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Rigorous Proof of Termination of SMO of SMO algorithm is very important because some techniques

Algorithm for Support Vector Machines used for analyzing the simplest decomposition method may
play important roles in convergence analysis for more general
Norikazu Takahashi and Tetsuo Nishi decomposition methods. We first introduce the QP problem

arising in SVM learning and its optimality condition. We then

describe a general form of SMO algorithm for solving the QP
. 1 " . problem. Next we review the analytical results concerning the
is one of the simplest decomposition methods for learning of

support vector machines (SVMs). Keerthi and Gilbert have convergence properties of SMO algorithm given by Keerthi

recently studied the convergence property of SMO algorithm and Gilbert [5] and point out that their convergence proof
and given a proof that SMO algorithm always stops within is incomplete. Finally we give a rigorous proof that SMO

a finite number of iterations. In this paper, we point out the algorithm stops in a finite number of iterations.
incompleteness of their proof and give a more rigorous proof.

Abstract— Sequential minimal optimization (SMO) algorithm

Inde>|( Terms— Support VecthJr mﬁchines (SVMs), sequential [I. SVM DuaL ProBLEM AND 1T OPTIMALITY CONDITION
minimal optimization (SMO) algorithm, convergence, termina- . . .
tion P ( ) alg 9 Given a set of training samplee(sxi,yi)}::1 wherex; € R" is

the i-th input pattern and; € {1, -1} the label of the class
to which x; belongs, learning of an SVM with the kernel

I. INTRODUCTION function K(:, -) leads to the following quadratic programming

Due to their high generalization performance, support vect?P) problem. , — o
machines (SVMs) [1] have attracted great attention in the fieldProblem 1:Find @ = [a1, a2, ..., ] which minimizes

of pattern recognition, machine learning, neural networks and 1< '
so on. Learning of an SVM leads to a quadratic program- W(e) = EZZQijaia’j - Za’i 1)
ming (QP) problem with the size being equal to the number i=1 j=1 i=1

of training samples. Since many techniques for solving Qkhder the constraints

problems are available (see [2] for example), SVM learning |

can be implemented with one of them. However, if the number Zyiai -0 (2)

| of training samples is very large, those conventional methods =1

cannot be directly applied because it is impossible to store g}l

e_Iements of an x | matrix in memory. To overcome this dif- 0<a;<C, i=12. .l ®)
ficulty, so-called decomposition methods have been proposed

[3], [4]. Given a QP problem, a decomposition method trieghere g;; = yiy;K(x;,x;) and C is a user-specified positive
to find an optimal solution by solving QP subproblems witgonstant.

g (g 1) variables iteratively. Sincg is much smaller thahin We assume hereafter that the kernel funckdp -) satisfies
general, decomposition methods can avoid the memory-relatdércer’s condition. In this case Problem 1 is a convex QP
problem mentioned above. problem because the matr@ = [q;j] € R™ is positive semi-

It is very important especially from the theoretical point oflefinite. Hence aw is a solution of Problem 1 if and only if
view to make clear the condition under which a decompositidéhe KKT conditions are satisfied at Let us define two sets
method converges to an optimal solution. Keerthi and Gilbditp(@) € {1,2,...,1} andlgw(e) € {1,2,....1} as follows:
have recently studied the convergence property of sequential _
minimal optimization (SMO) algorithm and given a proof that lup(@) - = To(@) U (@) UT>(a)
it always stops within a finite number of iterations after finding liow(@) lo(@) U I3(@) U l4(e)
an optimal. ;olution [5]. SMO algorithm. is a special typg O\f/vherelo(a) ={i|0<ai<C}, li(@) ={ilyi =1 a =0},
decomposition methods such that the gjz&f subproblems is lp(@) = {i|yi=-1 a=C}, Is(@) ={i|yi=1, a =C} and

fixed to two. On the other hand, however, no general result 9f,) = (i |y = -1, o; = 0}. Making use of these notations,

the convergence of decomposition methods have been obtaipgdthi et al. [9] have shown that ar is an optimal solution

so far. Some significant results have recently been presentggboplem 1 if and only if the conditions (2), (3) and
by Lin [6]-[8], but these results require some assumptions on

convexity of QP problems and how to selepwariables for ierlni(fl) Fi(e) > max, Fi(e) 4)
updating. o M o

