
Rigorous Proof of Termination of SMO Algorithm
for Support Vector Machines

Author(s): Norikazu Takahashi and Tetsuo Nishi

Journal: IEEE Transactions on Neural Networks

Volume: 16

Number: 3

Pages: 774–776

Month: May

Year: 2005

Published Version: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1427778

c⃝2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be ob-

tained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1427778


1

Rigorous Proof of Termination of SMO
Algorithm for Support Vector Machines

Norikazu Takahashi and Tetsuo Nishi

Abstract— Sequential minimal optimization (SMO) algorithm
is one of the simplest decomposition methods for learning of
support vector machines (SVMs). Keerthi and Gilbert have
recently studied the convergence property of SMO algorithm
and given a proof that SMO algorithm always stops within
a finite number of iterations. In this paper, we point out the
incompleteness of their proof and give a more rigorous proof.

Index Terms— Support vector machines (SVMs), sequential
minimal optimization (SMO) algorithm, convergence, termina-
tion

I. Introduction

Due to their high generalization performance, support vector
machines (SVMs) [1] have attracted great attention in the field
of pattern recognition, machine learning, neural networks and
so on. Learning of an SVM leads to a quadratic program-
ming (QP) problem with the size being equal to the number
of training samples. Since many techniques for solving QP
problems are available (see [2] for example), SVM learning
can be implemented with one of them. However, if the number
l of training samples is very large, those conventional methods
cannot be directly applied because it is impossible to store all
elements of anl × l matrix in memory. To overcome this dif-
ficulty, so-called decomposition methods have been proposed
[3], [4]. Given a QP problem, a decomposition method tries
to find an optimal solution by solving QP subproblems with
q (5 l) variables iteratively. Sinceq is much smaller thanl in
general, decomposition methods can avoid the memory-related
problem mentioned above.

It is very important especially from the theoretical point of
view to make clear the condition under which a decomposition
method converges to an optimal solution. Keerthi and Gilbert
have recently studied the convergence property of sequential
minimal optimization (SMO) algorithm and given a proof that
it always stops within a finite number of iterations after finding
an optimal solution [5]. SMO algorithm is a special type of
decomposition methods such that the sizeq of subproblems is
fixed to two. On the other hand, however, no general result on
the convergence of decomposition methods have been obtained
so far. Some significant results have recently been presented
by Lin [6]–[8], but these results require some assumptions on
convexity of QP problems and how to selectq variables for
updating.

The objective of this paper is to point out incompleteness
of the convergence proof given by Keerthi and Gilbert [5] and
make a more rigorous analysis in order to complete their proof.
Making clear and rigorous analysis of the asymptotic behavior
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of SMO algorithm is very important because some techniques
used for analyzing the simplest decomposition method may
play important roles in convergence analysis for more general
decomposition methods. We first introduce the QP problem
arising in SVM learning and its optimality condition. We then
describe a general form of SMO algorithm for solving the QP
problem. Next we review the analytical results concerning the
convergence properties of SMO algorithm given by Keerthi
and Gilbert [5] and point out that their convergence proof
is incomplete. Finally we give a rigorous proof that SMO
algorithm stops in a finite number of iterations.

II. SVM Dual Problem and its Optimality Condition

Given a set of training samples{(xi , yi)}li=1 wherexi ∈ Rn is
the i-th input pattern andyi ∈ {1,−1} the label of the class
to which xi belongs, learning of an SVM with the kernel
function K(·, ·) leads to the following quadratic programming
(QP) problem.

Problem 1: Find α = [α1, α2, . . . , αl ]T which minimizes

W(α) =
1
2

l∑
i=1

l∑
j=1

qi jαiα j −
l∑

i=1

αi (1)

under the constraints
l∑

i=1

yiαi = 0 (2)

and
0 ≤ αi ≤ C, i = 1,2, . . . , l (3)

where qi j = yiy jK(xi , x j) and C is a user-specified positive
constant.

We assume hereafter that the kernel functionK(·, ·) satisfies
Mercer’s condition. In this case Problem 1 is a convex QP
problem because the matrixQ = [qi j ] ∈ Rl×l is positive semi-
definite. Hence anα is a solution of Problem 1 if and only if
the KKT conditions are satisfied atα. Let us define two sets
Iup(α) ⊆ {1,2, . . . , l} and I low(α) ⊆ {1,2, . . . , l} as follows:

Iup(α) = I0(α) ∪ I1(α) ∪ I2(α)

I low(α) = I0(α) ∪ I3(α) ∪ I4(α)

where I0(α) = { i | 0 < αi < C }, I1(α) = { i | yi = 1, αi = 0 },
I2(α) = { i | yi = −1, αi = C }, I3(α) = { i | yi = 1, αi = C } and
I4(α) = { i | yi = −1, αi = 0 }. Making use of these notations,
Keerthi et al. [9] have shown that anα is an optimal solution
of Problem 1 if and only if the conditions (2), (3) and

min
i∈Iup(α)

