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Global Convergence of SMO Algorithm for
Support Vector Regression

Norikazu Takahashiviember, IEEE Jun Guo, and Tetsuo Nishrellow, IEEE

Abstract— Global convergence of the sequential minimal opti-
mization (SMO) algorithm for support vector regression (SVR) is
studied in this paper. Given! training samples, SVR is formulated
as a convex quadratic programming problem with [ pairs of
variables. We prove that if two pairs of variables violating the
optimality condition are chosen for update in each step and
subproblems are solved in a certain way then the SMO algorithm
always stops within a finite number of iterations after finding an
optimal solution. Also, efficient implementation techniques for
the SMO algorithm are presented and compared experimentally
with other SMO algorithms.

Index Terms—support vector regression, sequential minimal
optimization, convergence, quadratic programming

I. INTRODUCTION

T

pattern classification directly. For example, a software library
called LIBSVM [16], [17] selects two variables from th
variables and solves the QP subproblem with respect to the
selected variables in each step. This is thought of as a special
case of the generalized SMO algorithm [13]. An advantages
of this approach is that the global convergence is guaranteed
by some existing results concerning the global convergence of
the decomposition methods [7]-[15].

On the other hand, many researchers have tried to develop
SVR-oriented SMO algorithms by making use of the close
relationship betweenmy; and &;. Smola and Sdblkopf [18]
proposed an SMO algorithm for SVR by extending the basic
idea of Platt's SMO. This algorithm selects two pairs of
variables (or four variables})y;, &;, a; and&;, in each step

RAINING of a support vector machine (SVM) for patterr@ccording to the strategy similar to Platts SMO, and solves
classification is formulated as a quadratic programmirfje QP subproblem with respect to the selected variables

(QP) problem in a number of variables equal to the number @palytically by considering four cases depending on the values
training samples [1]. Recently several decomposition metho@stwo pairs of variables. Shevad al. [19] pointed out that

for solving QP problems arising in the training of Svmghe method for updating the bias in Smola and &bpf’s
have been proposed [2]-[6]. Sequential minimal optimizé\]gor'thm is inefficient, and made some improvements. Also,

tion (SMO) algorithm proposed by Platt [3] and SV

they proposed a new method for selecting variables based on

decomposition methods. The basic strategy commonly used-@vrence [20] showed that the QP problems véitivariables
these methods is to repeat two operations: 1) choosing a fi¥@ be transformed into non-smooth optimization problems

number of variables and 2) solving the QP subproblem witMith ! variabless; £ a; —d;, i = 1,2,...,

[, and proposed

respect to the selected variables, until an optimal solution@8 SMO algorithm for solving these non-smooth optimization
found. Compared with the direct application of traditional QProblems. An advantage of Flake and Lawrence’s algorithm is
solvers, decomposition methods not only use less amountt#t the procedure for solving subproblems can be expressed

memory but also require shorter computation time. In additiol & very simple form. _
some properties on global convergence of the method havé/Vhile the global convergence property of SMO algorithms

recently been clarified [7]-[15].

for pattern classification has been clarified by several re-

This paper considers SMO algorithms for support vect§farchers [12]-[15], this is not the case at all for the above
regression (SVR). Givehtraining samples, SVR is formulategmentioned SMO algorithms for SVR. The most important dif-

as a QP problem witl2/ variables, sayv;, as, ..
Qo, ..
to each other.

A simple approach to this problem is to consider ttle
variables:aq, as, ..., oy, &1, Ao, ..

- O, 0/\511

., Gy, are independent

ference is that SMO algorithms for SVR choose four variables

., &, Where two variables; anda; are closely related N €ach step while those for pattern classification choose two.

For this reason, the existing results cannot be directly applied
to the convergence analysis of SMO algorithms for SVR.
In this paper, we study the global convergence of a general

from each other and to apply decomposition methods f&@MO algorithms based on Flake and Lawrence’s formulation.

By using the same approach as in [13] and [14], we prove
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g}pe approach based on [13] and [14] is concerned, the global
convergence cannot be proved without this condition.



