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Global Convergence of Decomposition Learning
Methods for Support Vector Machines

Norikazu Takahashi,Member, IEEEand Tetsuo Nishi,Fellow, IEEE

Abstract— Decomposition methods are well-known techniques
for solving quadratic programming (QP) problems arising in
support vector machines (SVMs). In each iteration of a de-
composition method, a small number of variables are selected
and a QP problem with only the selected variables is solved.
Since large matrix computations are not required, decomposition
methods are applicable to large QP problems. In this paper,
we will make a rigorous analysis of the global convergence of
general decomposition methods for SVMs. We first introduce a
relaxed version of the optimality condition for the QP problems
and then prove that a decomposition method reaches a solution
satisfying this relaxed optimality condition within a finite number
of iterations under a very mild condition on how to select
variables.

Index Terms— Support vector machines, quadratic program-
ming, decomposition method, global convergence, termination

I. I NTRODUCTION

Support vector machines (SVMs) have recently attracted
great attention in various fields such as pattern recognition,
machine learning, neural networks, signal processing, and
so on [1]–[4]. Given a set ofl training samples, an SVM
has to solve a quadratic programming (QP) problem with
l variables. If the number of training samples are consider-
ably large, the conventional QP solvers cannot be directly
applied to SVM learning because large matrix computations
are required. To overcome this difficulty, several techniques
called decomposition methods have recently been proposed
[5]–[8]. A basic strategy commonly used in decomposition
methods is to execute two operations repeatedly until some
optimality condition is satisfied; one is to selectq variables
amongl and the other is to minimize the objective function
by updating only the the selectedq variables. The set ofq
variables selected for updating is calledthe working set. An
example of decomposition methods is the sequential minimal
optimization (SMO) algorithm proposed by Platt [5] in which
only two variables are selected for the working set in each
iteration. Another example is SVMlight [6], the most widely
used learning algorithm for SVMs, in whichq, the size of the
working set, can be set to any even number. Since large matrix
computations are not required, decomposition methods are
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useful for SVMs especially when a large number of training
samples are given.

For any decomposition method, it is very important to guar-
antee that the sequence of solutions converges to an optimal
solution within a finite number of iterations. Some theoretical
results concerning the global convergence of decomposition
methods can be found in the literature [9]–[16]. Keerthi and
Gilbert [9] analyzed the behavior of the generalized SMO
algorithm and gave a proof that the algorithm terminates within
a finite number of iterations under a pre-specified stopping
condition and tolerance1. Lin [10] proved that the sequence of
solutions obtained by an SMO algorithm converges asymptot-
ically to an optimal solution. Recently, Chenet al. [12] carried
out a comprehensive study on SMO algorithms and gave
several results on asymptotic convergence, finite termination,
shrinking and caching, and convergence rate in a general
setting on the working set selection. However, the results given
in [9]–[12] rely heavily on the fact that only two variables are
updated in each iteration, and therefore it seems difficult to
extend to the general case whereq is greater than two.

Chang et al. [13] considered a kind of decomposition
method in whichq is not restricted to two, and proved the
convergence of the method. However, the working set selection
in their method is formulated in a rather special form, and
therefore the result does not hold for other decomposition
methods. Lin [14] investigated the properties of the sequence
of solutions obtained by SVMlight in detail and proved that
any limit point of the sequence is an optimal solution. Lin [15]
also showed that a class of decomposition methods including
SVMlight stops within a finite number of iterations if a relaxed
version of stopping criterion is used. These results are im-
portant because the convergence of SVMlight was guaranteed
theoretically for the first time. However, on the other hand,
these results require a stronger assumption on the Hessian
matrix of the objective function than positive semi-definiteness
[14, Assumption IV.1], except the special case whereq = 2
[10]. It is known that this assumption is satisfied if the
Gaussian kernel is used and training samples are different
from each other, but, it is also known that this assumption
does not hold true for any kernel function if training samples
contain two or more identical data [10]. List and Simon [16]
considered a general class of QP problems which includes the
one arising in SVMs, and shown that a decomposition method
converges to an optimal solution if its working set selection
method satisfies three abstract conditions. This result is general
in the sense that no specific working set selection method is

1The authors of the present paper have recently pointed out the incomplete-
ness of their proof and given a more rigorous proof [11].
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assumed, but still requires the same assumption on the Hessian
matrix of the objective function as [14] and [15].

In this paper, we will present a new convergence proof for
general decomposition methods for SVMs. Unlike the existing
results mentioned above, we will neither restrict ourselves to
a specific working set selection nor assume any condition on
the Hessian matrix of the objective function except for positive
semi-definiteness. Instead, we will employ a relaxed version of
the Karush-Kuhn-Tucker (KKT) conditions as the optimality
condition. The relaxed version contains two positive parame-
tersτ andϵ, and approaches the strict KKT conditions as both
τ andϵ go to zero. By using the global convergence theorem in
optimization theory [17], we will prove that the decomposition
method stops within a finite number of iterations after finding
an optimal solution for anyτ andϵ if the working set contains
at least one pair of indices violating the optimality condition
in each iteration. This condition on the working set selection
is very mild and thus can be applied to many decomposition
methods.

