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Necessary and Sufficient Condition for
a Class of Planar Dynamical Systems

Related to CNNs to be Completely Stable
Norikazu Takahashi,Member, IEEEand Tetsuo Nishi,Fellow, IEEE

Abstract— We study global dynamical behavior of cellular
neural networks (CNNs) consisting of two cells. Since the output
characteristic of each cell is expressed by a piecewise linear
function, a CNN with two cells is considered as a planar piecewise
linear dynamical system. We present the necessary and sufficient
condition for such a CNN to be completely stable under the
assumptions that i) self-coupling coefficients take the same value
greater than one and ii) biases are set to zero. The condition
is explicitly expressed in terms of coupling coefficients between
cells.

Index Terms— Cellular neural networks, complete stability,
planar dynamical systems

I. I NTRODUCTION

In the past two decades, considerable efforts have been
devoted to stability analysis of dynamical systems related to
recurrent neural networks [1]–[9]. The dynamical behavior
of a neural network may be convergent, oscillatory, or even
chaotic depending on the values of network parameters such as
coupling coefficients between neurons. In many applications
of neural networks, it is often required that a neural network is
completely stable, that is, every trajectory converges to one of
the equilibrium points [10]–[12]. Thus it is important from
both theoretical and practical point of view to clarify the
relationship between the parameters and the complete stability.

In this paper, we study the complete stability of cellular
neural networks (CNNs) [13]. A CNN is an analog nonlinear
circuit consisting of many signal processing units called cells.
The state equation of a CNN withn cells is described by the
set of differential equations:

ẋi = −xi +
∑
j∈Ni

aijyj + bi, i = 1, 2, . . . , n (1)

wherexi represents the state of thei-th cell, yi the output of
the i-th cell which depends onxi through

yi = f(xi) ,
1

2
(|xi + 1| − |xi − 1|), (2)

aij the coefficient of the coupling from thej-th cell to thei-th
cell, bi the bias for thei-th cell, andNi the set of integers
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k such that thek-th cell belongs to the neighborhood of the
i-th cell. Since each cell is coupled only with neighboring
cells, CNNs are suitable for VLSI implementation. Moreover,
due to their rich dynamical behavior, CNNs have found many
applications mainly in the field of image processing [14], [15].
As well as other neural network models, it is often required
that a CNN is completely stable because the outputs in the
steady state is regarded as the result of image processing
carried out by the CNN. Many results on the complete stability
of CNNs can be found in the literature [16]–[25], but the
relationship between the complete stability and the network
parametersaij and bi has not been clarified yet, even for the
simplest case where the CNN consists of only two cells.

The first study of the global dynamical behavior of CNNs
consisting of two cells was made by Civalleri and Gilli [18].
They considered CNNs described by{

ẋ1 = −x1 + a11f(x1) + a12f(x2)
ẋ2 = −x2 + a21f(x1) + a22f(x2)

(3)

and presented detailed analytical results concerning the loca-
tion of equilibrium points, the domain of attraction of each
equilibrium point, and the complete stability under the as-
sumption that botha11 anda22 are greater than one. Although
most of their results are correct and valuable, it has recently
been pointed out that the complete stability analysis for the
case wherea12a21 < 0 is not correct [26].

The purpose of this paper is to clarify the complete stability
of the planar dynamical system (3) under the assumption that

a11 = a22 > 1 and a12a21 < 0. (4)

It is usually assumed for various CNN models that couplings
between cells are space-invariant [15]. The first condition in
(4) corresponds to this assumption. Exploring the properties
of the phase portrait of the system in detail, we will derive
the necessary and sufficient condition for (3) satisfying (4) to
be completely stable. Since the case wherea12a21 ≥ 0 has
already been solved by Civalleri and Gilli [18], the results of
this paper completes the complete stability analysis for (3)
with a11 = a22 > 1.