This paper is organized as follows. Section Il describes the 0<o; <C, i=1,2,...,1 (2)
basic principle of SVR and Flake and Lawrence’s formulation ) .
as a non-smooth optimization problem. In Section lll, the op- 0<&:<C, i=12...,1 ®)
timality condition for the problem, the notion of violating pairyyhere K(xi,z;) = ¢(z;)Tp(x;) ande is a user-specified
and a general form of the SMO algorithm are presented. H@¥sitive constant.
to solve subproblems is addressed in Section IV. In Section V, et 7, c R2 be the feasible region of Problem K-, -)
we give a rigorous proof for the global convergence of thg the objective functionQ(a) is called a kernel function.
SMO algorithm. Implementation issues will be discussed ithroughout this paper, we assume that the kernel function
Section VI. Fina”y, Section VI prOVideS our conclusion. K(7 ) satisfies Mercer’'s condition. It is thus a|WayS guaran-
teed that the x | matrix K = [k;;] with k;; = K(x;,x;) is
Il. SUPPORTVECTORREGRESSION positive semi-definite.

Consider a set of training samplg&e;, vi) }._,, wherez; € Leta* = [af,a3,...,a},45,45,...,4;]" be any optimal
R? is thei-th sample value of the input vectay;, € R is the solution of Problem 1. Then it follows from the Karush-Kuhn-
corresponding value of the model output @nig the number Tucker (KKT) conditions for Problem 1 that the condition
of training samples. The goal of regression is to provide an
estimate of the dependenceybn x, which can be expressed

as holds [18], [19]. This means that the set of optimal solutions
y=flx)+v of Problem 1 does not change even though the condition

where f(-) is an unknown nonlinear function andis a noise
independent ofc.

Basic concepts of SVMs can be applied to regression prab- added to the constraints (1)—(3). Let us now introduce
lems by introducing a certain loss function such as quadratiew variablesg;, = a; — &; for ¢ = 1,2,...,[. Then,
function, Laplace function, Huber function ameinsensitive since«; + &; can be expressed as;| under the conditions
function. Among themg-insensitive function is one of the (2), (3) and (5), Problem 1 can be reformulated in terms of

arar =0, i=1,2,...,1 (4)

Oéiéti:07 i:1,2,...,l (5)

most widely used loss functions because it can produce spafse: [31, 2, . .., 3]T as follows [20]:
support vectors. Throughout this paper, we will focus our Problem 2:Find 3 = [B1,32,...,6]7 € R! that mini-
attention on SVR with the-insensitive function defined as mizes
0 if |z| <e ! ! A
|z]e = {|x| — ¢ otherwise W(B)=- Zlyzﬂi + 52 8| + 3 Zl Zlﬁiﬂjkij (6)
1= 1= =1 97=
In SVR,.the unknovyn functionf(x) is assumed to be subject to the constraints:
expressed in the following form:
l
fsvr(z) = w'¢(x) + b > Bi=0
where w is the coefficient vector) is the bias, and(-) is =1
the pre-specified nonlinear mapping. Values of the coefficient —-C<B<C, i=1,2,...,1
vector and the bias are determined so that the functionalNote that the objective functioi’(3) is neither quadratic
defined by nor differentiable any more. However, it is still convex and
. therefore Problem 2 has no local minimum. In the following,
C> lyi — fsvr(@i)le + [w]? the feasible region of Problem 2 is denoted By C RL. It is
P apparent thaf is not empty.
Let B8* = [B7,85,...,57]7 be any optimal solution of

is minimized, whereC' is a positive constant,- |. is thee-
insensitive loss function defined above, dhd|| denotes the
Euclidean norm. The dual form of this problem leads to t
following convex QP problem witl2/ variables. !

Problem 1:Find a = [ay,qs,...,q;, 61, 6G0,...,4]7 € Jsvr(x) = ZBZ‘K(fBi7w) +b
R? that minimizes i=1

l l
Qo) == wilai —du) +e > (o + )
=1 i=1

Problem 2. Then the approximating functigg,r (x) derived
hl%y SVR can be expressed as

where the value 0b is determined so that

l
fSVR(xm) = Zﬁ:K(a:u xm) +b=ym —¢
=1
holds for anym such that0 < g%, < C or
l

fovr(en) = B K (@i @n) + b=y, +¢

=1

l l
1 . .
+3 D> (o — @)(ay — &) K (i, 25)
i=1 j=1
subject to the constraints:
l

Z(ai - dz) =0 (1)
P holds for anyn such that—-C < g} < 0 [20].



I1l. SMO ALGORITHM FORSVR wheree; is the vector whoseé-th element is+-1 and others are
In this section, we present a general form of SMO algdero- Then it is easily seen that i, these partial derivatives
rithms for solving Problem 2. Before doing so, we derivéan be expressed in terms/of (3) andh; (8) defined in (8)
the optimality condition for Problem 2. We also introduce th@s follows:

notion of violating pairs. I [ Kf(B), Bi>0
b W<ﬂ)‘{ h(B), Bi <0

A. Optimality Condition B h(B), Bi>0
As shown in [19], it follows from the KKT condition for D;w(B) :{ h; (B), B:i<0

Problem 1 thaix = [ay,a9,...,q, &1,4s,...,&4] € Fy is
an optimal solution if and only if there exists a constarstuch
that the following conditions are satisfied foe=1,2,...,1.

