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Global Convergence of Decomposition Learning
Methods for Support Vector Machines

Norikazu Takahashiviember, IEEEand Tetsuo NishiFellow, IEEE

Abstract—Decomposition methods are well-known techniques useful for SVMs especially when a large number of training
for solving quadratic programming (QP) problems arising in samples are given.

support vector machines (SVMs). In each iteration of a de- . . . :
composition method, a small number of variables are selected For any decomposition method, it is very important to guar

and a QP problem with only the selected variables is solved. antee that the sequence of solutions converges to an optimal
Since large matrix computations are not required, decomposition solution within a finite number of iterations. Some theoretical
methods are applicable to large QP problems. In this paper, results concerning the global convergence of decomposition
we will make a rigorous analysis of the global convergence of nethods can be found in the literature [9]-[16]. Keerthi and

general decomposition methods for SVMs. We first introduce a . . .
relaxed version of the optimality condition for the QP problems Gilbert [9] analyzed the behavior of the generalized SMO

and then prove that a decomposition method reaches a solution @lgorithm and gave a proof that the algorithm terminates within

satisfying this relaxed optimality condition within a finite number @ finite number of iterations under a pre-specified stopping
of iterations under a very mild condition on how to select condition and toleranéelLin [10] proved that the sequence of

variables. solutions obtained by an SMO algorithm converges asymptot-

Index Terms— Support vector machines, quadratic program- ically to an optimal solution. Recently, Chenal.[12] carried

ming, decomposition method, global convergence, termination out a comprehensive study on SMO algorithms and gave

several results on asymptotic convergence, finite termination,

shrinking and caching, and convergence rate in a general

|. INTRODUCTION setting on the working set selection. However, the results given

Support vector machines (SVMs) have recently attract&y [91-112] rely heavily on the fact that only two variables are
great attention in various fields such as pattern recognitid‘f‘ﬁdatgd |nheach |ter:|:1t|on, ang therefore it Eeems difficult to
machine learning, neural networks, signal processing, afigcnd t0 the general case wheres greater than wo.
so on [1]-[4]. Given a set of training samples, an SVM Chang et al_. [13] con3|dere_d a kind of decomposition
has to solve a quadratic programming (QP) problem wifRethod in whichq is not restricted to two, and proved thg
| variables. If the number of training samples are considefonvergence of the method. However, the working set selection
ably large, the conventional QP solvers cannot be direclftf% their method is formulated in a rather special form, and
applied to SVM learning because large matrix computatiofderefore the result does not hold for other decomposition
are required. To overcome this difficulty, several techniquéithods. Lin [14] investigated the properties of the sequence
called decomposition methods have recently been propo&dsolutions obtained by SVM™ in detail and proved that
[5]-[8]. A basic strategy commonly used in decompositiof"Y limit point of the sequence is an optllr_nal solution. IT|n [15_]
methods is to execute two operations repeatedly until sofd§© ls_h}owed that a class of decomposition methods including
optimality condition is satisfied; one is to selecvariables SVM'sh® stops within a finite number of iterations if a relaxed
among! and the other is to minimize the objective functiorYerSion of stopping criterion is used. These results are im-
by updating only the the selectedvariables. The set of Portant because the convergence of S¥ was guaranteed
variables selected for updating is calléee working setAn theoretically for the first time. However, on the other hand,
example of decomposition methods is the sequential mininfdPSe results require a stronger assumption on the Hessian
optimization (SMO) algorithm proposed by Platt [5] in whicHMatrix of the objective function than positive semi-definiteness
only two variables are selected for the working set in eadh4: Assumption IV.1], except the special case where 2
iteration. Another example is SVt [6], the most widely [10]. It is known that this assumption is satisfied if the
used learning algorithm for SVMs, in whiaf the size of the Gaussian kernel is us_eq and training sample_s are diffe_rent
working set, can be set to any even number. Since large maff@m €2ach other, but, it is also known that this assumption

computations are not required, decomposition methods &ees not hold true for any kernel function if training samples
contain two or more identical data [10]. List and Simon [16]
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assumed, but still requires the same assumption on the Hes&igr{1) converges to an optimal solution of Problem 1 for any
matrix of the objective function as [14] and [15]. initial point z(0) € X.