The technique used for the stability analysis in this paper
is restricted to two-cell CNNs and cannot be directly applied
to more general CNNs. However, the results themselves are
important for the following two reasons. First, stability anal-
ysis of a two-cell CNN plays an important role for that of an
n-cell CNN in some cases (for example, see Theorem 4 in
[27] and [28]). Second, since the system (3) satisfying (4) is
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Fig. 1. Parameter region forg(
√
rs, p) > 0.

a special case of CNNs with the opposite-sign template, the
results given in this paper can be regarded as a fundamental
work for the complete stability analysis of such CNNs. In
particular, if we try to derive a condition for a CNN with the
opposite-sign template to be completely stable independent
of the number of cells, it suffices for us to consider only
parameter values satisfying the complete stability condition
given in this paper.

II. M AIN RESULTS

Let us consider the dynamical system (3) under the assump-
tion (4). Since we can assume without loss of generality that
0 < a12 ≤ −a21, the system can be expressed in terms of
three parametersp, r ands as follows:{

ẋ1 = −x1 + pf(x1) + sf(x2)
ẋ2 = −x2 − rf(x1) + pf(x2)

(p > 1, r ≥ s > 0) (5)

where f(·) is a piecewise linear function defined by (2).
In the following, we denote the solution of the system (5)
passing through a pointP ∈ R2 at t = 0 by ψ(t, P ) =
(ψ1(t, P ), ψ2(t, P )). The system (5) is said to be completely
stable if for anyP the solutionψ(t, P ) converges to some
equilibrium point ast goes to infinity.

For the system (5), we define the functiong(
√
rs, p) as

g(
√
rs, p) , exp

(
2(p− 1)√

rs
arctan

(
p√
rs

))
− rs

(p− 1)2(p2 + rs)
(6)

where arctan(·) takes its principal value, that is,−π/2 <
arctan(x) < π/2 for all x ∈ R. This function plays an
important role in our stability analysis.

The following theorem is the main result of this paper.
Theorem 1:The system (5) is completely stable if and only

if p− 1 ≥ s andg(
√
rs, p) > 0 hold simultaneously.

The second condition specifies the relationship between
the self-coupling coefficientp and the geometric average of
mutual coupling coefficientsr ands. By solving the equation
g(
√
rs, p) = 0 for p numerically for each value of

√
rs, we can

draw the curveg(
√
rs, p) = 0 as shown in Fig.1. The

√
rs-p

space is divided into two regions by the curveg(
√
rs, p) = 0;

the system (5) is completely stable for the upper region but
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Fig. 2. Two trajectories starting at(0.1, 0.1) and(0.3,−4.0) for the CNN
considered in Example 1.

not for the lower one including the curveg(
√
rs, p) = 0. Note

that for any fixed value of
√
rs, the equationg(

√
rs, p) = 0

has a unique solution sinceg(
√
rs, p) is monotone increasing

in p. Also, it is easily seen that the value ofp satisfying
g(
√
rs, p) = 0 is monotone increasing in

√
rs, and less than

2 for any value of
√
rs. We thus can derive a much simpler

complete stability condition from Theorem 1 as follows:
Corollary 1: The system (5) is completely stable ifp−1 ≥

s andp ≥ 2 hold simultaneously.
By combining Theorem 1 with the results given in [18], we

have the following theorem.
Theorem 2:Under the assumption thata11 = a22 > 1,

the system (3) is completely stable if and only if one of the
following two conditions holds.

1) a12a21 ≥ 0
2) a12a21 < 0, a11 − 1 ≥ min{|a12|, |a21|} and

g(
√
−a12a21, a11) > 0

In order to show validity of the main result of this paper,
we now give two illustrative examples.

Example 1:Let us consider a two-cell CNN with the
parameters given bya11 = a22 = 1.36, a12 = 0.16
and a21 = −5.0. For these parameter values, we have
g(
√
−a12a21, a11) = g(

√
0.8, 1.36) ≃ −0.113 < 0. Hence

it follows from Theorem 2 that this CNN is not completely
stable. This is verified by solving the state equation numeri-
cally for some appropriate initial conditions. In fact, as shown
in Fig.2, two trajectories starting at(0.1, 0.1) and(0.3,−4.0)
converge to the same limit cycle.