Therefore, the optimality condition (9) can be rewritten in a
simpler form as

1) f0<a; <Canda; =0theny; —e — S (o — D; < min Df G
) o?-)/; S /\< * v e 2=l ey WB) < —O2h<c W) (10)
g7y T
2) If ; =0and0 < &; < C theny; + ¢ — le:l(aj — Since the SMO algorithm generally does not provide an
aj)kij = A ' exact optimal solution in a finite number of iterations, we will
3) If ; =C anda; =0 thenyifgfzézl(aj —éj)ki; > consider hereafter the relaxed optimality condition:
A _
, < i +
4) If a; =0 andoli =C thenyi—‘rE—Zg:l(Oéj—OAéj)kij < 7CH<1%?SC’ DZ W(/B) - 7Cr£gil<c Dz W(/B) tT (11)
A

o 1 . instead of (10), where is a positive tolerance parameter.
5 If a; = & = Olthen yi == 2o (ag — y)kiy < A Eq.(11) is called the-optimality condition.
andyi +ée— ijl(aj — &])k” >\
Substitutings; = a; — &; into these conditions, we can deriveB Violating Pai
the optimality conditions for Problem 2 as follows: - Violating Pair

With the strict optimality condition (10), we can define the

+ _ if B —
hg(ﬁ) <A !f pi=0 violating pair as follows; a pair of indice@, j) is said to be
hi (B) = —A, !f 0<fi<C a violating pair at3 € F; if the following conditions hold:
hi (B) < -A<hi(B), if Bi=0 7
hi (B) = —A, if —C'<fi <0 ~C< B <C, —C<B;<C, D;W(B)>DfW(B)

It is obvious that the optimality condition (10) holds Atif

where . and only if there exists no violating pair & Similarly, we
hE(B) = —y; e+ Z ki;B;. (8) can define the violating pair corresponding to (11). A pair of

' = indices (i, j) satisfying

Since (7) is rewritten as ~-C<p;<C, —C<B;j<C, DyW(B)> D;FW(L-}) 7

max hi (8) < — A . o (12

Bi=C is called ar-violating pair at3 € F,. The r-optimality

max hi(B)<—-A< min_ h(B) condition (11) holds a3 if and only if there exists nar-

0<B;<C 0<B;<C . . . k .

B L violating pair at3. It is very important to note here that
g}%hi B)=-A= i hi (B) two statements (%,5) is a 7-violating pair” and {j,i) is a
max h7(B)<—A< min A (8) T-violating pair” must be distinguished in this paper.
—C<Bi<0 * - T —C<Bi<0 !
— A< min hi(B) C. SMO Algorithm
we can express the optimality condition by a single inequality A general SMO algorithm for solving Problem 2 is de-
as follows: scribed as follows:
Algorithm 1: Given training sampleg(z;, v:)}._,, kernel
max{ max hf(8), max hi(/@)} function K (-, -) and positive constants, ¢ andr, execute the
0<BisC —O<hi<0 following procedure.

< min{ min A7 (8), min h¥(3)b. (9  Step 1:Setn:=0 and choose an ir)itiallpoimi(o). € Fa.
~C<Bi<0 0<B:i<C Step 2:If 3 = B(") satisfies the-optimality condition (11)

Let D W (B) and D; () denote the right-hand and left-then stop.

hand partial derivatives dfi’(3) with respect to3;, that is, Step 3: Choose ar-violating pair (i, ;") at B
and solve Problem 2 under the additional constraifits=
DS W(B) = lim W(B + de;) - W(B) B,i"),Vk ¢ {it™, j(}. Let 3"+ be the point thus obtained.
00+ g Setn :=n+ 1 and go to Step 2.
DiW(B) = lim W(B +de) — W(B) It is apparent that the objective functiéii(3) is bounded

50— ) from below in the feasible regior/; and the sequence



{W(B™)}>2_, obtained by Algorithm 1 is monotone decreas- Gj 4
ing, that is,IW (3 +1)) < W (B™) holds for alln. Therefore V4. Es 'V3 E» Va

W (B(™) necessarily converges to a certain value. On the other
hand, however, it is not clear whether or not Algorithm 1 !
always stops within a finite number of iterations. To make clear E, Ss Ey, S E,
the condition which guarantees the termination of Algorithm 1 !
is one of the main goal in this paper. S i Vi

