P 2 _
= (@=0 (G- {srre-12 (G -u) ) ep (20D o0 @)
- 2 Vs 2 (p—1)2
—r(u)(s +ru”) : )
() P 9 then the system (24) with (25) is completely stable. They
—1) {s +r(p—1)2 (; - u) } —m(u)(s + ru?) next considered two points/r1s1,p1) and(y/r1s1,p2) in the
P \/rs—p plane such that the former satisfies both (26) and (27)
= pi(u) {5(2 —») L+ P QU} and the latter satisfies only (26), and claimed that the system
(p—12 r (24) never presents a structural instability of the first degree
> pi(u) s2-p)  p_20-1) at any point on the line segment connectigrs1,p1) and
p—-102 r T (v/T151,p2). In particular, they claimed that a limit cycle of
- 1 s multiplicity 2 can never appear because there is no limit cycle
= p(2—p)m(u) {T + 4@ — 1)2} at (y/r1s1,p1). However, this is not correct because a limit
> 0 cycle of multiplicity two, or a half-stable limit cycle, may
suddenly appear in the process of decreasing the valye of
where the last inequality holds from< 2. m from p; to po. Therefore, we have to say that the proof for
Now we are ready for presenting the following lemma whicliheorem 3 given in [29] is incomplete.
completes our proof of Theorem 1. On the other hand, however, Theorem 3 can be rigorously
Lemma 11:1f the system (5) satisfies (7) agd,/7s, p) > 0 proved by extending the results given in the previous section.
then it has no limit cycle. Let us suppose that the system (24) satisfying (25) has a limit

In the case where > 2, as shown in Lemma 6y < (p— 1Expressions of the equilibrium points must be modified B&+) =
1)/r < B anda? < B2 hold. One can easily see from thes@—s/(p — 1), (rs/(p — 1) + p + 1) /(1 + p)), and so on.



equations (3) and (24) have the same form in the re§dr),

and 10 for the system (24) with (25) as follows:

Lemma 12:8 < s/(1+p) + (p+ p)(p — 1)/{r(1 + )}
Lemma 13:« and § satisfy

(a+ >
:(54_

Lemma 14:If p > pu+ 2 then 2 > o2.
Lemma 15:f p < p+2thensg > ((p—1)/(n+ 1)) ((p +

(11]

- 1)“+1{S+ (p+u)r(pf DV 1)}P—1

) D

w)/r - a).

Lemma 16:If p < u+2 and (26) hold them:?((p—1)((p+
w)/r—u)/(u+1)) > m?(u) for anyu satisfying—s/(p—1) <

u<(p—1)/r.

We omit the proofs of these five lemmas because they
similar to those of Lemmas 4-7 and 10. Theorem 3 can [g]
proved by using Lemmas 8, 9 and 12-16 in the same way

as the proof of Lemma 11. In addition, since Lemmas 1 a

2 hold for the system (24) with (25) and Lemma 3 can be
generalized in the same way as above, we have the followin
theorem which is a generalization of Theorem 1.

Theorem 4:The system (24) with (25) is completely stable

if and only if p — 1 > s and (26) hold simultaneously.
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0

V. CONCLUSION
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