The objective of this paper is to point out incompletenegd€ satisfied, wheri(a) is defined by
of the convergence proof given by Keerthi and Gilbert [5] and [
make a more rigorous analysis in order to complete their proof. Fi(e) = [Z gijaj — 1] ) (5)
Making clear and rigorous analysis of the asymptotic behavior =1
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is employed instead of (4), whereis a positive tolerance where {,q) is any pair of indices. Let,, be the set of pairs
parameter [9]. In the following, any satisfying the conditions (p,q) such that|L(p,q)] = o where [L(p,q)| represents the
(2), (3) and (6) is said to be aoptimal solution [5]. Also, cardinality of the sel(p,q). Obviously an execution of the
any pair of indicesi( j) such that SMO algorithm stops within a finite number of iterations if
@ and only if I, = 0. The square region [€] x [0,C] c R? is
denoted byS. The interior and boundary @& are denoted by
is called ar-violating pair ate. It is obvious from these intS anddS, respectively. Four edges &f are represented as
definitions that a feasible solutiom, that is, ane satisfying E, = (0,C) x [C,C], E. = [0,0] x (0,C), Es = (0,C) x [0, 0]
(2) and (3), is ar-optimal solution if and only if there is no and E, = [C, C] x (0, C).
7-violating pair ate. Keerthi and Gilbert [5] first analyzed the properties of a
Remark 1:Note that the definition of-violating pair given soplution of the QP problem in Step 3) of SMO algorithm in
above difers from that in Reference [5]. Two statementsfX detail, and derived the following lemma.

is a r-violating pair” and “(,i) is a r-violating pair” must | emma 1:The following statements hold true for &> 1.
be distinguished in this paper. In fact, it is obvious from OUr (2) a(k + 1) # a(K).

definition that i_f {, j_) is ar_-violating pair at somex then (j, i) (b) Neither {(k), j(K)) nor (j(k),i(K)) is ar-violating pair at
cannot be &-violating pair at the same. On the other hand, ak+1).

these two statements are regarded as equivalent in [5]. (©) If (aigy(k + 1), ajgo(k + 1)) € intS then Figy(a(k + 1)) =

lll. T ermNaTION OF SMO ALGORITHM Figo(a(k+1)). -

SMO algorithm is a special class of decomposition methodd®) W(@(k)) - W(a(k + 1)) > 2_2”“0( +1) - ekl
for solving Problem 1. It was first proposed by Platt [4] and Combining Lemma 1 (d) and the fact that the sequence
then improved by Keerthet al. [9]. SMO algorithm tries to {W(a(k))};>, always converges to a certain value, the following
find an optimal solution of Problem 1 by iteratively solving QRemma can be obtained [5].
problems having only two variables, which are chosen based.emma 2:The sequencéga(k)}>, converges to a certain
on some criterion. A general form of SMO algorithm can bpoint in [0,C]' ask — co even though an execution of SMO
described as follows: algorithm does not stop.

Algorithm 1 (SMO algorithm):Given a set of training sam-  In the following, the limit point of the sequende (k) is
ples{(xi,yi)}:zl, kernel functionK(-, ) and a positive constantdenoted bye* = [a}, @5, .. .,al*]T. Then we can easily derive

i € lyp(@), j € lowl@), Fi(a) <Fjla) -7

C, execute the following steps. the following lemma.
1) Setk = 0 anda(0) = [a1(0), a2(0), ..., (0)]" = 0. Lemma 3:1f (p, g) belongs td ., then @, p) does not belong
2) If a(k) satisfies (6) then stop. t0 lw.

3) Choose a-violating pair {(k), j(k)) and solve Problem 1 Proof: Assume that bothp, q) and @, p) belong tol...
under the additional constraints; = «j(k), Vi ¢ Then we haveFp(a(k)) < Fq(a(k)) — 7, Vk € L(p,0) and
{i(k), j(K)}. Seta(k + 1) = a* wherea* is a solution Fq(a(k)) < Fp(a(k)) — 7, VK € L(q, p). Letting k — co and
of the above problem. Add 1 tk and go to Step 2). k' — oo, we haveF(a*) < Fg(e*)—7 andFq(a*) < Fp(a™)-7