In this paper, we will present a new convergence proof for Definition 1: Let X, Q and A be a nonempty closed set
general decomposition methods for SVMs. Unlike the existing R™, a subset ofX, and a point-to-set map fronX to X,
results mentioned above, we will neither restrict ourselves tespectively. If a continuous functioi defined inX satisfies
a specific working set selection nor assume any condition on .
thepHessian matrii of the objective function exce)pl)t for positive if x ¢ Qandy € A(z) thenZ(y) < Z(x)
semi-definiteness. Instead, we will employ a relaxed versionfen Z is called adescent functiorfior 2 and A.
the Karush-Kuhn-Tucker (KKT) conditions as the optimality Definition 2: Let X andY be nonempty closed sets "
condition. The relaxed version contains two positive paramgndR™, respectively. LetA be a point-to-set map fromX to
tersT ande, and approaches the strict KKT conditions as botiT, The mapA is said to beclosedat z if the two assumptions
7 ande go to zero. By using the global convergence theorem in 1) z(k) € X, Yk andlimy_,o0 z(k) = @
optimization theory [17], we will prove that the decomposition 2y (1) ¢ A(x(k)), Wk andlimy . y(k) = g

method stops within a finite number of iterations after ﬁndinﬁ’nply thatg € A(Z). The mapA is said to be closed o
an optimal solution for any ande if the working set contains if it is closed at each point itk

at least one pair of indices violating the optimality condition In terms of these definitions, the global convergence theo-

in each iteration. This condition on the working set selection
rem can be stated as follows.

is very mild and thus can be applied to many decomposition.l.heorem 1 ([17]):Let X, Q and A be a nonempty closed

mT;hSSrS.conver ence proof, closedness of a point-to-set mSet INR", a subset ofY,, and a point-to-set map fro to X,

[17] plays a cengt]ral rolg It ié important to notepthat the point- spectively. Le{x(k)}i—, be a sequence generated by (1)
; ) i, - with (0) € X. Every convergent subsequence{af(k)} 72,

to-set map defined for the decomposition method con3|derﬁ s a limit inQ if the following conditions are satisfied.

in this paper is not closed if either the strict KKT condition or

the relaxed version which has been often used so far [6], [9],;; 'Ilz'ﬁre?e” ];;i:snt(sk?a %ﬂgzgﬁtt?ugcﬁ%nfgfcé s:wtdgAX :

[11], [15] is employed as the optimality condition. Indeed this h = ol
is the main difficulty on proving the convergence in earlier 3) The mapA is closed onX \ €.
Note thatf2 in Theorem 1 can be any subset &f. In

works. An extensive discussion is given in [14]. icular. if Q i H : imal soluti ;
This paper is organized as follows. In Section I, the globglart'cu ar, 1 IS set to _t e set o (_)ptlma SQ.Ut'OnS 0
blem 1, Theorem 1 gives a sufficient condition for the

convergence theorem for general optimization problems al P 1) Yoo 4 by (1
some related results are reviewed for later discussions. Sﬁlquence{a:( )}iZo generated by (1) to converge to an

Section 11l the QP problem arising in SVMs, two types Opptimal solution. Theorem 1 is hence a very useful tool fo'r
optimality conditions, and the algorithm of general decomp@-m\('r_'g th_e global convergence of an algorl_thm. However, It
sition methods are explained. In Section IV, the relationshi difficult in general to develop a maA_ having the global
between two optimality conditions is firstly discussed and th nvergence property for the set of optimal splunons. mus
convergence theorems for decomposition methods are prm)éoo.ften set to, for examplé |« is a local optimal solutioh

In Section V, these convergence theorems are applied to so?ﬁ‘g {z|z € X, f(x) < b} whereb is a constant.

well-known learning algorithms for SVMs. Finally, concluding 1€ following Izmma can eas"é’ be'obtalned. be oo
remarks are given in Section VI. Lemma 1:Let : X - Y andB : X — Y be point-

to-set maps. If botrA and B are closed atr, then the map
C(x) = A(x) U B(z) is also closed at.
Proof: Let {x(k)}7°, be any sequence such thek) €
First of all, we will review a fundamental result in optimiza-X, Yk and lim;_,.. (k) = . Let {y(k)};2, be any se-
tion theory known as the global convergence theorem [1%uence such thai(k) € C(x(k)), Vk andlimy_, y(k) = y.
This theorem plays a central role in our global convergenddien it is obvious that at least one of two statements:

Il. PRELIMINARIES

analysis of decomposition methods. 1) y(k) € A(x(k)) for infinitely many k,
Let us consider the following optimization problem. 2) y(k) € B(x(k)) for infinitely many k&
Problem 1: Find = which minimizes the objective function ho|gs, we will assume without loss of generality that the first
f(z) under the constraint € X. _ case holds true. Let the set of &lisuch thaty(k) € A(z(k))
. An_algonthm for solving Problem 1 can be viewed as afe denoted byK 4. Then the sequencgr(k)} e, Satisfies
iterative process that generates a sequadé)}° , by x(k) € X, Vk € K4 andlimy_, o0 rex, (k) = z. Also, the
ok +1) € A(z(k)), k=0,1,... ) sequence{y(k)}rex, satisfiesy(k) € A(x(k)), Vk € Ky

andlimy_, o rer, Y(k) = y. Since the point-to-set mag is
wherez(0) € X is a given initial point and4 is a point-to-set closed ate, we havey € A(x) which implies thaty € C(x).
map that assigns to each point in the dom&ima subset of. Therefore the point-to-set ma@ is closed ate. ]
According to this definition, we can state that developing an A result concerning the closedness of composite maps will
algorithm for solving Problem 1 is equivalent to determininglso be needed in later discussions.
the point-to-set mapA. Apparently, the most desirable prop- Definition 3:Let A: X — Y and B : Y — Z be point-
erty of the mapA is that the sequencgr(k)};° , generated to-set maps. The composite m&p= BA is defined as the



point-to-set mapC' : X — Z with Lp(a)={ila; < C, d; =1} U{i|a; >0, d; = —1},

C(x) = Uyea(a)B(y) .- Dow(a) = {i|o; < C,di = -1} U {i|ey >0,d; =1}.
Lemma 2 ([17]):Let A: X - Y andB : Y — Z be
point-to-set maps. IfA is closed atr, B is closed onA(z) LetQ* denote the set of optimal solutions of Problem 2. Then,
andY is compact, then the composite m&p= B A is closed by using the above notations, we can expr@ssas follows:
tx.
atw '={aeS| min Fi(a)> max F;(a)}.
i€ lyp (o) 1€ Now ()
I1l. DECOMPOSITIONMETHOD

A. SVM Dual Problem

Suppose that we are given a set loftraining samples
{(pi,d;)},_, wherep; € R™ is the i-th input pattern and , YIHH(I Fi(e) 2 _max )Fi(a) -7 (6)
d; € {1,—1} represents the class to whigh belongs. The il (e) iEhow(x
learning of an SVM with the kernel functioK (-, -) leads to Wherer is a positive constant [6], [7], [15].
the following QP problem (for more details on formulation, In this paper, on the other hand, we employ neither (5) nor

In a practical situation, the optimality condition (5) is often
relaxed as

see for example [1]). (6) but the inequality:
Problem 2: Find o = [, as, ..., )T which minimizes .
the objective function ielg (o) Fi(er) > el () Fi(e) =7 7
[ 1 - .
1 for the optimality condition, where
W(a) = 5 Z Z qij Q0 — Q5 p y
i=1j=1 i=1 I(a) ={ila; <C—edi =1} U{i|la; > €,d; = —1},

under the constraints . ) ]

. Igw(a) ={ila; <C—e€di = -1} U{ila; > e,d; = 1},
> die; =0 (2) ande is any positive constant smaller thaty2. Usually e is
i=1 set to a sufficiently small positive number. The role/gf(cx)

0<o; <C, 1=1,2,...,1 (3) andIf  («) is to considery; which is sufficiently close td)

(C, resp.) to be exactly (C, resp.). This is a technique used in
the implementation of SVNEM algorithm [6] (see the source
gﬂdé of SVMlieht developed by Joachims). In the following,
anya € S satisfying (7) is said to be @, €)-optimal solution.
Jhe set of(, ¢)-optimal solutions is denoted bR (™), that

whereg;; = d;d,; K(p;,p;) andC' is a user-specified positive
constant.

Throughout this paper, we assume that the kernel functi
K(-,-) satisfies Mercer's condition [1]. In this cas€ =
[¢:;] € R'*! is a positive semi-definite matrix, and therefor
Problem 2 is a convex QP problem. Note that the optimﬁ'
solution of Problem 2 is not necessarily unique becatigex) Q) ={a eS| min Fi(a)> max Fy(a)—r1}.
is not strictly convex. The feasible region of Problem 2, that ey, (@) el (a)
is, the set ofx satisfying (2) and (3), is denoted I$ywhich is
apparently a compact set. Also, the §&t2,...,1} is denoted
by L. i€ Iip(@), j € Iy (@), Fi(a) < Fj(a) =7