In our convergence proof, closedness of a point-to-set map
[17] plays a central role. It is important to note that the point-
to-set map defined for the decomposition method considered
in this paper is not closed if either the strict KKT condition or
the relaxed version which has been often used so far [6], [9],
[11], [15] is employed as the optimality condition. Indeed this
is the main difficulty on proving the convergence in earlier
works. An extensive discussion is given in [14].

This paper is organized as follows. In Section II, the global
convergence theorem for general optimization problems and
some related results are reviewed for later discussions. In
Section III, the QP problem arising in SVMs, two types of
optimality conditions, and the algorithm of general decompo-
sition methods are explained. In Section IV, the relationship
between two optimality conditions is firstly discussed and then
convergence theorems for decomposition methods are proved.
In Section V, these convergence theorems are applied to some
well-known learning algorithms for SVMs. Finally, concluding
remarks are given in Section VI.

II. PRELIMINARIES

First of all, we will review a fundamental result in optimiza-
tion theory known as the global convergence theorem [17].
This theorem plays a central role in our global convergence
analysis of decomposition methods.

Let us consider the following optimization problem.
Problem 1: Find x which minimizes the objective function

f(x) under the constraintx ∈ X.
An algorithm for solving Problem 1 can be viewed as an

iterative process that generates a sequence{x(k)}∞k=0 by

x(k + 1) ∈ A(x(k)), k = 0, 1, . . . (1)

wherex(0) ∈ X is a given initial point andA is a point-to-set
map that assigns to each point in the domainX a subset ofX.
According to this definition, we can state that developing an
algorithm for solving Problem 1 is equivalent to determining
the point-to-set mapA. Apparently, the most desirable prop-
erty of the mapA is that the sequence{x(k)}∞k=0 generated

by (1) converges to an optimal solution of Problem 1 for any
initial point x(0) ∈ X.

Definition 1: Let X, Ω and A be a nonempty closed set
in Rn, a subset ofX, and a point-to-set map fromX to X,
respectively. If a continuous functionZ defined inX satisfies

if x /∈ Ω andy ∈ A(x) thenZ(y) < Z(x)

thenZ is called adescent functionfor Ω andA.
Definition 2: Let X andY be nonempty closed sets inRn

andRm, respectively. LetA be a point-to-set map fromX to
Y . The mapA is said to beclosedat x̄ if the two assumptions

1) x(k) ∈ X, ∀k and limk→∞ x(k) = x̄
2) y(k) ∈ A(x(k)), ∀k and limk→∞ y(k) = ȳ

imply that ȳ ∈ A(x̄). The mapA is said to be closed onX
if it is closed at each point inX.

In terms of these definitions, the global convergence theo-
rem can be stated as follows.

Theorem 1 ( [17]): Let X, Ω andA be a nonempty closed
set inRn, a subset ofX, and a point-to-set map fromX to X,
respectively. Let{x(k)}∞k=0 be a sequence generated by (1)
with x(0) ∈ X. Every convergent subsequence of{x(k)}∞k=0

has a limit inΩ if the following conditions are satisfied.

1) For all k, x(k) belongs to a compact setS ⊆ X.
2) There exists a descent functionZ for Ω andA.
3) The mapA is closed onX \ Ω.
Note thatΩ in Theorem 1 can be any subset ofX. In

particular, if Ω is set to the set of optimal solutions of
Problem 1, Theorem 1 gives a sufficient condition for the
sequence{x(k)}∞k=0 generated by (1) to converge to an
optimal solution. Theorem 1 is hence a very useful tool for
proving the global convergence of an algorithm. However, it
is difficult in general to develop a mapA having the global
convergence property for the set of optimal solutions. ThusΩ
is often set to, for example,{x |x is a local optimal solution}
and{x |x ∈ X, f(x) ≤ b} whereb is a constant.

The following lemma can easily be obtained.
Lemma 1:Let A : X → Y and B : X → Y be point-

to-set maps. If bothA andB are closed atx, then the map
C(x) = A(x) ∪B(x) is also closed atx.

Proof: Let {x(k)}∞k=0 be any sequence such thatx(k) ∈
X, ∀k and limk→∞ x(k) = x. Let {y(k)}∞k=0 be any se-
quence such thaty(k) ∈ C(x(k)), ∀k andlimk→∞ y(k) = y.
Then it is obvious that at least one of two statements:

1) y(k) ∈ A(x(k)) for infinitely manyk,
2) y(k) ∈ B(x(k)) for infinitely manyk

holds. We will assume without loss of generality that the first
case holds true. Let the set of allk such thaty(k) ∈ A(x(k))
be denoted byKA. Then the sequence{x(k)}k∈KA satisfies
x(k) ∈ X, ∀k ∈ KA and limk→∞,k∈KA

x(k) = x. Also, the
sequence{y(k)}k∈KA satisfiesy(k) ∈ A(x(k)), ∀k ∈ KA

andlimk→∞,k∈KA
y(k) = y. Since the point-to-set mapA is

closed atx, we havey ∈ A(x) which implies thaty ∈ C(x).
Therefore the point-to-set mapC is closed atx.