Since the optimization problems arising in Step 3, which ‘/5. ....... E}_o ...... ,O ..... E 12 ,__1__,
will be called subproblems in the following, have only two 1 Bi
variables, they can be solved very easily. In the next section, 1
we will describe in detail how these subproblems can be Ly S3 §E11 Sy Ly
solved. ;

[ * ®
IV. HOw TO SOLVE SUBPROBLEMS Vs Eg Vi Eq Vs

As a general form of subproblems arising in Step 3 of
Algorithm 1, we will consider in this section the followingF9- 1. Saquare regions, 5i,..., Sy, verticesVi, V3, ..., Vs, and sides
problem: Given a poin8 = [31, B, ..., 3] € F, and two 2y--s B2
indicesi,j € {1,2,...,1} such that(i, j) is a r-violating
pair at/3, find 3 that minimizesW'(3) under the constraints y; — (¢, —(). Also, the sides excluding vertices of square
B € Fy and By = B, Vk # i, j. This problem has essentiallyyegions, are denoted 0§, Fo, ..., B2 as
only two variabless; and 5; and they must satisfy; + 5; =
Bi + ;. Therefore it is convenient for us to parameterize Ey={Bi €5 :Bi=C, 0<p8;<C}
asﬁ(t) = [ﬂl(t),ﬁg(t), .. ,Bl(t)]T where Ey = {6”' €eS:0<p; <, ﬂj = C},

Bi(t)=pBi+t, B;i(t)=p5;—t, Bu(t)=PB Vk+#4,j  andsoon (see Fig.1).
) () ! k() g Figure 2 shows the diagonal line on which the paifi(t)

Then the problem can be reformulated as follows: moves witht¢, and the graph of the objective functiaf(t)
Problem 3: Find ¢ that minimizes versug. It is obvious that the objective functiaf(t) is convex
and hence there is no local minimum. However, sinde)
() = W(B(t)) is not differentiable at = —3; andt = j;, we need to
l 1 consider two types of derivatives: the right-hand and left-hand
= (—yi+ Y Bk +y; — > Brkju)t derivatives defined by
=t ht / Pt +0) —¥(t)
+%nt2+e\6i+t|+s\5j—t|+wc w+(t)_51§51+ 5
| T () 1)
subject to—C < p;(t) < C and —C < g,(t) < C, where - §50— 5

1 = ki; + kj; — 2ki; 2 0 and W, represents a collection of 5 these two points. With these notations, we can say, for
constant terms. ) ) . example, thatt = ¢* is an optimal solution of Problem 3
We now introduce some notations for later dlscu53|oq§.5ij(t*) is an interior point of$ andw’ (t*) < 0 < v/, (t*)
First, according to the notation used in J13], We eXpregyids. Here we should note that (¢) :wﬁr(t)_holoTs for any
(Bi, B;) as B;; for simplicity. We also useﬁij’?) and j;;(t) t o {_Bi /3’]'}-
in the same sense. Lel be the square region defined by | emma 1: The following equations hold for the derivatives
S =[-C,C] x [-C,C] C R? Let S, 5,, 53 and S, be four b(t) and W (3)
square regions defined as follows:

V' (t) =D W(B(t)) — Dy W(B(t)) (13)
=iy €5:0<fisC 0= <C) v(6) =DiW(B(0) ~DIW(B(D)  (14)
Sy={Bi;€8: -C<pB<0,0<p<C} Proof: We will prove only (13) because (14) can be done
Sz={Biy €5 : -C<B <0, -C<p; <0} in the same way. Sincés;(t)/dt = 1 anddg;(t)/dt = —1,
Si={B;€8:0<p<C, ~C<p; <0} the right-hand derivative of(¢) att = 0 can be expressed as

follows:
The interior and boundary of each regidf) are denoted ~dB;(t) 5 dB5(1)

/ _
by intS; and dS;, respectively. Similarly, the interior and ¥ (0) :DTW(ﬁ) dt +D; w(B) dt
boundary of the regionS are denoted by i and 95, :DJW(B)—D;W(B) (15)
respectively. Vertices of four square regiofis Sz, S35 and Sy ] )
are denoted by, = (C,0), Vs = (C,C), V5 = (0,C), Vy = Furthermore, since’, (t) = w;(o)bzmw holds, by substi-
(=C,C), Vs = (=C,0), Vg = (=C,=C), Vz = (0,—C) and tuting 3 = B(t) into (15) we can derive (13). ]



B Step 2:If 1 # 0 then settyin = —¥’ (t,)/n. Otherwise,
1 settmin := —o0.