Also, a pair of indiceq7, j) such that

B. Optimality Conditions is called a(r,¢)-violating pair ata. If a pair (i,4) is not a
.Sin Problem 2 i vex OP broblem. ootimal solut (T,_e)-violatirjg pair ata, the pair is qa!lgd ar, e)—feas_ible
ce Problem 2 is a convex QP problem, optimal solutions,ir' 4t It is obvious from these definitions that € S is a

are completely characterized by the KKT conditions [17], th:i\;’ ¢)-optimal solution if and only if there is ngr, ¢)-violating
is, « € S is an optimal solution of Problem 2 if and only if

X pair atc.
there exist constants, 1, ua, - - ., ti1, ¥1, Ve, . .., v Such that Properties of the two set®* and Q™9 as well as the
OW(a)/0c; + Ad; — i +v; =0 relationship between them will be studied in detail in the next
pic; =0 section.
V; (Oéi — C) =0 (4)
"V“ 58 C. Algorithm of Decomposition Method

) : . . A basic strategy commonly used in all decomposition meth-
for a_II ! E_L' As shown in [9] and [15], this condition can beods is to repeat two operations until some optimality condition
rewritten in a more compact form as

is satisfied; one is to selegtvariables amongfor the working

“min Fj(a) > max Fj(a) (5) set and the other is to minimize the objective functidi{c)
i€lup(ex) i€liow (@) by updating only the selecteg variables. This is formally
where expressed as follows:

!
Fi(a) =d; Zqijaj_l ) 2Source code and binaries of SVt are available at
j=1 http://svmlight.joachims.org/.



Algorithm 1: Given training sample§(p;, d;)}._,, akernel  Proposition 1: Q("¢) D Q* for anyr > 0 ande € (0,C/2).

function K (-, -), a positive constant’ and an integer(< 1), Proof: Let a be any point inQ*. Then « satisfies (5).
execute the following procedures. It follows from Lemma 3 that
1) Leta(0) =0 andk = 0. . .
. g . . . Fi > Fi )
2) If a = a(k) satisfies the optimality condition (7) then iEII?:,I(la) (a) 2 ie?::,r(la) (o)
stop. Otherwise go to Step 3).
) |SEIe(Zt) Ithe working setp(k) C L = {1,2,...,1} where ichm (@) File) 2 el e) Fi(e).
LB S q. . -~
4) Find o = [, s, -+ , )7 which minimizes the ob- From these two inequalities and (5), we have
jective functionW («) under the constraints (2), (3) and min Fj(a) > max Fi(a)
a; = ai(k), Vi € Ly(k) = L\ L(k). i€lip(@) i€l fow (@)

5) Seta(k +1) to an optimal solution of the optimization ,ich impliesa € Q7). -

problem in Step 4). Add to k, and go to Step 2). Lemma 4:Let {a(n)}>, be any sequence such that

We will refer to the optimization problem in Step 4) as the, n) € S, vn and lim a(n) = @ Then there exist
subproblem in the following. Since the subproblem has at m%igsitive in{egerml andZ:Cs)Ouch that

q variables, the amount of memory required for Algorithm
is linear inl, while [? elements of the matri® must be stored Iip(a(n)) 2 Iyp(@), Yn > mq
in memory if Problem 2 is solved at a time. This is the main
advantage of decomposition methods. As for computation

time, each subproblem can be solved faster afecreases. . .
In particular, in the case wherg = 2, subproblems can be one can be proved n the same way. liebe any member
’ ’ of I,,(a). Thena; satisfiesa; < C if d; =1 anda; > 0

solved analytically and hence Algorithm 1 can be implementﬂefd d‘»lp— “1. In the former case, since;(n) converges to
without QP solvers [5]. However, it should be noted that the ™, ' ' i 9

number of iterations increases @slecreases in general. &% there exists a positive integer; (i) such thata;(n) <

It is apparent that the sequenée(k)}7>, generated by C, ¥n > m (i) W.h'(.:h |mpI|es_z € Lup(a(n)), ¥n > ny(i). In .
. - L the latter case, it is shown in the same way that there exists
Algorithm 1 satisfies two conditions:

a positive integer (i) such thati € I,,(ax(n)), Vn > ny(i).

alk)e S (8) Letn; = maxes, (a)n1(i). Then all members of (@)
belong tol,,(a(n)), Vn > ny. This completes the proofm

W(alk+1)) < W(a(k) ©) This Iemrrr)1(a \Eva)s? first given by Lin [14, Lemma IV.4]. We

for all k. Since the objective functiofi/(-) is bounded from have just restated the result in terms of our notations, and

below in S, Eq.(9) implies that the sequen¢® (a(k))}72,, given a proof for the sake of the reader’s convenience.