A result concerning the closedness of composite maps will
also be needed in later discussions.

Definition 3: Let A : X → Y andB : Y → Z be point-
to-set maps. The composite mapC = BA is defined as the
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point-to-set mapC : X → Z with

C(x) = ∪y∈A(x)B(y) .
Lemma 2 ( [17]): Let A : X → Y and B : Y → Z be

point-to-set maps. IfA is closed atx, B is closed onA(x)
andY is compact, then the composite mapC = BA is closed
at x.

III. D ECOMPOSITIONMETHOD

A. SVM Dual Problem

Suppose that we are given a set ofl training samples
{(pi, di)}li=1 where pi ∈ Rn is the i-th input pattern and
di ∈ {1,−1} represents the class to whichpi belongs. The
learning of an SVM with the kernel functionK(·, ·) leads to
the following QP problem (for more details on formulation,
see for example [1]).

Problem 2: Find α = [α1, α2, . . . , αl]
T which minimizes

the objective function

W (α) =
1

2

l∑
i=1

l∑
j=1

qijαiαj −
l∑

i=1

αi

under the constraints
l∑

i=1

diαi = 0 (2)

0 ≤ αi ≤ C, i = 1, 2, . . . , l (3)

whereqij = didjK(pi,pj) andC is a user-specified positive
constant.

Throughout this paper, we assume that the kernel function
K(·, ·) satisfies Mercer’s condition [1]. In this case,Q =
[qij ] ∈ Rl×l is a positive semi-definite matrix, and therefore
Problem 2 is a convex QP problem. Note that the optimal
solution of Problem 2 is not necessarily unique becauseW (α)
is not strictly convex. The feasible region of Problem 2, that
is, the set ofα satisfying (2) and (3), is denoted byS which is
apparently a compact set. Also, the set{1, 2, . . . , l} is denoted
by L.

B. Optimality Conditions

Since Problem 2 is a convex QP problem, optimal solutions
are completely characterized by the KKT conditions [17], that
is, α ∈ S is an optimal solution of Problem 2 if and only if
there exist constantsλ, µ1, µ2, . . . , µl, ν1, ν2, . . . , νl such that

∂W (α)/∂αi + λdi − µi + νi = 0
µiαi = 0
νi(αi − C) = 0
µi ≥ 0
νi ≥ 0

(4)

for all i ∈ L. As shown in [9] and [15], this condition can be
rewritten in a more compact form as

min
i∈Iup(α)

Fi(α) ≥ max
i∈Ilow(α)

Fi(α) (5)

where

Fi(α) = di

(
l∑

j=1

qijαj − 1

)
,

Iup(α) = {i |αi < C, di = 1} ∪ {i |αi > 0, di = −1} ,

Ilow(α) = {i |αi < C, di = −1} ∪ {i |αi > 0, di = 1} .

Let Ω∗ denote the set of optimal solutions of Problem 2. Then,
by using the above notations, we can expressΩ∗ as follows:

Ω∗ = {α ∈ S | min
i∈Iup(α)

Fi(α) ≥ max
i∈Ilow(α)

Fi(α)} .

In a practical situation, the optimality condition (5) is often
relaxed as

min
i∈Iup(α)

Fi(α) ≥ max
i∈Ilow(α)

Fi(α)− τ (6)

whereτ is a positive constant [6], [7], [15].
In this paper, on the other hand, we employ neither (5) nor

(6) but the inequality:

min
i∈Iϵ

up(α)
Fi(α) > max

i∈Iϵ
low(α)

Fi(α)− τ (7)

for the optimality condition, where

Iϵup(α) = {i |αi ≤ C − ϵ, di = 1} ∪ {i |αi ≥ ϵ, di = −1} ,

Iϵlow(α) = {i |αi ≤ C − ϵ, di = −1} ∪ {i |αi ≥ ϵ, di = 1} ,

and ϵ is any positive constant smaller thanC/2. Usually ϵ is
set to a sufficiently small positive number. The role ofIϵup(α)
andIϵlow(α) is to considerαi which is sufficiently close to0
(C, resp.) to be exactly0 (C, resp.). This is a technique used in
the implementation of SVMlight algorithm [6] (see the source
code2 of SVMlight developed by Joachims). In the following,
anyα ∈ S satisfying (7) is said to be a(τ, ϵ)-optimal solution.
The set of(τ, ϵ)-optimal solutions is denoted byΩ(τ,ϵ), that
is,

Ω(τ,ϵ) = {α ∈ S | min
i∈Iϵ

up(α)
Fi(α) > max

i∈Iϵ
low(α)

Fi(α)− τ} .

Also, a pair of indices(i, j) such that

i ∈ Iϵup(α), j ∈ Iϵlow(α), Fi(α) ≤ Fj(α)− τ

is called a(τ, ϵ)-violating pair atα. If a pair (i, j) is not a
(τ, ϵ)-violating pair atα, the pair is called a(τ, ϵ)-feasible
pair atα. It is obvious from these definitions thatα ∈ S is a
(τ, ϵ)-optimal solution if and only if there is no(τ, ϵ)-violating
pair atα.

Properties of the two setsΩ∗ and Ω(τ,ϵ) as well as the
relationship between them will be studied in detail in the next
section.