Step 3:Let S be the region to whicls;;(¢,,) belongs. If
Bij(tmin) € Sk then sett* := t¢,,;, and stop. Otherwise, set
Ltmin = mf{t : 613(t) € SkA} R

Step 4:If either i) 5;;(tmin) € 0S Or i) B;j(tmin) € IiNtS
and )’ (tmin) < 0 holds, sett* := #,,;, and stop. Otherwise
setm :=m + 1 andt,, := t,,;, and go to Step 2.

One can easily see thét found by Algorithm 2 is always
an optimal solution of Problem 3. However, we will hereafter
not consider Algorithm 2 but Algorithm 3 given below, which
is obtained by replacing the conditiaf (f,,;,) < 0 in Step 4
of Algorithm 2 with ¢/ (£,1,) < 7 wherer is the positive
tolerance parameter introduced in (11). The reason why we
do not consider Algorithm 2 will be explained later.

Algorithm 3: For Problem 3, findt** by executing the
following procedure.

Step 1:Setm := 0 andt,, := 0.

Step 2:If n # 0 then setty;, := —¢’ (t,,)/n. Otherwise,
Settmin := —o0.

Step 3:Let S;, be the region to whict;;(t,,) belongs. If
Bij(tmin) € Sk then sett* := t,,;, and stop. Otherwise, set
fmin = mf{t : Bij(t) S Sk}

Step 4:1f either i) Bij(fmin) € 35S OF i) Bij(tmin) € intS
and+)’ (tmin) < 7 holds, set** := #,,;, and stop. Otherwise
setm :=m+ 1 andt,, := t.,;, and go to Step 2.

H Difference in the behavior of Algorithms 2 and 3 is illus-
=i B; 0 t trated in Fig.3 where it is assumed thaft) is minimized
(b) att = ta, the point(51(ta), B2(t4)) belongs tosS, v (t) is
not smooth at = tp € (t4,0), and the derivatives of(t)
, , . i - att =tp satisfy0 < ¢ (tg) < 7 < ¢/ (tg). In this case,
Zl(gt')zénéai)tsD L?g’ﬁ?ﬁ;'rlge;ﬁé’ ﬁZ?ﬁT;?%?e‘rfv)a{fgéi” (b) Objective function Algorithm 2 returns the optimal solutiofnir while Algorithm 3
returns the approximate solutidgi.
The following lemma shows some important properties of
Lemma 2: The pair of indiceqi, 5) is ar-violating pair at Algorithm 3.

B(t) if and only if Lemma 5:Let t** be the solution obtained by Algorithm 3.
Then the following statements hold true.
—C<Bit)y<C, —-C<Bit)y<C, YP_(t)>T. 1) () < ¥(0).
Proof: The conditions can be immediately derived by 2) The right-hand derivative of(t) att = t** satisfies
substituting (14) into (12). ]
Lemma 3:Let¢* be an optimal solution of Problem 3. Then PL(t) =0
tr <0. _ ) o ) . in any case. The left-hand derivative satisfies
Proof: Since (i, j) is ar-violating pair at3(0) = 3, it
follows from Lemma 2 thap; > —C, §; < C and%’_(0) > PL(tT) <7 (16)
7> 0. Sincewy(t) is convex,t* must be negative. [ if 8,;(¢*) € intS. In particular,
Lemma 4:t* is an optimal solution of Problem 3 if and
only if one of the following two conditions hold. PL(E) = () =0
1) Bi;(t*) €intS andy’ (t*) < 0 < ¢/ (t7) holds if 3;(t**) € U}_,intS}.
2) Bij(t*) € (UBi_s{Va}) U (Ui—pBx) and g, () >0 3) The pair(i, j) is not ar-violating pair at3(t**).
Proof: It is apparent from the convexity af(¢) and 4) The following inequality holds:
Lemma 3. ] T~ "
We easily see from these lemmas that an optimal soldtion D(0) = () 2 2\7@ 18 =B an

can be found by decreasing the valuet gfom O until 5;;(¢)
satisfies one of two conditions given in Lemma 4. This search
process is formally stated as follows.

Algorithm 2: For Problem 3, find* by executing the fol-
lowing procedure.

Step 1:Setm := 0 andt,, := 0. Dy W(B(t*)) < DI W(B(t™)) + 7

where|| - || is the Euclidean norm.