necessarily converges to a certain value. However, on theProposition 2: The setQ* is closed.

other hand, it is not clear whether the sequefiogk)}?° Proof: Let{a(n)}52, be any sequence such theatn) €

converges td2(™¢) or not. Q*, Vn andlim,,_, - a(n) = a. It suffices for us to show that

The optimality condition for the subproblem is expressed € Q*. Sincea(n) € Q*, Vn, we have

in the same form as (5), that is, for givdhg (k) C L and .

a(k) € S, a € S is an optimal solution of the subproblem if iefﬂlf(n))Fi(a(n)) Z ieflﬁfj?;‘(n))Fi(a(“» vn.

and only if the following conditions are satisfied.

Ilow(a(n)) 2 Ilow(d)y Vn > ng
Proof: We will prove only the first formula. The second

It follows from this inequality and Lemma 4 that there exists

{ ~ min Fi(a) >  max Fi(a) a positive integen; such that
i€l (a)NLp (k) 1€ 000 (@)L g (k)
a; = a;(k), Vi€ Ln(k)=L\Lp(k) min  Fj(a(n)) > max Fj(a(n)), Vn > n;.
i€l (&) 1€ Dow (&)
IV. GLOBAL CONVERGENCEANALYSIS OF By letting » go to infinity, we have
DECOMPOSITIONMETHODS . B B
A. Properties of2* and Q(7¢) ierlrjil(l@) Fi(e) = ie%}i)((d) Fi(e)

Before proceeding to the convergence analysis of Alg@ich impliesa € Q*. ThereforeQ* is a closed set.  m
rithm 1, we study properties @2 and (™). Lemma 5:Let {a(n)}>°, be any sequence such that
Lemma 3: [y () 2 I, (e) and fow(a) 2 Ijy (@) for  o(n) € S ¥n and lim, o a(n) = &. Then there exist

any o € S ande € (0,C/2). _ positive integersy; andns such that
Proof: We will prove only the first formula. The second
one can be proved similarly. Létbe any member of{, (c). Iip(a(n)) C I (&), Yn > ng
Thenq; satisfies) < a; < C—cif d; =1 ande < a; < C . c -
if d; = —1. In the former case; belongs tol,,(a) because Bow (@(n) € fiow (&), ¥ 2 2
either0 < a; < C or a; = 0 holds. In the latter case, for anye € (0,C/2).
belongs tol,, (o) because eithed < a; < C or o = C Proof: We will prove only the first formula. The second

holds. Therefore, any member &f () belongs tol,,(«). one can be proved similarly. Let be any nonmember of

This implies I, (a) 2 15, (). B [, (a). Thenq; satisfiesa; > C —eif d; =1 anda; < e



if d; = —1. In the former case, since;(n) converges to the same conclusion as Case 1). In Case 3), it follows from
a;, there exists a positive integer; (i) such thata;(n) > Lemma 5 and the continuity af; () that

C —e, Yn > ny (i) which impliesi ¢ IS (a(n)), Yn > ny (7). ) . . .

In the latter caée), it is shown in the sgu('ne( V\a;y that the(re) exists€ Lup(@(n)). 7 € Loy (ex(n)), Fi(eu(n)) > Fj(a(n)) — 7

a positive integen, (i) such thati ¢ I (a(n)), Vn > n1(i). holds for sufficiently largen. This means(i, j) is a (,¢)-

Let ny = maxgre (&) n1(i). Then all nonmembers df,,(a) feasible pair atx(n) for sufficiently largen. Therefore, in all

do not belong tol,(ax(n)), ¥n > n;. This is equivalent to cases, the set dfr, ¢)-feasible pairs atx is included in that

the first formula. B at o(n) for sufficiently largen. Conversely, the set dfr, €)-
Proposition 3: The setS \ (™) is closed for anyr > 0 violating pairs at(n) is included in that atx for sufficiently
ande € (0,C/2). largen. Eq.(10) is immediately derived from this fact and the
Proof: Let{a(n)};2, be any sequence such thatn) €  definition of V,(-). [ |
S\ Q9 vn andlim,_, ., a(n) = &. Then we have For anyM C L anda € S, we define the point-to-set map
) I'y(a) as
. min Fi(a(n)) < max Fi(a(n)) — T, Vn.
iy )  Tul@) 2 {yes|yi=a Vie L\ M,
It follqus from this inequality and Lemma 5 that there exists  min _ F(y)> max Fi(y)}.
a positive integer; such that i€lup (y)NM i€how (y)NM
. By using this definition, the set of optimal solutions of the
: < : - > nq. ;
iefr?ir(la) Fi(a(n)) < ie%{i)((d) Fi(a(n)) =7, vn 2 m subproblem in Step 4) can be expressed as ) (a(k)). We