C. Algorithm of Decomposition Method

A basic strategy commonly used in all decomposition meth-
ods is to repeat two operations until some optimality condition
is satisfied; one is to selectq variables amongl for the working
set and the other is to minimize the objective functionW (α)
by updating only the selectedq variables. This is formally
expressed as follows:

2Source code and binaries of SVMlight are available at
http://svmlight.joachims.org/.



4

Algorithm 1: Given training samples{(pi, di)}li=1, a kernel
functionK(·, ·), a positive constantC and an integerq(≤ l),
execute the following procedures.

1) Let α(0) = 0 andk = 0.
2) If α = α(k) satisfies the optimality condition (7) then

stop. Otherwise go to Step 3).
3) Select the working setLB(k) ⊆ L = {1, 2, . . . , l} where

|LB(k)| ≤ q.
4) Find α = [α1, α2, · · · , αl]

T which minimizes the ob-
jective functionW (α) under the constraints (2), (3) and
αi = αi(k), ∀i ∈ LN (k) = L \ LB(k).

5) Setα(k+1) to an optimal solution of the optimization
problem in Step 4). Add1 to k, and go to Step 2).

We will refer to the optimization problem in Step 4) as the
subproblem in the following. Since the subproblem has at most
q variables, the amount of memory required for Algorithm 1
is linear inl, while l2 elements of the matrixQ must be stored
in memory if Problem 2 is solved at a time. This is the main
advantage of decomposition methods. As for computation
time, each subproblem can be solved faster asq decreases.
In particular, in the case whereq = 2, subproblems can be
solved analytically and hence Algorithm 1 can be implemented
without QP solvers [5]. However, it should be noted that the
number of iterations increases asq decreases in general.

It is apparent that the sequence{α(k)}∞k=1 generated by
Algorithm 1 satisfies two conditions:

α(k) ∈ S (8)

W (α(k + 1)) ≤ W (α(k)) (9)

for all k. Since the objective functionW (·) is bounded from
below inS, Eq.(9) implies that the sequence{W (α(k))}∞k=0

necessarily converges to a certain value. However, on the
other hand, it is not clear whether the sequence{α(k)}∞k=0

converges toΩ(τ,ϵ) or not.
The optimality condition for the subproblem is expressed

in the same form as (5), that is, for givenLB(k) ⊆ L and
α(k) ∈ S, α ∈ S is an optimal solution of the subproblem if
and only if the following conditions are satisfied.{

min
i∈Iup(α)∩LB(k)

Fi(α) ≥ max
i∈Ilow(α)∩LB(k)

Fi(α)

αi = αi(k), ∀i ∈ LN (k) = L \ LB(k)

IV. GLOBAL CONVERGENCEANALYSIS OF

DECOMPOSITIONMETHODS

A. Properties ofΩ∗ andΩ(τ,ϵ)

Before proceeding to the convergence analysis of Algo-
rithm 1, we study properties ofΩ∗ andΩ(τ,ϵ).

Lemma 3:Iup(α) ⊇ Iϵup(α) and Ilow(α) ⊇ Iϵlow(α) for
anyα ∈ S and ϵ ∈ (0, C/2).

Proof: We will prove only the first formula. The second
one can be proved similarly. Leti be any member ofIϵup(α).
Thenαi satisfies0 ≤ αi < C − ϵ if di = 1 and ϵ < αi ≤ C
if di = −1. In the former case,i belongs toIup(α) because
either 0 < αi < C or αi = 0 holds. In the latter case,i
belongs toIup(α) because either0 < αi < C or αi = C
holds. Therefore, any member ofIϵup(α) belongs toIup(α).
This impliesIup(α) ⊇ Iϵup(α).

Proposition 1: Ω(τ,ϵ) ⊇ Ω∗ for anyτ > 0 andϵ ∈ (0, C/2).
Proof: Let α be any point inΩ∗. Thenα satisfies (5).

It follows from Lemma 3 that

min
i∈Iϵ

up(α)
Fi(α) ≥ min

i∈Iup(α)
Fi(α) ,

max
i∈Ilow(α)

Fi(α) ≥ max
i∈Iϵ

low(α)
Fi(α) .

From these two inequalities and (5), we have

min
i∈Iϵ

up(α)
Fi(α) ≥ max

i∈Iϵ
low(α)

Fi(α)

which impliesα ∈ Ω(τ,ϵ).
Lemma 4:Let {α(n)}∞n=0 be any sequence such that

α(n) ∈ S, ∀n and limn→∞ α(n) = ᾱ. Then there exist
positive integersn1 andn2 such that

Iup(α(n)) ⊇ Iup(ᾱ), ∀n ≥ n1

Ilow(α(n)) ⊇ Ilow(ᾱ), ∀n ≥ n2

Proof: We will prove only the first formula. The second
one can be proved in the same way. Leti be any member
of Iup(ᾱ). Then ᾱi satisfiesᾱi < C if di = 1 and ᾱi > 0
if di = −1. In the former case, sinceαi(n) converges to
ᾱi, there exists a positive integern1(i) such thatαi(n) <
C, ∀n ≥ n1(i) which impliesi ∈ Iup(α(n)), ∀n ≥ n1(i). In
the latter case, it is shown in the same way that there exists
a positive integern1(i) such thati ∈ Iup(α(n)), ∀n ≥ n1(i).
Let n1 = maxi∈Iup(ᾱ) n1(i). Then all members ofIup(ᾱ)
belong toIup(α(n)), ∀n ≥ n1. This completes the proof.