Example 2:Let us increase the self-coupling coefficients
of the CNN in Example 1 from1.36 to 1.37. In this case
we haveg(

√
−a12a21, a11) = g(

√
0.8, 1.37) ≃ 0.090 > 0.

So it follows from Theorem 2 that this CNN is completely
stable. In fact, as shown in Fig.3, two trajectories starting at
the same points as Example 1, i.e.,(0.1, 0.1) and(0.3,−4.0),
converge to two distinct equilibrium points at(1.21,−6.37)
and (−1.21, 6.37).

III. PROOF OFTHEOREM 1

We first show some known results on the complete stability
of the system (5).

Lemma 1: If the system (5) satisfiesp − 1 < s then it is
not completely stable.
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Fig. 3. Two trajectories starting at(0.1, 0.1) and(0.3,−4.0) for the CNN
considered in Example 2.

Proof: See [18].
Lemma 2: If the system (5) satisfiesp − 1 ≥

√
rs then it

is completely stable.
Proof: See [26].

From these two lemmas, we can hereafter concentrate our
attention on the case where

s ≤ p− 1 <
√
rs . (7)

Note that this condition impliesr > s.
The phase portrait of the system (5) with (7) is shown in

Fig.4 where nullclines, equilibrium points and directions of
the flow at some points are drawn. Let

R(i,j) , {(x1, x2) |x1 ∈ J (i), x2 ∈ J (j)}, i, j ∈ {−, 0,+}

be nine regions in the state space of the system (5) where
J (−) = (−∞,−1), J (0) = [−1, 1] andJ (+) = (1,∞). If s <
p−1, there are five equilibrium pointsO, E(0,+) = (−s/(p−
1), p + rs/(p − 1)), E(−,+) = (−p + s, p + r), E(0,−) =
(s/(p − 1),−p − rs/(p − 1)) andE(+,−) = (p − s,−p − r)
whereO is an unstable focus,E(0,+) andE(0,−) are saddle
points, andE(−,+) andE(+,−) are stable nodes. Ifp − 1 =
s, on the other hand, there are only three equilibrium points
O, E(0,+) and E(0,−). In this case,E(0,+) and E(0,−) are
unstable but they are not saddle points. Four breaking points
of the nullclines on the boundary ofR(0,0) are expressed by
A = (−s/(p−1), 1), B = ((p−1)/r, 1), C = (s/(p−1),−1)
andD = (−(p− 1)/r,−1).

It is easily seen from Fig.4 that for anyP ∈ R2 if the
trajectory ψ(t, P ) once satisfies|ψ1(t, P )| > s/(p − 1), it
necessarily converges to one of the equilibrium points. Thus
the system (5) satisfying (7) is not completely stable if and
only if there exists a trajectory which stays in the region
{(x1, x2) | |x1| ≤ s/(p− 1)} and never converges.

In the previous work [26], the authors investigated the
behavior of the unstable manifold ofE(0,+) and showed that
it touches the line segmentOC if and only if g(

√
rs, p) ≤ 0.

In particular, it passes through the pointC, which implies that
there exists a heteroclinic orbit connectingE(0,+) andE(0,−),
if and only if g(

√
rs, p) = 0. From these results and the

Poincaŕe-Bendixon theorem, the following lemma is derived.
Lemma 3: If the system (5) satisfies (7) andg(

√
rs, p) ≤ 0

then it is not completely stable.

O

x1 = −1 x1 = 1

x2 = 1

x2 = −1

E(0,+)

E(−,+)

E(0,−)

E(+,−)

B

C
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D

Fig. 4. Phase portrait of the system (5) with (7).
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Fig. 5. Possible limit cycle.