. s , also define a point-to-set mag from S to itself as follows:
By letting n go to infinity in both sides, we have

_ ) Unev, (), ifad Qe
min Fj(@) < max Fi(a)—rT Ala) = { o if o € Q) 1)
ielg, (@) i€l (&) ’
Lemma 7:For anyM C L, the point-to-set map'y;(«) is

which meansx € S\ Q7). Therefore (™) is a closed set
forany T > 0 ande € (0,C/2).

Proposition 4: The setQ(™¢) converges td)* as the posi-
tive constants- and e approacho.

closed onsS.

Proof: Let{a(n)}22, be any sequence such tleatn) €
S, Yn andlim,,_, a(n) = & € S. Let{B(n)}>2, be any se-
quence such thg#(n) € Ty (a(n)), Vr andlim, - B(n) =

Proof: 'One can easily see thdtm. o I5,(a) = 3. Theng(n) satisfies
Ip(a) and lim_,o4 I{ (@) = Liow(ar), wheree — 0+
meanse approache$ from right. Thus we have Bi(n) = ai(n), Vie L\M (12)
: T,€ i F; > F;(B(n 13
li, 00 AL OIE N SR OIS
={ac S| min Fj(a)> max Fj(a)-T1}. for all n. It is obvious from (12) that
1€1up () 1€ ow ()

: _ _ Bi=a;, VYie L\M.
Furthermore, ifT approacheg) from right, then the right- _ _ _
hand side of the above inequality converges(Xg that is, Also, by applying the argument used in the proof of Proposi-
lim, o lime_ oy Q) = Q. m tion 2 to (13), we have

min  F;(B)> max Fi(8).

B. Convergence Proof i€lup (B)NM T i€how(B)NM

Let V,(cx) be the family of setsi/ C L such that M| < g Thereforeﬁ bglonqs tol'ys (&) WhiCh implies thatl' /() is
and M contains at least onér, ¢)-violating pair ata € S. closed atx. Sincea can be any point irt, we can conclude

Then the following lemma holds. thatT's/(a) is closed onS. . .
Lemma 6:Let {a(n)}>2, be any sequence such that Lemma 8:The point-to-set mapA(«) defined by (11) is

: . (r6) closed onS \ (79,
a(n) € 5, Vn andlim,o &. If & € $3 7 then Proof: Let {a(n)}52, be any sequence such thatn) €
V,(a(n)) C V(&) (10) S\ Q™9 vn andlim, ;o a(n) = & € S\ Q). Let
o {B(n)}>2, be any sequence such thdtn) € A(a(n)), Vn
for sufficiently larger. andlim,, ,~, B(n) = B. Then it follows from Lemma 6 that

Proof. Let (i,j) be any(r,¢)-feasible pair atx. Then ihere exists a positive integer such that
at least one of the following three conditions holds.

1) i ¢ ISp(d) ,@(TL) S U]\,fevq(&)FM(a(n)), Vn>mnqg. (14)
2) j ¢ I (a) As shown in Lemma 7, the point-to-set mBp; () is closed
3) ie Iy (a), j € I, (a), Fi(a) > Fj(a) — 7 at & for eachM € V,(a). Moreover, we easily see from

In Case 1), it is easily seen from Lemma 5 that IS (c(n)) Lemma 1 thatUyscv,a)l'm () is closed ata. This result,
for sufficiently largen, which meang(, j) is a(r, ¢)-feasible together with (14), indicates thaB € Uysev,(al'm(@).
pair ata(n) for sufficiently largen. In Case 2), we can draw ThereforeA(c) is closed atax € S\ (™). Sincea can be



any point inS \ (), we can conclude that the point-to-sefAlgorithm 1 stops af2(™) within a finite number of iterations

map A(a) is closed onS \ Q7). m foranyr >0 ande € (0,C/2).