This lemma was first given by Lin [14, Lemma IV.4]. We
have just restated the result in terms of our notations, and
given a proof for the sake of the reader’s convenience.

Proposition 2: The setΩ∗ is closed.
Proof: Let {α(n)}∞n=1 be any sequence such thatα(n) ∈

Ω∗, ∀n andlimn→∞ α(n) = ᾱ. It suffices for us to show that
ᾱ ∈ Ω∗. Sinceα(n) ∈ Ω∗, ∀n, we have

min
i∈Iup(α(n))

Fi(α(n)) ≥ max
i∈Ilow(α(n))

Fi(α(n)), ∀n.

It follows from this inequality and Lemma 4 that there exists
a positive integern1 such that

min
i∈Iup(ᾱ)

Fi(α(n)) ≥ max
i∈Ilow(ᾱ)

Fi(α(n)), ∀n ≥ n1.

By letting n go to infinity, we have

min
i∈Iup(ᾱ)

Fi(ᾱ) ≥ max
i∈Ilow(ᾱ)

Fi(ᾱ)

which impliesᾱ ∈ Ω∗. Therefore,Ω∗ is a closed set.
Lemma 5:Let {α(n)}∞n=0 be any sequence such that

α(n) ∈ S, ∀n and limn→∞ α(n) = ᾱ. Then there exist
positive integersn1 andn2 such that

Iϵup(α(n)) ⊆ Iϵup(ᾱ), ∀n ≥ n1

Iϵlow(α(n)) ⊆ Iϵlow(ᾱ), ∀n ≥ n2

for any ϵ ∈ (0, C/2).
Proof: We will prove only the first formula. The second

one can be proved similarly. Leti be any nonmember of
Iϵup(ᾱ). Then ᾱi satisfiesᾱi > C − ϵ if di = 1 and ᾱi < ϵ
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if di = −1. In the former case, sinceαi(n) converges to
ᾱi, there exists a positive integern1(i) such thatαi(n) >
C− ϵ, ∀n ≥ n1(i) which impliesi ̸∈ Iϵup(α(n)), ∀n ≥ n1(i).
In the latter case, it is shown in the same way that there exists
a positive integern1(i) such thati ̸∈ Iϵup(α(n)), ∀n ≥ n1(i).
Let n1 = maxi ̸∈Iϵ

up(ᾱ) n1(i). Then all nonmembers ofIup(ᾱ)
do not belong toIϵup(α(n)), ∀n ≥ n1. This is equivalent to
the first formula.

Proposition 3: The setS \ Ω(τ,ϵ) is closed for anyτ > 0
and ϵ ∈ (0, C/2).

Proof: Let {α(n)}∞n=1 be any sequence such thatα(n) ∈
S \ Ω(τ,ϵ), ∀n and limn→∞ α(n) = ᾱ. Then we have

min
i∈Iϵ

up(α(n))
Fi(α(n)) ≤ max

i∈Iϵ
low(α(n))

Fi(α(n))− τ, ∀n.

It follows from this inequality and Lemma 5 that there exists
a positive integern1 such that

min
i∈Iϵ

up(ᾱ)
Fi(α(n)) ≤ max

i∈Iϵ
low(ᾱ)

Fi(α(n))− τ, ∀n ≥ n1.

By letting n go to infinity in both sides, we have

min
i∈Iϵ

up(ᾱ)
Fi(ᾱ) ≤ max

i∈Iϵ
low(ᾱ)

Fi(ᾱ)− τ

which meansᾱ ∈ S \Ω(τ,ϵ). Therefore,Ω(τ,ϵ) is a closed set
for any τ > 0 and ϵ ∈ (0, C/2).

Proposition 4: The setΩ(τ,ϵ) converges toΩ∗ as the posi-
tive constantsτ and ϵ approach0.

Proof: One can easily see thatlimϵ→0+ Iϵup(α) =
Iup(α) and limϵ→0+ Iϵlow(α) = Ilow(α), where ϵ → 0+
meansϵ approaches0 from right. Thus we have

lim
ϵ→0+

Ω(τ,ϵ)

= {α ∈ S | min
i∈Iup(α)

Fi(α) > max
i∈Ilow(α)

Fi(α)− τ}.

Furthermore, ifτ approaches0 from right, then the right-
hand side of the above inequality converges toΩ∗, that is,
limτ→0+ limϵ→0+ Ω(τ,ϵ) = Ω∗.

B. Convergence Proof

Let Vq(α) be the family of setsM ⊆ L such that|M | ≤ q
and M contains at least one(τ, ϵ)-violating pair atα ∈ S.
Then the following lemma holds.