Proof: It is obvious from Lemma 3 and Algorithm 3 that
the first and second statements hold true. Substituting (14) into
(16), we have



Substitutingtg = t2 —¢’(t2)/n and taking (18) into account,
we derive (19). Therefore (19) holds for any> 0. Applying
the above argument to the intervals< ¢t < t¢; andt; <t <

0, we have
> Blt) = vlta) > St — ta) (20)
¥(0) — (1) = %(—tl) (21)
From (19)-(21), we obtain
v(O) =9t 2 3(=4) = )18 - 87|
(a) which completes the proof. ]

We should note that the inequality like (17) cannot be
derived for Algorithm 2. Inequality (17) plays an important
role in our convergence proof for Algorithm 1, which will be
presented in the next section. This is the main reason why we

> T consider Algorithm 3 instead of Algorithm 2.

V. GLOBAL CONVERGENCE OFALGORITHM 1

W (tg) <7 In this section, we prove the convergence of Algorithm 1
‘ ‘ under the assumption that the subproblems in Step 3 are solved
ta 7 =tp t approximately by Algorithm 3. Although the subproblems are

(b) not solved exactly, it is apparently true thgft”) belongs to the
feasible regionF, of Problem 2 for alln and thativ (3(™) is
monotone decreasing with respectrtoThis implies that the
sequence{ W (B(™)}22_, converges to a certain value since

W (B3) is bounded from below itF>.

which implies that(, j) is not ar-violating pair. Thus the third ~ The following theorem is the main result of this paper.

statement holds true. The fourth statement can be proved infheorem 1:Algorithm 1 stops in a finite number of iter-

the same way as [13, Lemma 1]. Let be the value ofin  ations for anyr > 0 if subproblems in Step 3 are solved

when Algorithm 3 stops. Then there are three possible cas@gproximately by Algorithm 3.

m =0, m =1 andm = 2. We will consider here only the For any execution of Algorithm 1, we define the set of

last one, because it is the most general among three. In tinkegersL(p, q) as

case,)(t) can be expressed as (n) +(n
v g L(p,q) = {n: (", i™) = (p,q)}

Fig. 3. Comparison between (a) Algorithm 2 and (b) Algorithm 3.

1
() = §77(t —t2)” + 9L (t2)(t — t2) + ¥ (t2) where(p, q) is any pair of indices. Lef,, be the set of pairs
in the intervalt** < t < t,, where we easily see from Step 4(p,¢) such that|Z(p, q)| = oo where|L(p, q)| represents the
of Algorithm 3 that cardinality of the setL(p, ¢). Obviously an execution of the
, Algorithm 1 stops within a finite number of iterations if and
V-(t2) > 7. (18)  only if I, = 0.
Let us show now that The first step to prove Theorem 1 is to show that the
oy o T o sequencg (™12, is convergent.
Ylt2) —v(t7) 2 §(t2 —t7) (19) Lemm§6 Tge éequence{ﬁ(m}, >, generated by Algo-
holds for anyn > 0. Suppose first thay = 0. Sincet)(t) is rithm 1 converges to a point if; asn — oo.
linear in this case, we have from (18) thafts) — ¢ (t**) > Proof: Since {W(B(™)}>, is a decreasing sequence

7(ty — t**). Thus (19) apparently holds. Suppose next thihat is bounded from below, it converges to some value as
n > 0. If the constraint;;(t) € S is ignored, the function n — occ. It follows from (17) that

Y(t) is minimized att = tg £ to — ' (t2)/n < 0. Since 2[

to < t** <ty ande(t) is convex, we have ( (B™) — (ﬁ(”+1))) > |8 — gt
to — t** t —t
t2 ; ~Y(tg) + ; Q “(te) > (). By repeated application of the triangle inequality we get
2 —1Q 2 —1Q

Sinced(tg) = ¥ (t2) — (Y'_(t2))?/(2n), the above inequality 2v2 ( (B™) — W(ﬂ(n+k))) > (|8 — gntR)|
can be transformed as follows: -

. poey 5 T2 =1 (Y (t2))? which means{ﬁ(m}go:0 is a Cauchy sequence. Singg is

wlt2) —¥(#7) 2 th—tg 21 closed,{3(™ 1 , converges to some point i . [ |




The limit point of the sequencg3(™ }°, will be denoted
by 3 in the following.

Lemma 7:Let (p,q) be any pair belonging td.,. There
exists anng such thatﬂ““r1 belongs toU}_, S, for all
n € L(p,q) > ng.