Fi(α) ≥ max
i∈I low(α)

Fi(α) (4)

are satisfied, whereFi(α) is defined by

Fi(α) = yi

 l∑
j=1

qi jα j − 1

 . (5)

Since it is usually not possible to achieve the optimality
condition (4) exactly when solving Problem 1 numerically,
the approximate condition

min
i∈Iup(α)

Fi(α) ≥ max
i∈I low(α)

Fi(α) − τ (6)
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is employed instead of (4), whereτ is a positive tolerance
parameter [9]. In the following, anyα satisfying the conditions
(2), (3) and (6) is said to be aτ-optimal solution [5]. Also,
any pair of indices (i, j) such that

i ∈ Iup(α), j ∈ I low(α), Fi(α) < F j(α) − τ (7)

is called aτ-violating pair atα. It is obvious from these
definitions that a feasible solutionα, that is, anα satisfying
(2) and (3), is aτ-optimal solution if and only if there is no
τ-violating pair atα.

Remark 1:Note that the definition ofτ-violating pair given
above differs from that in Reference [5]. Two statements “(i, j)
is a τ-violating pair” and “(j, i) is a τ-violating pair” must
be distinguished in this paper. In fact, it is obvious from our
definition that if (i, j) is aτ-violating pair at someα then (j, i)
cannot be aτ-violating pair at the sameα. On the other hand,
these two statements are regarded as equivalent in [5].

III. T ermination of SMO Algorithm

SMO algorithm is a special class of decomposition methods
for solving Problem 1. It was first proposed by Platt [4] and
then improved by Keerthiet al. [9]. SMO algorithm tries to
find an optimal solution of Problem 1 by iteratively solving QP
problems having only two variables, which are chosen based
on some criterion. A general form of SMO algorithm can be
described as follows:

Algorithm 1 (SMO algorithm):Given a set of training sam-
ples {(xi , yi)}li=1, kernel functionK(·, ·) and a positive constant
C, execute the following steps.

1) Setk = 0 andα(0) = [α1(0), α2(0), . . . , αl(0)]T = 0.
2) If α(k) satisfies (6) then stop.
3) Choose aτ-violating pair (i(k), j(k)) and solve Problem 1

under the additional constraintsαi = αi(k), ∀i <
{i(k), j(k)}. Set α(k + 1) = α∗ whereα∗ is a solution
of the above problem. Add 1 tok and go to Step 2).

Since each QP problem arising in Step 3) has only two
variables, it can be solved analytically [4]. This means that
SMO algorithm does not need any QP problem solver. In this
sense, SMO algorithm is considered as one of the simplest
decomposition methods for solving Problem 1.

One can easily see thatα(k) generated by Algorithm 1
belongs to the feasible region of Problem 1 for allk and
that W(α(k)) is monotone decreasing with respect tok . This
implies that the sequence{W(α(k))}∞k=0 converges to a certain
value sinceW(α) is bounded from below in the feasible region
of Problem 1. However, on the other hand, it is not clear
whether SMO algorithm always stops within a finite number
of iterations, that is, the sequence{α(k)}∞k=0 always converges
to a τ-optimal solution of Problem 1. Therefore making clear
the convergence property of the sequence{α(k)}∞k=0 is the most
important and fundamental problem for SMO algorithm.

In the following, we will review the convergence analysis
made by Keerthi and Gilbert [5] and point out that their
proof for termination of SMO algorithm is not complete.
Before doing so, we introduce here some notations which will
be needed in later discussions. For any execution of SMO
algorithm, the set of integersL(p,q) is defined as

L(p,q) = {k | (i(k), j(k)) = (p,q)}

where (p, q) is any pair of indices. LetI∞ be the set of pairs
(p,q) such that|L(p,q)| = ∞ where |L(p,q)| represents the
cardinality of the setL(p,q). Obviously an execution of the
SMO algorithm stops within a finite number of iterations if
and only if I∞ = ∅. The square region [0,C] × [0,C] ⊂ R2 is
denoted byS. The interior and boundary ofS are denoted by
intS and∂S, respectively. Four edges ofS are represented as
En = (0,C) × [C,C], Ew = [0,0] × (0,C), Es = (0,C) × [0,0]
and Ee = [C,C] × (0,C).

Keerthi and Gilbert [5] first analyzed the properties of a
solution of the QP problem in Step 3) of SMO algorithm in
detail, and derived the following lemma.

Lemma 1:The following statements hold true for allk ≥ 1.
(a) α(k+ 1) , α(k).
(b) Neither (i(k), j(k)) nor (j(k), i(k)) is a τ-violating pair at
α(k+ 1).