Lemma 6:Let {α(n)}∞n=0 be any sequence such that
α(n) ∈ S, ∀n and limn→∞ ᾱ. If ᾱ ∈ S \ Ω(τ,ϵ) then

Vq(α(n)) ⊆ Vq(ᾱ) (10)

for sufficiently largen.
Proof: Let (i, j) be any(τ, ϵ)-feasible pair atᾱ. Then

at least one of the following three conditions holds.

1) i /∈ Iϵup(ᾱ)
2) j /∈ Iϵlow(ᾱ)
3) i ∈ Iϵup(ᾱ), j ∈ Iϵlow(ᾱ), Fi(ᾱ) > Fj(ᾱ)− τ

In Case 1), it is easily seen from Lemma 5 thati /∈ Iϵup(α(n))
for sufficiently largen, which means(i, j) is a (τ, ϵ)-feasible
pair atα(n) for sufficiently largen. In Case 2), we can draw

the same conclusion as Case 1). In Case 3), it follows from
Lemma 5 and the continuity ofFi(·) that

i ∈ Iϵup(α(n)), j ∈ Iϵlow(α(n)), Fi(α(n)) > Fj(α(n))− τ

holds for sufficiently largen. This means(i, j) is a (τ, ϵ)-
feasible pair atα(n) for sufficiently largen. Therefore, in all
cases, the set of(τ, ϵ)-feasible pairs at̄α is included in that
at α(n) for sufficiently largen. Conversely, the set of(τ, ϵ)-
violating pairs atα(n) is included in that at̄α for sufficiently
largen. Eq.(10) is immediately derived from this fact and the
definition of Vq(·).

For anyM ⊆ L andα ∈ S, we define the point-to-set map
ΓM (α) as

ΓM (α) , {y ∈ S | yi = αi ∀i ∈ L \M,

min
i∈Iup(y)∩M

Fi(y) ≥ max
i∈Ilow(y)∩M

Fi(y)} .

By using this definition, the set of optimal solutions of the
subproblem in Step 4) can be expressed asΓLB(k)(α(k)). We
also define a point-to-set mapA from S to itself as follows:

A(α) =

{
∪M∈Vq(α)ΓM (α), if α /∈ Ω(τ,ϵ)

α, if α ∈ Ω(τ,ϵ) (11)

Lemma 7:For anyM ⊆ L, the point-to-set mapΓM (α) is
closed onS.

Proof: Let {α(n)}∞n=0 be any sequence such thatα(n) ∈
S, ∀n andlimn→∞ α(n) = ᾱ ∈ S. Let {β(n)}∞n=0 be any se-
quence such thatβ(n) ∈ ΓM (α(n)), ∀n andlimn→∞ β(n) =
β̄. Thenβ(n) satisfies

βi(n) = αi(n), ∀i ∈ L \M (12)

min
i∈Iup(β(n))∩M

Fi(β(n)) ≥ max
i∈Ilow(β(n))∩M

Fi(β(n)) (13)

for all n. It is obvious from (12) that

β̄i = ᾱi, ∀i ∈ L \M .

Also, by applying the argument used in the proof of Proposi-
tion 2 to (13), we have

min
i∈Iup(β̄)∩M

Fi(β̄) ≥ max
i∈Ilow(β̄)∩M

Fi(β̄) .

Thereforeβ̄ belongs toΓM (ᾱ) which implies thatΓM (α) is
closed atᾱ. Sinceᾱ can be any point inS, we can conclude
thatΓM (α) is closed onS.

Lemma 8:The point-to-set mapA(α) defined by (11) is
closed onS \ Ω(τ,ϵ).

Proof: Let {α(n)}∞n=0 be any sequence such thatα(n) ∈
S \ Ω(τ,ϵ), ∀n and limn→∞ α(n) = ᾱ ∈ S \ Ω(τ,ϵ). Let
{β(n)}∞n=0 be any sequence such thatβ(n) ∈ A(α(n)), ∀n
and limn→∞ β(n) = β̄. Then it follows from Lemma 6 that
there exists a positive integern1 such that

β(n) ∈ ∪M∈Vq(ᾱ)ΓM (α(n)), ∀n ≥ n1 . (14)

As shown in Lemma 7, the point-to-set mapΓM (α) is closed
at ᾱ for eachM ∈ Vq(ᾱ). Moreover, we easily see from
Lemma 1 that∪M∈Vq(ᾱ)ΓM (α) is closed atᾱ. This result,
together with (14), indicates that̄β ∈ ∪M∈Vq(ᾱ)ΓM (ᾱ).
ThereforeA(α) is closed atᾱ ∈ S \ Ω(τ,ϵ). Sinceᾱ can be
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any point inS \ Ω(τ,ϵ), we can conclude that the point-to-set
mapA(α) is closed onS \ Ω(τ,ϵ).

Lemma 9:The objective functionW (α) of Problem 2 is a
descent function for the set of(τ, ϵ)-optimal solutionsΩ(τ,ϵ)

and the point-to-set mapA(α) defined by (11).
Proof: Let β be any point belonging toA(α). If α /∈

Ω(τ,ϵ), there exists anM ∈ Vq(α) such thatα /∈ ΓM (α) and
β ∈ ΓM (α). This implies thatW (β) < W (α). Therefore
W (α) is a descent function forΩ(τ,ϵ) andA(α).