Proof: See [26].
According to Lemmas 1–3, the final step to prove The-

orem 1 is to show that the system (5) is completely stable
if (7) and g(

√
rs, p) > 0 hold. Since the heteroclinic orbit

connectingE(0,+) andE(0,−) does not exist in this case, it
suffices for us to show that the system (5) satisfying (7) and
g(
√
rs, p) > 0 does not have a limit cycle passing through

the line segmentsOA, AB, E(0,+)B, OC, CD, E(0,−)D
and OD consecutively (see Fig.5). The proof will be done
by contradiction, that is, we first assume there exists such a
limit cycle and then show this leads to a contradiction. Let
(α, 1) and (β, 1) be the intersections of the limit cycle with
the line segmentAB, and the line segment connectingB and
(1, 1), respectively. Thenα andβ satisfy−s/(p− 1) < α <
(p− 1)/r < β. In addition, the following four lemmas hold.

Lemma 4:Assume that the system (5) satisfying (7) and
g(
√
rs, p) > 0 has a limit cycle shown in Fig.5. Thenβ <

s+ p(p− 1)/r.
Proof: Suppose first thats+p(p−1)/r > 1 Thenβ < s+

p(p−1)/r apparently holds becauseβ must be at least smaller
than 1 in order forψ(t, (β, 1)) to cross the line segmentOC.
Suppose next thats + p(p − 1)/r ≤ 1. In this case, it was
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shown in [26] that the point(s + p(p − 1)/r, 1) is on the
unstable manifold ofE(0,+). Since two different trajectories
never intersect,β must be smaller thans+ p(p− 1)/r.

Lemma 5:Assume that the system (5) satisfying (7) and
g(
√
rs, p) > 0 has a limit cycle shown in Fig.5. Then

h(α, β) = 0 holds where

h(α, β) ,
(
α+

s

p− 1

){
s+

p(p− 1)

r
− α

}p−1

−
(
β +

s

p− 1

){
s+

p(p− 1)

r
− β

}p−1

. (8)

Proof: Let t1 be the smallest positive value oft for
whichψ(t, (α, 1)) is on the line segmentBE(0,+). By solving
the differential equation (5) for the regionR(0,+) with the
initial condition(x1(0), x2(0)) = (α, 1), we derive the explicit
formula for the trajectoryψ(t, (α, 1)) (0 ≤ t ≤ t1) as follows:

ψ1(t, (α, 1)) =
(
α+

s

p− 1

)
e(p−1)t − s

p− 1

ψ2(t, (α, 1)) =
r

p

{
α− s− p(p− 1)

r

}
e−t

− r

p

(
α+

s

p− 1

)
e(p−1)t + p+

rs

p− 1
(9)

Sinceψ̇2(t, (α, 1)) vanishes att = t1, we have

t1 =
1

p
log

(
s+ p(p−1)

r − α

α(p− 1) + s

)
.

Thusψ1(t1, (α, 1)) is expressed in terms ofα as

ψ1(t1, (α, 1))

=
(
α+

s

p− 1

){s+ p(p−1)
r − α

(p− 1)α+ s

}(p−1)/p

− s

p− 1
.

Next let t2 be the largest negative value oft for which
ψ(t, (β, 1)) is on the line segmentBE(0,+). Then, in a similar
way as above, we can expressψ1(t2, (β, 1)) in terms ofβ as

ψ1(t2, (β, 1))

=
(
β +

s

p− 1

){s+ p(p−1)
r − β

(p− 1)β + s

}(p−1)/p

− s

p− 1
.

Sinceψ1(t1, (α, 1)) = ψ1(t2, (β, 1)), we haveh(α, β) = 0.

Lemma 6:Assume that the system (5) satisfying (7) and
g(
√
rs, p) > 0 has a limit cycle shown in Fig.5. Ifp ≥ 2 then

β2 > α2 holds.
Proof: Let l1(u, v) , v2−u2. We shall show thatl1(u, v)

is positive for allu andv satisfying

− s

p− 1
< u <

p− 1

r
< v < s+

p(p− 1)

r
(10)

andh(u, v) = 0. Note thatl1(u, v) is intrinsically a function of
u only becausev is defined byu implicitly throughh(u, v) =
0. Sincev → s+ p(p− 1)/r asu→ −s/(p− 1), we have

lim
u→−s/(p−1)

l1(u, v) =
{
s+

p(p− 1)

r

}2

−
(
− s

p− 1

)2
> 0

(11)