Lemma 9:The objective functioiV («) of Problem 2 is a Proof: Let us define the point-to-set map™ () as
descent function for the set ¢f, ¢)-optimal solutionsQ (™)
and the point-to-set mag () defined by (11). A" (o)

Proof: Let.ﬂ be any point belonging tAA (). If « ¢ _ [ Yon...mevr@lu, - Ty (o), ifag Qo

Q(m9), there exists aM € V, () such thata ¢ Tar(e) and = | 4, if a0 € Q)
B € Ty(a). This implies thatiV(3) < W («). Therefore _
W(a) is a descent function foR(™9) and A(a). m Where V(o) is the set of all sequences of the sets

Now we are ready for giving the global convergence theéM1, Mz, ..., My) such that 1)M; € L, i = 1,2,...,m,
rem for Algorithm 1, which is the main result of this paper.2) |Mi| < ¢, i=1,2,...,m, and 3) at least on&/; contains

Theorem 2:Let {a(k)}2°, be the sequence generated bfit least ong(r, e)-violating pair ata. Let {&(k)}3Z, be the
Algorithm 1. If the working set (k) contains at least one Sequence defined by (k) = a(mk). Then the sequence
(1, €)-violating pair ata(k) for all k, then any convergent {&(k)}zZ, satisfies
subsequence ofc(k)}72, has a limit in(_z(m). a(k+1) € A™(a(k) C S, Vk.

Proof: From the definition of the point-to-set maf(«)

in (11) and the assumption on the working dgt(k), it is By applying Lemmas 1, 2, 6 and 7 we can easily show that
apparent thatx(k + 1) € A(a(k)) for all k. The sequence A™ () is closed onS\ Q™. Moreover, it follows from Prop-
{a(k)}32,, belongs toS which is compact. As shown in erty 3) of V" (o) mentioned above that the objective function
Lemma 8, the mapA(a) is closed onS \ Q9. Also, W(a) is a descent function foR(™<) and A™ (). Thus, by
as shown in Lemma 9, the objective functidfi(c) is a Theorem 1, any convergent subsequencgdofk)}i° , has a
descent function for2(™9) and A(a). Therefore, we can limit in Q™). Since S \ Q™) is closed for anyr > 0 and
conclude from Theorem 1 that any convergent subsequence (0, C/2), the convergent subsequence enfefs®) within

of {a(k)}32, has a limit inQ(™e). m a finite number of iterations. [ |
The following theorem is immediately derived from Theo-
rem 2 and Proposition 3. V. APPLICATION TOEXISTING LEARNING ALGORITHMS

Theorem 3:If the working setL s (k) contains at least one
(7, €)-violating pair ata(k) for all k, then Algorithm 1 stops
at Q(™) within a finite number of iterations for any > 0
ande € (0,C/2).

Remark 1:According to Proposition 4, we can maké™¢)
as close as we want f* by settingr and ¢ to sufficiently A. Generalized SMO Algorithm
small positive numbers. In other words, we can make the limit Generalized SMO algorithm [9] is a special type of decom-
of the sequence of solutions generated by Algorithm 1 as clgsesition methods in which the optimality condition is given
as we want to an optimal solution of Problem 2. by (6) and the working set is composed of a pair of indices

Remark 2:In the above discussion, we have assumed th@t j) violating (6) for @ = a(k), that is,
the subproblems can be solved exactly. However, this assump- ,
tion is not necessarily required. In fact, if it is guaranteed thdt€ Tup(@(k)), j € how(ex(k)), Fi(ee(k)) < Fj(ex(k)) — 7.

W(a(k+1)) is less thanV (a(k)) as far asLp(k) contains |t has already been proved that this algorithm always stops
at least ondr, €)-violating pair atc(k), then Theorems 2 and ithin a finite number of iterations [9], [11]. We will now show
3 still hold. This weaker condition will be useful in praCticalthat almost the same result can be derived by using a theorem
situations where the subproblems are solved numerically gpdihe previous section. To do so, we need to modify the
thus only approximate solutions can be obtained. generalized SMO algorithm slightly; the optimality condition
Remark 3:1f we employ (6) instead of (7) for the optimality js given by (7) instead of (6), and the working set is composed
condition, the global convergence of Algorithm 1 cannot bgf a (7, ¢)-violating pair atx(k) wherer ande are sufficiently
proved as above because the point-to-set map correspondjfgll positive numbers. Then it is easily seen from Theorem 3

to (11) is not closed in this case. o . that the algorithm stops within a finite number of iterations.
Let us next consider the case whéree)-violating pairs are

not always contained it (k). Theorem 2 does not hold in B. SVYMisht

this case becaud& («) is not a descent function fér(~) and ‘

A(a) defined by (11). However, if at least ofe ¢)-violating ~ SVM"¢" proposed by Joachims [6] is one of the most

pair is selected for the working set within a certain period dfidely used decomposition methods for SVMs. The optimality

iterations, Algorithm 1 still has the convergence property. Thgondition used in SVNE™ is given by (6) and the working

is formally stated as follows. set selection is done in a systematic way as follows:
Theorem 4:Let {a(k)};2, be the sequence generated by Algorithm 2: Given an even numbey(< /) and the current

Algorithm 1. If there exists a positive integer such that one solutiona(k) € S, execute the following procedures.

of m setsLp(k),Lp(k + 1),...,Lg(k +m — 1) contains 1) Sort{F;(a(k))}._, in decreasing order. Let the list of

at least one(r,e¢)-violating pair at a(k) for all &, then subscripts of the sorted list big, is, . .., .