Now we are ready for giving the global convergence theo-
rem for Algorithm 1, which is the main result of this paper.

Theorem 2:Let {α(k)}∞k=0 be the sequence generated by
Algorithm 1. If the working setLB(k) contains at least one
(τ, ϵ)-violating pair atα(k) for all k, then any convergent
subsequence of{α(k)}∞k=0 has a limit inΩ(τ,ϵ).

Proof: From the definition of the point-to-set mapA(α)
in (11) and the assumption on the working setLB(k), it is
apparent thatα(k + 1) ∈ A(α(k)) for all k. The sequence
{α(k)}∞k=0 belongs toS which is compact. As shown in
Lemma 8, the mapA(α) is closed onS \ Ω(τ,ϵ). Also,
as shown in Lemma 9, the objective functionW (α) is a
descent function forΩ(τ,ϵ) and A(α). Therefore, we can
conclude from Theorem 1 that any convergent subsequence
of {α(k)}∞k=0 has a limit inΩ(τ,ϵ).

The following theorem is immediately derived from Theo-
rem 2 and Proposition 3.

Theorem 3:If the working setLB(k) contains at least one
(τ, ϵ)-violating pair atα(k) for all k, then Algorithm 1 stops
at Ω(τ,ϵ) within a finite number of iterations for anyτ > 0
and ϵ ∈ (0, C/2).

Remark 1:According to Proposition 4, we can makeΩ(τ,ϵ)

as close as we want toΩ∗ by settingτ and ϵ to sufficiently
small positive numbers. In other words, we can make the limit
of the sequence of solutions generated by Algorithm 1 as close
as we want to an optimal solution of Problem 2.

Remark 2: In the above discussion, we have assumed that
the subproblems can be solved exactly. However, this assump-
tion is not necessarily required. In fact, if it is guaranteed that
W (α(k+1)) is less thanW (α(k)) as far asLB(k) contains
at least one(τ, ϵ)-violating pair atα(k), then Theorems 2 and
3 still hold. This weaker condition will be useful in practical
situations where the subproblems are solved numerically and
thus only approximate solutions can be obtained.

Remark 3: If we employ (6) instead of (7) for the optimality
condition, the global convergence of Algorithm 1 cannot be
proved as above because the point-to-set map corresponding
to (11) is not closed in this case.

Let us next consider the case where(τ, ϵ)-violating pairs are
not always contained inLB(k). Theorem 2 does not hold in
this case becauseW (α) is not a descent function forΩ(τ,ϵ) and
A(α) defined by (11). However, if at least one(τ, ϵ)-violating
pair is selected for the working set within a certain period of
iterations, Algorithm 1 still has the convergence property. This
is formally stated as follows.

Theorem 4:Let {α(k)}∞k=0 be the sequence generated by
Algorithm 1. If there exists a positive integerm such that one
of m setsLB(k), LB(k + 1), . . . , LB(k + m − 1) contains
at least one(τ, ϵ)-violating pair at α(k) for all k, then

Algorithm 1 stops atΩ(τ,ϵ) within a finite number of iterations
for any τ > 0 and ϵ ∈ (0, C/2).

Proof: Let us define the point-to-set mapAm(α) as

Am(α)

=

{
∪(M1,...,Mm)∈V m

q (α)ΓMm · · ·ΓM1(α), if α /∈ Ω(τ,ϵ)

α, if α ∈ Ω(τ,ϵ)

where V m
q (α) is the set of all sequences of the sets

(M1,M2, . . . ,Mm) such that 1)Mi ⊆ L, i = 1, 2, . . . ,m,
2) |Mi| ≤ q, i = 1, 2, . . . ,m, and 3) at least oneMi contains
at least one(τ, ϵ)-violating pair atα. Let {α̃(k)}∞k=0 be the
sequence defined bỹα(k) = α(mk). Then the sequence
{α̃(k)}∞k=0 satisfies

α̃(k + 1) ∈ Am(α̃(k)) ⊆ S, ∀k .

By applying Lemmas 1, 2, 6 and 7 we can easily show that
Am(α) is closed onS \Ωτ,ϵ. Moreover, it follows from Prop-
erty 3) ofV m

q (α) mentioned above that the objective function
W (α) is a descent function forΩ(τ,ϵ) andAm(α). Thus, by
Theorem 1, any convergent subsequence of{α̃(k)}∞k=0 has a
limit in Ω(τ,ϵ). SinceS \ Ω(τ,ϵ) is closed for anyτ > 0 and
ϵ ∈ (0, C/2), the convergent subsequence entersΩ(τ,ϵ) within
a finite number of iterations.

V. A PPLICATION TO EXISTING LEARNING ALGORITHMS

In this section, we will discuss the global convergence of
some existing decomposition methods by applying the results
obtained in the previous section.

A. Generalized SMO Algorithm

Generalized SMO algorithm [9] is a special type of decom-
position methods in which the optimality condition is given
by (6) and the working set is composed of a pair of indices
(i, j) violating (6) forα = α(k), that is,

i ∈ Iup(α(k)), j ∈ Ilow(α(k)), Fi(α(k)) < Fj(α(k))− τ .