Since each QP problem arising in Step 3) has only twehich lead to a contradiction. It is thus impossible that both

variables, it can be solved analytically [4]. This means th&p, q) and @, p) belong tol... [ |
SMO algorithm does not need any QP problem solver. In thisThe following lemma follows from Lemmas 1 and 2.

sense, SMO algorithm is considered as one of the simplestemma 4:Let (p, ) be any pair of indices belonging te.
decomposition methods for solving Problem 1. Then there exists & such that bothd(,(K), oq(K)) and @p(k+

One can easily see thai(k) generated by Algorithm 1 1), aq(k+ 1)) belong todS for all k € L(p, g) satisfyingk > k.

belongs to the feasible region of Problem 1 for klland Moreover, the limit point ¢;, o) is given by the following
that W(a(Kk)) is monotone decreasing with respectkto This equation.

implies that the sequend®/(a(Kk))}:>, converges to a certain : _
value sinceV(a) is bounded from kgé.low in the feasible region (ap,ag) = { Eg g)) c;rr((c(::%; ||1; zpzq _ il
of Problem 1. However, on the other hand, it is not clear ’ ’ P
Whlether' SMO algprithm always stopswwithin a finite number Figure 1 shows all possible transitions fromap(K)., (k)

of |terat|o_ns, that Is, the sequenfie(k)} , always converges ;. (@p(k + 1), aq(k + 1)) where 6.9) € I, andk € L(p,q) is

to ar-optimal solution of Problem 1. Therefgre_maklng CleaéLfﬁciently large so that transition is frodS to 4S.

Fhe convergence property of the sequefio®)}_, is th? most  The proof of termination of SMO algorithm given by
important and fundamen_tal prc_>b|em for SMO algorithm. .Keerthi and Gilbert is summarized as follows: Assume first

In the following, we will review the convergence analy5|§hat an execution of SMO algorithm does not stop. Then

made by Keerthi and Gilbert [5] and point out that thel(S not empty. Let ,q) be any pair inl., and consider for

proof for termination of SMO algorithm is not complete. le th heve = v. = 1 and &*. a*) = (0.0). Th
Before doing so, we introduce here some notations which qua(ri?)pae (ks ;ﬁ)er&;yfs tgq (0) aﬂilfii/’i(syi%i)ng (E ;ﬁd Een
» g S W

be needed in later discussions. For any execution of S %” ; ;
tively. In order for th (K K f
algorithm, the set of integers(p, g is defined as ernatively. In order for the poinirg(k). aq(k)) moves from

Es to Ey infinitely many times, ¢, p) must be ar-violating
L(p,q) = {K|(i(K), j(K) = (p,9)} pair infinitely many times, that is,g(p) must belong tol...

(8)
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Possible transitions fron§(k), aq(k)) to (ep(k + 1), aq(k + 1)) for suficiently largek € L(p, ): (8) Yp = Yq = 1, (@p, ag) = (0,0), (b) yp =yq = -1,

(ap,ag) = (0,0), (€) ¥p = yq = 1, (@p,ag) = (C,C), (d) yp = ¥q = -1, (@, ag) = (C.C), () yp = 1, yq = -1, (e, aq) = ©.c). Yp=-1yq=1

(@peag) = (0.C), (@) ¥p = 1, Yq = -1, (apg) = (C.0), () yp = -1,y = 1, @h.a) = (C.0) .

On the other hand, it follows from Lemma 3 that ) cannot
belong tol.. This leads to a contradiction. Therefore, SMO

TABLE |

POSSIBLE VALUES OF (Yr, @;) AND (Ys, @5).

algorithm stops in a finite number of iterations. Case|]

(¥r,ay)

(¥s, @)

The above proof is not correct because the point @)

(4,0) or -1,C)

(4,0) or -1,C)

(ap(K), aq(k)) may be able to visit two edges Bfalternatively (b)

(4,C) or (-1,0)

(L,C) or (-1,0)

(©)

(4,C) or (-1,0)

(L,C) or (-1,0)

even though one ofp g) and @, p) does not belong td.,. Let @

(1.0) or LC)

(1,0) or (-1,C)

us consider for example the case whegef € 1o, Yp =Yg =1 ®

(1.0) or CLC)

(1,0) or (-1,C)

and @p,g) = (0,0). Figure 2 shows a possible way that ®

(1,C) or (-1,0)

(1,C) or (-1,0)