Also, sincev → (p− 1)/r asu→ (p− 1)/r, we have

lim
u→(p−1)/r

l1(u, v) = 0 . (12)

Making use of the implicit function theorem and the assump-
tion p ≥ 2, we have

dl1(u, v)

du
= 2v · dv

du
− 2u

= 2v ·
(
−∂h/∂u
∂h/∂v

)
− 2u

= −2v ·
(
p−1
r − u

) {
−u+ s+ p(p−1)

r

}p−2(
v − p−1

r

) {
−v + s+ p(p−1)

r

}p−2 − 2u

≤ −2v ·
p−1
r − u

v − p−1
r

− 2u

= −2(p− 1)

r
· v − u

v − p−1
r

< 0 . (13)

From (11)–(13), we can conclude thatl1(u, v) > 0 for all u
andv satisfying (10) andh(u, v) = 0 if p ≥ 2.

Lemma 7:Assume that the system (5) satisfying (7) and
g(
√
rs, p) > 0 has a limit cycle shown in Fig.5. Ifp < 2 then

β ≥ (p− 1)(p/r − α) holds.
Proof: Let l2(u, v) , v − (p − 1)(p/r − u). We shall

show in the following thatl2(u, v) is nonnegative for allu
and v satisfying (10) andh(u, v) = 0. Sincev → (p − 1)/r
asu→ (p− 1)/r, we have

lim
u→(p−1)/r

l2(u, v) =
p− 1

r
−(p−1)

(p
r
− p− 1

r

)
= 0 . (14)

Let us consider the value of

lim
u→(p−1)/r

dl2(u, v)

du
= (p− 1) + lim

u→(p−1)/r

dv

du
.

Applying the implicit function theorem and the De L’Hôpital’s
theorem to the second term of the right-hand side, we have

lim
u→(p−1)/r

dv

du

= − lim
u→(p−1)/r

∂h/∂u

∂h/∂v

= − lim
u→(p−1)/r

(
p−1
r − u

) {
−u+ s+ p(p−1)

r

}p−2(
v − p−1

r

) {
−v + s+ p(p−1)

r

}p−2

= − lim
u→(p−1)/r

p−1
r − u

v − p−1
r

= lim
u→(p−1)/r

1

dv/du

which implieslimu→(p−1)/r dv/du = −1 becausedv/du < 0
for all u satisfying (10) andh(u, v) = 0. Hence we have

lim
u→(p−1)/r

dl2(u, v)

du
= (p− 1)− 1 = p− 2 < 0 . (15)

It follows from (14) and (15) that there exists a positive
number ϵ such thatl2(u, v) > 0 for all u satisfying (p −
1)/r − ϵ < u < (p− 1)/r. Assume now thatl2(u, v) < 0 for
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someu satisfying−s/(p−1) < u ≤ (p−1)/r−ϵ. Then there
must exist au such that

h(u, v) = 0, l2(u, v) = 0 and
dl2(u, v)

du
≥ 0. (16)

However, we can show that there is nou satisfying (16) as
follows. Taking (8) into account, we have

dl2(u, v)

du

∣∣∣∣
h(u,v)=0

= (p− 1)−

(
p−1
r − u

) (
v + s

p−1

){
−v + s+ p(p−1)

r

}
(
v − p−1

r

) (
u+ s

p−1

){
−u+ s+ p(p−1)

r

} .

Substitutingv = (p− 1)(p/r − u) into the right-hand side of
the above equation, we have

dl2(u, v)

du

∣∣∣∣
h(u,v)=0, l2(u,v)=0

= −(p− 1)

{
p(2− p)

r(p− 1)2
· (p− 1)2 + rs

−u+ s+ p(p−1)
r

}
.

Since the right-hand side is negative ifp < 2 and−s/(p−1) <
u < (p − 1)/r, there is nou which satisfies (16). This is a
contradiction.