Proof: We will only show in the following that

Bt € intS, (22)

does not hold infinitely many times. The proofs for the reg|ons

open set, there exists an such thatﬁéi})
However, this contradicts Lemma 7.
Lemma 9:There exists anng such that 5(

UL_,08, and BT 10, € UL_, 08y for all n > no.
Proof: It is ea5|ly seen from Lemma 7 and the definition

S intSl, Vn > n.

imjm €

of I, that there exists an, such that(:(", ;")) ¢ I, and
B(ﬁfjl()n) € U}_,0S; hold for all n > n;. Therefore for each
> n; there are two possibilities: W(’g oy € UE_,08k

Si, S5 and S, are omitted because they are similar to the orfd i) 5z<n>J<n> € Uj_,intS. Let B™ denote the number

given here. Assume that (22) holds for infinitely maufg in
L(p,
|nf|n|tely many times.

1) B(") € S, and BT € ints,

2) B e 8, US;U S, and 5<"+1 intS,

We first consider Case 1). Létl;(p,q) C L(p,q) be the set

of integersn such thatﬁ,(,’;) € S, and ﬂ,(,ZH) € intS,. Since
(p, q) is ar-violating pair at3™ for all n € M (p, q),

Dy W(B™) = Dy W (B™) = hy (™) = hi (B™) > 7
holds for alln € M (p, q). By taking the limit, we have
hy (B) = hi () > 7. (23)

On the other hand, sin@,@Z* ) € intS, for all n € M; P, ),
it follows from Part 2) of Lemma 5 that

D, W(B" ) =D W (BT V) = by (B ) —ht (BCTY)
holds for alln € M;(p, q). Thus we have
h, (B) —hs (B) =0

which contradicts (23). We next consider Case 2). In this case,

qu belongs toE)SgO(E)Sl U853U854) = {Vg}UEgU{O}U

Eo U{V5}. Let Ma(p,q) C L(p,q) be the set of integers

such thatglr) € S, U S;U S, and B5™Y € intS,. Since
(”“) € intS, for all n € Ms(p, q),

D, W(B" ) —Dyw () =
holds for infinitely manyn’s. By taking the limit, we have
hy, (B) = hy (B) =0 (24)
Let 6,, be the positive number satisfying
(1—0,)8 + 6,81 € S,
and let us definey/("™) as
A" = (1 0,)8" +0,87

Sinceyin) € 89, N (05, U S5 UAS,) converges ta3,,, we
see from (24) that there exists an such that

h_('y(")) — h+('y(")) <7, Vn € Ms(p,q) >ny.
This equation together with the fact that! ™ e intS,
contradicts Step 4 of Algorithm 3. ]

Lemma 8:If (p,q) €
Proof: 1€
without loss of generality that,,

I, then 3,, belongs toU;_, dSk.

€ intS;. Since infS is an

q). Then, at least one of the following two cases occuiy B("+1) is equal toB™ or greater than3("

h; (ﬁ(n+1))_h;r(13(n+1)) —

of components of3(") satisfyingﬁ(" e {-C, 0 C}. In Case
) by one. On
the other hand, in Case B! is greater thanB(™ by
at least one. Therefore Case ii) cannot occur infinitely many
times aftern reachesn; because otherwis&(™) goes to
infinity, which of course contradicts the fact that the number
of components of3(") is finite. [ ]
From the above discussions we see that for any (pai) €
I, one of the following situations occurs.
a) ﬁ(”) € B, and Bp”“) € E, hold for infinitely many
n’s in L(p,q). In this caseB,, = Vo = (C,C) and the
following inequality holds.

hy (B) = hg (B) + 7

b) 85 € Ei» and 53" € Ey hold for infinitely many
n's in L(p,q). In this caseB,, = O = (0,0) and the

(25)

=0 inequality (25) holds.

) B € Ey and g™ € E5 hold for infinitely many

n’s in L(p, q). In this casef,, = V3 = (0,C) and the
following inequality holds.
hy (B) = hi (B) +7 (26)

d) 8\ e By and 5™ € E4 hold for infinitely many
n’sin L(p, q). In this casepf,, = V5 = (—C,0) and the
inequality (26) holds.

e) B e By, and B2 € By hold for infinitely many

o n'sin L(p,q). In this case3,, = O = (0,0) and the
following inequality holds.
hy, (B) = hy (B) + 7 @7

f) B e Es andB5i™) e E5 hold for infinitely many
n’'s in L(p, q). In this casej,, = Vs = (—C,—C) and
the inequality (27) holds.