(c) If (αi(k)(k+ 1), α j(k)(k+ 1)) ∈ intS then Fi(k)(α(k+ 1)) =
F j(k)(α(k+ 1)).

(d) W(α(k)) −W(α(k+ 1)) ≥ τ

2
√

2
||α(k+ 1)− α(k)||.

Combining Lemma 1 (d) and the fact that the sequence
{W(α(k))}∞k=0 always converges to a certain value, the following
lemma can be obtained [5].

Lemma 2:The sequence{α(k)}∞k=0 converges to a certain
point in [0,C] l as k→ ∞ even though an execution of SMO
algorithm does not stop.

In the following, the limit point of the sequence{α(k)}∞k=0 is
denoted byα∗ = [α∗1, α

∗
2, . . . , α

∗
l ]

T . Then we can easily derive
the following lemma.

Lemma 3: If ( p,q) belongs toI∞ then (q, p) does not belong
to I∞.

Proof: Assume that both (p,q) and (q, p) belong toI∞.
Then we haveFp(α(k)) < Fq(α(k)) − τ, ∀k ∈ L(p,q) and
Fq(α(k′)) < Fp(α(k′)) − τ, ∀k′ ∈ L(q, p). Letting k → ∞ and
k′ → ∞, we haveFp(α∗) ≤ Fq(α∗)−τ andFq(α∗) ≤ Fp(α∗)−τ
which lead to a contradiction. It is thus impossible that both
(p,q) and (q, p) belong toI∞.

The following lemma follows from Lemmas 1 and 2.
Lemma 4:Let (p,q) be any pair of indices belonging toI∞.

Then there exists āk such that both (αp(k), αq(k)) and (αp(k+
1), αq(k+ 1)) belong to∂S for all k ∈ L(p,q) satisfyingk ≥ k̄.
Moreover, the limit point (α∗p, α

∗
q) is given by the following

equation.

(α∗p, α
∗
q) =

{
(0,0) or (C,C) if ypyq = 1
(0,C) or (C,0) if ypyq = −1

(8)

Figure 1 shows all possible transitions from (αp(k), αq(k))
to (αp(k + 1), αq(k + 1)) where (p,q) ∈ I∞ and k ∈ L(p, q) is
sufficiently large so that transition is from∂S to ∂S.

The proof of termination of SMO algorithm given by
Keerthi and Gilbert is summarized as follows: Assume first
that an execution of SMO algorithm does not stop. ThenI∞
is not empty. Let (p,q) be any pair inI∞ and consider for
example the case whereyp = yq = 1 and (α∗p, α

∗
q) = (0,0). Then

(αp(k), αq(k)) approaches to (0,0) while visiting Es and Ew

alternatively. In order for the point (αp(k), αq(k)) moves from
Es to Ew infinitely many times, (q, p) must be aτ-violating
pair infinitely many times, that is, (q, p) must belong toI∞.
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Fig. 1. Possible transitions from (αp(k), αq(k)) to (αp(k+ 1), αq(k+ 1)) for sufficiently largek ∈ L(p,q): (a) yp = yq = 1, (α∗p, α
∗
q) = (0, 0), (b) yp = yq = −1,

(α∗p, α
∗
q) = (0,0), (c) yp = yq = 1, (α∗p, α

∗
q) = (C,C), (d) yp = yq = −1, (α∗p, α

∗
q) = (C,C), (e) yp = 1, yq = −1, (α∗p, α

∗
q) = (0,C), (f) yp = −1, yq = 1,

(α∗p, α
∗
q) = (0,C), (g) yp = 1, yq = −1, (α∗p, α

∗
q) = (C, 0), (h) yp = −1, yq = 1, (α∗p, α

∗
q) = (C,0) .

On the other hand, it follows from Lemma 3 that (q, p) cannot
belong toI∞. This leads to a contradiction. Therefore, SMO
algorithm stops in a finite number of iterations.

The above proof is not correct because the point
(αp(k), αq(k)) may be able to visit two edges ofS alternatively
even though one of (p, q) and (q, p) does not belong toI∞. Let
us consider for example the case where (p,q) ∈ I∞, yp = yq = 1
and (α∗p, α

∗
q) = (0,0). Figure 2 shows a possible way that

(αp(k), αq(k)) returns fromEs to Ew. First (αp(k), αq(k)) moves
from Ew to Es when k increases fromk1 to k1 + 1. Second
(αs(k), αq(k)) (s , p) moves fromEs to Ee when k increases
from k2 to k2+1 (k2 > k1). Finally (αp(k), αr (k)) (r , q) moves
from Es to Ew when k increases fromk3 to k3 + 1 (k3 > k2).
Then the point (αp(k), αq(k)) is on the eachEw for k = k3+ 1.
More strictly speaking, the point (αp(k), αq(k)) may return
from Es to Ew infinitely many times if there exist anr (, q)
such that (αp(k), αr (k)) ∈ En ∪ Es and (αp(k + 1), αr (k+ 1)) ∈
Ew hold for infinitely many k, and an s(, p) such that
(αs(k), αq(k)) ∈ Es and (αs(k + 1), αq(k + 1)) ∈ Ee ∪ Ew hold
for infinitely manyk. Furthermore it is obvious that the point
(αp(k), αq(k)) cannot return fromEs to Ew infinitely many
times unless this condition is satisfied.