Let (γ1, γ2) and(ω1, ω2) be the intersections of the possible
limit cycle with the line segmentOC andOA, respectively
(See Fig.5). Then, since the flow is symmetric with respect to
the origin, these two intersections must satisfy

(ω1, ω2) = (−γ1,−γ2) . (17)

By using the same technique as in the proof of Lemma 5,
we can derive the following lemma.

Lemma 8:Assume that the system (5) satisfying (7) and
g(
√
rs, p) > 0 has a limit cycle shown in Fig.5. Thenγ2 and

ω2 are expressed asγ2 = −m(β) andω2 = m(α) where

m(u) , (p− 1)
√
s+ ru2√

s{(p− 1)2 + rs}

× exp

(
p− 1√
rs

arctan

(
p− 1√
rs

·
u+ s

p−1

u− p−1
r

))
. (18)

Proof: Let us consider the trajectoryψ(t, (β, 1)) =
(ψ1(t, (β, 1)), ψ2(t, (β, 1))). Let t1 be the smallest positive
value oft satisfyingψ̇1(t, (β, 1)) = 0. Thenγ2 is expressed by
γ2 = ψ2(t1, (β, 1)). By solving the differential equation (5) for
the regionR(0,0) under the initial condition(x1(0), x2(0)) =
(β, 1), we can obtain the explicit formulae forψ1(t, (β, 1))
andψ2(t, (β, 1)) as follows:

ψ1(t, (β, 1))= e
(p−1)t

(
β cos(

√
rs t) +

√
s

r
sin(

√
rs t)

)
(19)

ψ2(t, (β, 1))= e
(p−1)t

(
cos(

√
rs t)− β

√
r

s
sin(

√
rs t)

)
(20)

Differentiating the right-hand side of (19) with respect tot
and setting it to0, we have

{(p− 1)β + s} cos(
√
rs t)

+
{
(p− 1)

√
s

r
− β

√
rs
}
sin(

√
rs t) = 0 .

Solving this equation fort, we have the explicit formula for
t1 as

t1 =
1√
rs

arctan

(
p− 1√
rs

·
β + s

p−1

β − p−1
r

) (
0 < t1 <

π

2
√
rs

)
.

Substitutingt = t1 into (20) and simplifying the formula, we
derive

ψ2(t1, (β, 1)) = − (p− 1)
√
s+ rβ2√

s{(p− 1)2 + rs}

× exp

(
p− 1√
rs

arctan

(
p− 1√
rs

·
β + s

p−1

β − p−1
r

))
which completes our proof forγ2 = −m(β). The second
equationω2 = m(α) is derived in a similar way.

By analyzing the functionm(u) defined by (18) itself, we
obtain the following two lemmas.

Lemma 9:The functionm(u) is monotone increasing for
u > (p− 1)/r.

Proof: We will show the monotonicity ofm2(u) instead
of m(u) itself. Differentiatingm2(u), we have

dm2(u)

du
= m̃(u)

{
2ru+ (s+ ru2) · 2(p− 1)√

rs

× d

du
arctan

(
p− 1√
rs

·
u+ s

p−1

u− p−1
r

)}
(21)

wherem̃(u) is defined by

m̃(u) , (p− 1)2

s{(p− 1)2 + rs}

× exp

(
2(p− 1)√

rs
arctan

(
p− 1√
rs

·
u+ s

p−1

u− p−1
r

))
. (22)

It is apparent thatm̃(u) > 0 for u > (p − 1)/r. Taking
arctan′(x) = 1/(x2 + 1) into account, we have

d

du
arctan

(
p− 1√
rs

·
u+ s

p−1

u− p−1
r

)
= −

√
rs

s+ ru2
. (23)

Substituting (23) into (21), we havedm2(u)/du =
2rm̃(u)(u− (p− 1)/r) which is positive foru > (p− 1)/r.

Lemma 10:If p < 2 and g(
√
rs, p) > 0 then m2((p −

1)(p/r−u)) > m2(u) for anyu satisfying−s/(p−1) < u <
(p− 1)/r.