In this section, we will discuss the global convergence of
some existing decomposition methods by applying the results
obtained in the previous section.



2) SetLp(k)=0,v=0,m=1andn=1.

3) While iy, & Low(a(k)) andm <, add1 to m.

4) While i,, ¢ I,,(a(k)) andn > 1, subtractl from n.

5) If m > n then stop. Otherwise, ad?l to v and add

{m,n} to the setLz(k).

6) If v = ¢ then stop. Otherwise, go to Step 3).

For more details on the working set selection of S¥M,
please consult [14].

VI. CONCLUDING REMARKS

Global convergence property of decomposition methods
for SVMs are studied. We have first introduced a relaxed
optimality condition, and then proved a decomposition method
stops within a finite number of iterations after finding an
optimal solution if the working set selection satisfies a certain
condition. We have also shown that the generalized SMO
algorithm and SVMisht satisfy this condition and thus have

As well as in case of the generalized SMO algorithm, We global convergence property. Since our new convergence
need to modify both the optimality condition and the workingheorems require little restriction on the working set selection

set selection in SVNVE™ in order to apply the results in method, the authors believe that they can be applied to a wide
the previous section; the optimality condition is given by (%|ass of decomposition methods.

instead of (6) and the working set selection is done by the
following algorithm:

Algorithm 3: Given an even numbey(< [) and the current
solutiona(k) € S, execute the following procedures.

1) Sort{F;(a(k))}._, in decreasing order. Let the the list
of subscripts of the sorted list big, is, . .., ;.
SetLp(k)=0,v=0,m=1andn =1.

While i,,, € I, (a(k)) andm <, add1 to m.

While i,, ¢ If,((k)) andn > 1, subtractl from n.

If m > n then stop. Otherwise, addl to v and add
{m,n} to the setLz(k).

6) If v = ¢ then stop. Otherwise, go to Step 3).

We will show thatL g (k) obtained by Algorithm 3 contains [g]
at least onér, ¢)-violating pair if (k) € S\Q(™). Recall that
a € Q9 if and only if (7) holds. Thus ifa(k) € S\ Q(9),
the following inequality holds.

(1]
(2]

2) (3]

3)
4)
5)

(4]
(5]

(7]

i F; k) +7<
ielgril(lg(k)) (a( )) T_ie

Fi(a(k))  (15)

max
I (ax(K)) 8]
Let m; be the value ofn at the instance when Algorithm 3 [g]
first exits Step 3). Then,,, € If (a(k)) andF; (a(k)) =
max;ere (a(k)) Fi(a(k)). Also, let n; be the value ofn [10]
at the instance when Algorithm 3 first exits Step 4). Then
In, € Iflp(a(k‘)) and Finl (a(kz)) = minielﬁp(a(k)) Fz(a(k))
It follows from (15) thatF),, (a(k)) + 7 < F},, (e(k)) which
implies that(n,,m1) is a(r, €)-violating pair ata(k) and that
my < ny. ThereforeL (k) obtained by Algorithm 3 contains [12]
at least ondr, ¢)-violating pair ata(k).

By applying Theorem 3, we can conclude that SN [13]
with the optimality condition (7) and the working set selection
described by Algorithm 3 stops within a finite number 0{14]
iterations after finding &r, ¢)-optimal solution.

Remark 4:In the software package SVMI' the optimality
condition and the working set selection are not implement
exactly as described in (6) and Algorithm 2, respectively, for
practical reason. Difference is in the definition &f,(«) and [16]
Iow (). In the software, the following definitions are used:

(11]

Lp(@) = {ila; <C—e,di =1} Ufi|as > e, dy = -1},

Ilow(a):{i\ai<C’—e,di:—1}u{i|ai>e,d,»:1}

where e is a sufficiently small positive number. It is worth
noting that these definitions are samelgs(c) and I ()
except for the equal sign. The results of this paper show that
the relaxation of the optimality condition has not only practical
but also theoretical significance.
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