By exploring this situation in detail for all possible cases,
we can derive the following lemma.

Lemma 5: If ( p,q) ∈ I∞ then there must be anr (, q) such
that (r, p) ∈ I∞, and ans(, p) such that (q, s) ∈ I∞.

Proof: Let us consider the case whereyp = yq = 1
and α∗p = α

∗
q = 0. In this case, it follows from Lemma 4

that the point (αp(k), αq(k)) moves fromEw to Es infinitely
many times. In order for this to occur the point (αp(k), αq(k))
must return fromEs to Ew inifinitely many times, that is, 1)
0 < αp(k) < C andαp(k + 1) = 0 for infinitely manyk, and
2) αq(k) = 0 and 0< αq(k + 1) < C for infinitely many k.
Since (q, p) < I∞ from Lemma 3, the condition 1) is satisfied
only if there exists anr (, p,q) such that either i) (r, p) ∈ I∞,
yr = 1, α∗r = 0 or ii) (r, p) ∈ I∞, yr = −1, α∗r = C. This
is easily verified from Fig.1. Similarly, the condition 2) is
satisfied only if there exists ans(, p,q) such that either i)

TABLE I

Possible values of (yr , α
∗
r ) and (ys, α

∗
s).

Case (yr , α
∗
r ) (ys, α

∗
s)

(a) (1,0) or (−1,C) (1,0) or (−1,C)
(b) (1,C) or (−1,0) (1,C) or (−1,0)
(c) (1,C) or (−1,0) (1,C) or (−1,0)
(d) (1,0) or (−1,C) (1,0) or (−1,C)
(e) (1,0) or (−1,C) (1,0) or (−1,C)
(f) (1,C) or (−1,0) (1,C) or (−1,0)
(g) (1,C) or (−1,0) (1,C) or (−1,0)
(h) (1,0) or (−1,C) (1,0) or (−1,C)

(q, s) ∈ I∞, ys = 1, α∗s = 0 or ii) (q, s) ∈ I∞, ys = −1, α∗s = C.
Therefore the statement holds true. For each of the remaining
seven cases, we can easily show in a similar way that for (p,q)
to belong toI∞ there must be anr(, p,q) and ans(, p,q)
such that (r, p) ∈ I∞ and (q, s) ∈ I∞. Possible values of (yr , α

∗
r )

and (ys, α
∗
s) are summarized in Table I.

We are now ready for giving a complete proof.
Theorem 1:SMO algorithm stops in a finite number of

iterations for anyτ > 0.
Proof: The proof will be done by contradiction. Assume

that SMO algorithm does not stop. ThenI∞ is not empty. Let
(p,q) be any pair inI∞. It follows from Lemma 5 that there
must be anr (, q) such that (r, p) ∈ I∞ and ans(, p) such
that (q, s) ∈ I∞. Since (i, j) ∈ I∞ implies

Fi(α
∗) ≤ F j(α

∗) − τ,

we have

Fr (α
∗) < Fp(α∗) < Fq(α∗) < Fs(α

∗)

which means that the indicesp, q, r and s are different
from each other. Next, by applying the above argument to
the conditions (r, p) ∈ I∞ and (q, s) ∈ I∞, we see that there
must be at (, p) such that (t, r) ∈ I∞ and au (, q) such that
(s, u) ∈ I∞. Then we have

Ft(α
∗) < Fr (α

∗) and Fs(α
∗) < Fu(α∗)
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Fig. 2. An example of the way (αp(k), αq(k)) returns fromEs to Ew.

which mean that the indicesp, q, r, s, t and u are different
from each other. Since this process can be repeated infinitely
many times, we reach the conclusion that if (p,q) ∈ I∞
then I∞ must contain infinitely many pairs. However, this is
impossible because the number of pairs cannot exceedl(l−1).
Therefore, SMO algorithm necessarily stops in a finite number
of iterations.

IV. Conclusion

Convergence property of SMO algorithm was studied in this
paper. We have given a complete proof that SMO algorithm
always stops in a finite number of iterations. Although only
QP problems in the form of Problem 1 were dealt with in
this paper, it is straightforward to extend our result to more
general QP problems like that considered in [5]. Convergence
analysis of other decomposition methods for SVM learning is
a future problem.
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