Proof: Let o(u) , m2((p−1)(p/r−u))−m2(u). Since
(p− 1)(p/r − u) → s+ p(p− 1)/r asu → −s/(p− 1), we
have

lim
u→−s/(p−1)

o(u)

= m2

(
s+

p(p− 1)

r

)
−m2

(
− s

p− 1

)
=

(p− 1)2(p2 + rs)

rs
exp

(
2(p− 1)√

rs
arctan

(
p√
rs

))
− 1

> 0
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where the last inequality holds fromg(
√
rs, p) > 0. Also,

since(p − 1)(p/r − u) → (p − 1)/r as u → (p − 1)/r, we
have

lim
u→(p−1)/r

o(u)

= lim
u→(p−1)/r+0

m2(u)− lim
u→(p−1)/r−0

m2(u)

=
(p− 1)2

rs
exp

(
2(p− 1)√

rs
· π
2

)
− (p− 1)2

rs
exp

(
2(p− 1)√

rs
·
(
−π
2

))
> 0

whereu→ (p− 1)/r+0 andu→ (p− 1)/r− 0 mean thatu
approaches to(p − 1)/r from above and below, respectively.
From the above two inequalities, it suffices for us to show
that for anyu satisfyingo′(u) = 0 the functiono(u) takes a
positive value. Differentiatingo(u), we have

do(u)

du
=

d

du
m2
(
(p− 1)

(p
r
− u
))

− d

du
m2(u)

= 2rm̃
(
(p− 1)

(p
r
− u
))

×
{
(p− 1)

(p
r
− u
)
− p− 1

r

}
{−(p− 1)}

−2rm̃(u)

(
u− p− 1

r

)
= 2r

(
u− p− 1

r

)
×
{
(p− 1)2m̃

(
(p− 1)

(p
r
− u
))

− m̃(u)
}

wherem̃(u) is given by (22). Thuso′(u) = 0 if and only if
m̃((p− 1)(p/r − u)) = m̃(u)/(p− 1)2. We therefore have

o(u)|o′(u)=0

= m̃
(
(p− 1)

(p
r
− u
)){

s+ r(p− 1)2
(p
r
− u
)2}

−m̃(u)(s+ ru2)

=
m̃(u)

(p− 1)2

{
s+ r(p− 1)2

(p
r
− u
)2}

− m̃(u)(s+ ru2)

= pm̃(u)

{
s(2− p)

(p− 1)2
+
p

r
− 2u

}
> pm̃(u)

{
s(2− p)

(p− 1)2
+
p

r
− 2(p− 1)

r

}
= p(2− p)m̃(u)

{
1

r
+

s

(p− 1)2

}
> 0

where the last inequality holds fromp < 2.
Now we are ready for presenting the following lemma which

completes our proof of Theorem 1.
Lemma 11:If the system (5) satisfies (7) andg(

√
rs, p) > 0

then it has no limit cycle.
Proof: Suppose there exists a limit cycle shown in Fig.5.

In the case wherep ≥ 2, as shown in Lemma 6,α < (p −
1)/r < β andα2 < β2 hold. One can easily see from these

conditions thatm2(α) < m2(β). In the case wherep < 2 and
g(
√
rs, p) > 0, we also have from Lemmas 7, 9 and 10 that

m2(α) < m2
(
(p− 1)

(p
r
− α

))
< m2(β) .

Note thatm2(α) < m2(β) implies ω2 < −γ2. However,
this contradicts (17). Thus there is no limit cycle if either
i) p ≥ 2 or ii) p < 2 and g(

√
rs, p) > 0 holds. Sincep ≥ 2

implies g(
√
rs, p) > 0, these two conditions can be unified as

g(
√
rs, p) > 0.

IV. EXTENSION TO FULL -RANGE CNN MODEL

Corinto and Gilli [29] studied the complete stability of a
more general CNN model described by{

ẋ1 = −(1 + µ)x1 + (a11 + µ)f(x1) + a12f(x2)

ẋ2 = −(1 + µ)x2 + a21f(x1) + (a22 + µ)f(x2)
(24)

whereµ ≥ 0 is an additional parameter. This is a special case
of the so-called full-range CNNs (FRCNNs). By extending
some results given in [26], they have shown that the dynamical
behavior of the system (24) is not equivalent to that of (3)
for someµ ≥ 0. In addition, they have given the following
theorem.