It has already been proved that this algorithm always stops
within a finite number of iterations [9], [11]. We will now show
that almost the same result can be derived by using a theorem
in the previous section. To do so, we need to modify the
generalized SMO algorithm slightly; the optimality condition
is given by (7) instead of (6), and the working set is composed
of a (τ, ϵ)-violating pair atα(k) whereτ andϵ are sufficiently
small positive numbers. Then it is easily seen from Theorem 3
that the algorithm stops within a finite number of iterations.

B. SVMlight

SVMlight proposed by Joachims [6] is one of the most
widely used decomposition methods for SVMs. The optimality
condition used in SVMlight is given by (6) and the working
set selection is done in a systematic way as follows:

Algorithm 2: Given an even numberq(≤ l) and the current
solutionα(k) ∈ S, execute the following procedures.

1) Sort{Fi(α(k))}li=1 in decreasing order. Let the list of
subscripts of the sorted list bei1, i2, . . . , il.
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2) SetLB(k) = ∅, v = 0, m = 1 andn = l.
3) While im ̸∈ Ilow(α(k)) andm ≤ l, add1 to m.
4) While in ̸∈ Iup(α(k)) andn ≥ 1, subtract1 from n.
5) If m ≥ n then stop. Otherwise, add2 to v and add

{m,n} to the setLB(k).
6) If v = q then stop. Otherwise, go to Step 3).
For more details on the working set selection of SVMlight,

please consult [14].
As well as in case of the generalized SMO algorithm, we

need to modify both the optimality condition and the working
set selection in SVMlight in order to apply the results in
the previous section; the optimality condition is given by (7)
instead of (6) and the working set selection is done by the
following algorithm:

Algorithm 3: Given an even numberq(≤ l) and the current
solutionα(k) ∈ S, execute the following procedures.

1) Sort{Fi(α(k))}li=1 in decreasing order. Let the the list
of subscripts of the sorted list bei1, i2, . . . , il.

2) SetLB(k) = ∅, v = 0, m = 1 andn = l.
3) While im ̸∈ Iϵlow(α(k)) andm ≤ l, add1 to m.
4) While in ̸∈ Iϵup(α(k)) andn ≥ 1, subtract1 from n.
5) If m ≥ n then stop. Otherwise, add2 to v and add

{m,n} to the setLB(k).
6) If v = q then stop. Otherwise, go to Step 3).
We will show thatLB(k) obtained by Algorithm 3 contains

at least one(τ, ϵ)-violating pair ifα(k) ∈ S\Ω(τ,ϵ). Recall that
α ∈ Ω(τ,ϵ) if and only if (7) holds. Thus ifα(k) ∈ S \Ω(τ,ϵ),
the following inequality holds.

min
i∈Iϵ

up(α(k))
Fi(α(k)) + τ ≤ max

i∈Iϵ
low(α(k))

Fi(α(k)) (15)

Let m1 be the value ofm at the instance when Algorithm 3
first exits Step 3). Thenim1 ∈ Iϵlow(α(k)) andFim1

(α(k)) =
maxi∈Iϵ

low(α(k)) Fi(α(k)). Also, let n1 be the value ofn
at the instance when Algorithm 3 first exits Step 4). Then
in1

∈ Iϵup(α(k)) andFin1
(α(k)) = mini∈Iϵ

up(α(k)) Fi(α(k)).
It follows from (15) thatFn1(α(k))+ τ ≤ Fm1(α(k)) which
implies that(n1,m1) is a(τ, ϵ)-violating pair atα(k) and that
m1 < n1. ThereforeLB(k) obtained by Algorithm 3 contains
at least one(τ, ϵ)-violating pair atα(k).

By applying Theorem 3, we can conclude that SVMlight

with the optimality condition (7) and the working set selection
described by Algorithm 3 stops within a finite number of
iterations after finding a(τ, ϵ)-optimal solution.

Remark 4: In the software package SVMlight the optimality
condition and the working set selection are not implemented
exactly as described in (6) and Algorithm 2, respectively, for
practical reason. Difference is in the definition ofIup(α) and
Ilow(α). In the software, the following definitions are used:

Iup(α) = {i |αi < C − ϵ, di = 1} ∪ {i |αi > ϵ, di = −1} ,

Ilow(α) = {i |αi < C − ϵ, di = −1} ∪ {i |αi > ϵ, di = 1}

where ϵ is a sufficiently small positive number. It is worth
noting that these definitions are same asIϵup(α) andIϵlow(α)
except for the equal sign. The results of this paper show that
the relaxation of the optimality condition has not only practical
but also theoretical significance.

VI. CONCLUDING REMARKS

Global convergence property of decomposition methods
for SVMs are studied. We have first introduced a relaxed
optimality condition, and then proved a decomposition method
stops within a finite number of iterations after finding an
optimal solution if the working set selection satisfies a certain
condition. We have also shown that the generalized SMO
algorithm and SVMlight satisfy this condition and thus have
the global convergence property. Since our new convergence
theorems require little restriction on the working set selection
method, the authors believe that they can be applied to a wide
class of decomposition methods.
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