(1,C) or (-1,0)

(1,C) or (-1,0)

(ap(K), aq(K)) returns fromEs to Ey,. First (@p(K), aq(K)) moves ()

(1,0) or L C)

(1,0) or LC)

from E, to Es whenk increases fronk; to k; + 1. Second (L)
(as(K), aq(K)) (s # p) moves fromEs to E. whenk increases
fromks to ko+1 (k2 > k). Finally (@p(K), ar(K)) (r # q) moves
from Eg to E,, whenk increases fronkz to ks + 1 (k3 > kp).
Then the point ¢p(k), a4(K)) is on the eaclE, for k = ks + 1.
More strictly speaking, the pointef(k), aq(K)) may return
from Es to E,, infinitely many times if there exist an(# q)
such that ¢,(K), ar(K)) € E, U Es and @p(k+ 1), e (K + 1)) €

(0.9 €lw, ys=1,a5=0o0rii) (0,9 € l, Ys = -1, a5 = C.
Therefore the statement holds true. For each of the remaining
seven cases, we can easily show in a similar way thatgar) (
to belong tol,, there must be am(# p,q) and ans(# p,q)
such that i, p) € I and @, s) € |.. Possible values ofy(, ;)
Ew hold for infinitely manyk, and ans(# p) such that and {s, %) are summarized in Table I. ]
(as(K), aq(K)) € Es and @s(k + 1), agq(k + 1)) € Ec U Ey hold We are now ready for giving a complete proof.
for infinitely manyk. Furthermore it is obvious that the point Theorem 1:SMO algorithm stops in a finite number of
(ap(K), aq(K)) cannot return fromEs to E, infinitely many iterations for anyr > 0.
times unless this condition is satisfied. Proof: The proof will be done by contradiction. Assume
By exploring this situation in detail for all possible caseghat SMO algorithm does not stop. Thén is not empty. Let
we can derive the following lemma. (p,g) be any pair inl. It follows from Lemma 5 that there
Lemma 5:1f (p, q) € |, then there must be an(# q) such must be arr (# g) such that (, p) € |, and ans(# p) such
that ¢, p) € o, and ans(# p) such that g, s) € |.. that @, 9) € l». Since , j) € | implies
Proof: Let us consider the case wheyg = yq = 1
and e, = ag = 0. In this case, it follows from Lemma 4
that the point ¢p(K), agq(k)) moves fromE,, to Es infinitely we have
many times. In order for this to occur the poiity(K), aq(K))
must return fromEg to E,, inifinitely many times, that is, 1)
0 < ap(k) < C andap(k + 1) = O for infinitely manyk, and hich means that the indicep, g, r and s are diferent
2), q(k) = 0 and 0< aq(k +1) < C for |r!f!n|tely .many.k._ from each other. Next, by applying the above argument to
Since , p) ¢ |l from Lemma 3, the condition 1) is satlsfledthe conditions 1( p) € I and @, ) € |, we see that there

only if there exists am (# p,q) such that either )r(p) € lo, 1 st be & (# p) such that {r) € |, and au(# q) such that
Ve =1, a =0orii) (r,p) € lo, ¥r = -1, &f = C. This (s U) € l.. Then we have

is easily verified from Fig.1. Similarly, the condition 2) is
satisfied only if there exists aa(# p,q) such that either i)

Fi(@) < Fi(a) -

Fi(a®) < Fp(a®) < Fyq(a") < Fs(e®)

Fi(@") < Fr(a®) and Fgle") < Fy(e®)
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Fig. 2. An example of the wayup(K), aq(K)) returns fromEs to Ey,.

which mean that the indicep, g, r, s, t andu are diferent
from each other. Since this process can be repeated infinitely
many times, we reach the conclusion that g,q) € I

then |, must contain infinitely many pairs. However, this is
impossible because the number of pairs cannot exigeed).
Therefore, SMO algorithm necessarily stops in a finite number
of iterations. ]

IV. CoNcLusION

Convergence property of SMO algorithm was studied in this
paper. We have given a complete proof that SMO algorithm
always stops in a finite number of iterations. Although only
QP problems in the form of Problem 1 were dealt with in
this paper, it is straightforward to extend our result to more
general QP problems like that considered in [5]. Convergence
analysis of other decomposition methods for SVM learning is
a future problem.
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