Theorem 3:If the parameters in (24) satisfy

a11 = a22 = p, a12 = s, a21 = −r, 0 < s ≤ p−1 < r (25)

and

exp

(
2(p− 1)√

rs
arctan

(
p√
rs

))
− rs(1 + µ)2

(p− 1)2{(p+ µ)2 + rs}
> 0 (26)

then the system (24) is completely stable.
It is easily seen that Theorem 3 is a generalization of

Theorem 1. In order to prove Theorem 3, Corinto and Gilli
first showed that if

exp

(
2(p− 1)√

rs
· π
2

)
− rs

(p− 1)2
> 0 (27)

then the system (24) with (25) is completely stable. They
next considered two points(

√
r1s1, p1) and(

√
r1s1, p2) in the√

rs−p plane such that the former satisfies both (26) and (27)
and the latter satisfies only (26), and claimed that the system
(24) never presents a structural instability of the first degree
at any point on the line segment connecting(

√
r1s1, p1) and

(
√
r1s1, p2). In particular, they claimed that a limit cycle of

multiplicity 2 can never appear because there is no limit cycle
at (

√
r1s1, p1). However, this is not correct because a limit

cycle of multiplicity two, or a half-stable limit cycle, may
suddenly appear in the process of decreasing the value ofp
from p1 to p2. Therefore, we have to say that the proof for
Theorem 3 given in [29] is incomplete.

On the other hand, however, Theorem 3 can be rigorously
proved by extending the results given in the previous section.
Let us suppose that the system (24) satisfying (25) has a limit
cycle shown in Fig.51. First, taking into account that the state

1Expressions of the equilibrium points must be modified asE(0,+) =
(−s/(p− 1), (rs/(p− 1) + p+ µ)/(1 + µ)), and so on.
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equations (3) and (24) have the same form in the regionR(0,0),
we can easily see that Lemmas 8 and 9 hold for the system
(24) satisfying (25). Second, we can generalize Lemmas 4–7
and 10 for the system (24) with (25) as follows:

Lemma 12:β < s/(1 + µ) + (p+ µ)(p− 1)/{r(1 + µ)}.
Lemma 13:α andβ satisfy(
α+

s

p− 1

)µ+1{
s+

(p+ µ)(p− 1)

r
− α(µ+ 1)

}p−1

=
(
β+

s

p− 1

)µ+1{
s+

(p+ µ)(p− 1)

r
−β(µ+1)

}p−1

.

Lemma 14:If p ≥ µ+ 2 thenβ2 > α2.
Lemma 15:If p < µ+ 2 thenβ ≥ ((p− 1)/(µ+ 1))((p+

µ)/r − α).
Lemma 16:If p < µ+2 and (26) hold thenm2((p−1)((p+

µ)/r−u)/(µ+1)) > m2(u) for anyu satisfying−s/(p−1) <
u < (p− 1)/r.

We omit the proofs of these five lemmas because they are
similar to those of Lemmas 4–7 and 10. Theorem 3 can be
proved by using Lemmas 8, 9 and 12–16 in the same way
as the proof of Lemma 11. In addition, since Lemmas 1 and
2 hold for the system (24) with (25) and Lemma 3 can be
generalized2 in the same way as above, we have the following
theorem which is a generalization of Theorem 1.

Theorem 4:The system (24) with (25) is completely stable
if and only if p− 1 ≥ s and (26) hold simultaneously.

V. CONCLUSION

We have studied the complete stability of planar piecewise
linear dynamical systems related to CNNs consisting of two
cells. Exploring the phase portrait in detail, we have derived
the necessary and sufficient condition for such a system to be
completely stable. Complete stability analysis of the system for
more general cases, for example, the case where biases are set
to nonzero values or the case where self-coupling coefficients
do not take the same value, is the future problem.
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