9) B € Eg and 81" € Ey, hold for infinitely many
n’s in L(p,q). In this caseB,, = Vi = (C,0) and the
following inequality holds.

hy (B) > hy (B)+7

h) g e By and gn™) € E1; hold for infinitely many

n's in L(p,q). In this caseB,, = V7 = (0,—C) and
the inequality (28) holds.

The eight possible movements fropy to B for

sufficiently largen € L(p, q) are shown in Fig.4.
We are now ready for giving the proof of Theorem 1.

(28)

We prove the thesis by contradiction. Assume Proof of Theorem 1Suppose that Algorithm 1 does not

stop. Thenl,, has at least one pair. L¢b, ¢) be any pair in
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Fig. 4. Eight possible movements froaj to B5r .
I. In case a) described above, sin@}%’) moves fromE; Vi
to F, infinitely many times, it must return fronk; to E;
infinitely many times. In order for this to occur, there must
exist an indexp; such thatﬂ]();",), moves either i) fromE; to
E5 orii) from Ey to E5 infinitely many times, and an index
¢ such thatﬂgffl) moves either i) fromE; to E, or ii) from
Esg to E1» infinitely many times (see Fig.5). Therefofg, , p)
belongs tol, and one of the following conditions holds:

Bplp = (C,0), h;_l (B) > h; (B) + 7 (29) Fig.5. Possible movements of @2), (b) B,Eff% and (0)6(522 for sufficiently

largen.

Bpip = (0,C), hy, (B) > ht(B)+7 (30)

Similarly (g,¢1) belongs tol,, and one of the following for

conditions holds: (p,q) € Iw. Then, by applying the relationship shown

in Table | repeatedly, we see that there must exist an infinite

Byar = (C,C), h;(,@) > h;; (B)+ T (31) sequence of indicegy(= p),p1,ps2, ... such that

Bags = (C,0), hf(B)=h, (B)+T (32) (Pit1,pi) € Ioo, 1=0,1,2,... (33)
We easily see from (29)(32) thatq, p1 andq, are different Bp. €{0,C}, i=0,1,2,... (34)
s T (CC). e have Trom (25), (29) ang (1) RO <G <@ < @9

T iy i ol o s ek

Thusp, ¢, p1 andq; are different from each other. In the cas@€ach other. Thereford,,, must contain infinitely many pairs.
where 3,,, = (0,C) and 3., = (C,0), it is obvious that Let us next suppose that one of the cases b), d), f) and h) occurs

p1 # p,q andq, # p, g. Moreover, since for (p,q) € I». Then there must exist an infinite sequence of
o g g . indicespo (= p), p1, p2, - .. such that
hg, (B) < hg (B) < hy (B) < hy, (B) ,
(pi_;'_l,p,;) 6]007 ZZO,].,Q,... (36)
holds from (25), (30) and (32), we can conclude that£ g;. B .

In each case b) to h), there must be two indiggsand Bp: €1{0,-C}, i=0,1,2,... (37)
¢1 such that(p1,p) € I, (¢,q1) € I, andp, ¢, p1 and B0 (3) < h51(B) < h*2(B) < - - - 38
q1 are different from each other, as we have seen in case a). w0 (B) < iy (?) <P (B) < B (38)
Relationship betweelp, ¢) and (p1,p) for cases a) — h) is wheres; represents +” if 3, = 0 and =" if 3, = —C.
summarized in Table I, and relationship betweeng) and Eq.(38) implies that all indices, p1, po, . . . are different each
(¢, q1) for cases a) — h) is summarized in Table II. other. Therefore/., must contain infinitely many pairs.

In the following, we will show from Table | thaf,, must Since these results apparently contradict the fact that the
contain infinitely many pairs. We will not consider Table Ilnumber of different pairs contained if, is finite, we can
but the same discussion can be made by using Table Il. loeinclude thatl, is empty, that is, Algorithm 1 always stops
us first suppose that one of the cases a), c), €) and g) ocauithin a finite number of iterations. ]



TABLE |

RELATION BETWEEN (p, ¢) AND (p1,D).

two conditions are satisfied.

5 E A i e{i: Dy w(B™) > Dyw(B™), vk} (39)
raq pP1p P » 'p1 (n) . + (n) + (n)
T TP <L D) J"e{j DyW(B™) < DyW(B"), Vk} (40)
3 (¢.0) c) (0,C) bt (B) < hy, (B) Since¢’_(t) is expressed as (14), the objective functidi3)
b) (0,0) hi(B) < i, (B) is expected to decrease most rapidly whén andj (™) satisfy
0) (0,0 d) (=C,0) | hf(B) < hy, (B) (39) and (40), respectively. In this sense, this method is based
e) (0,0) hy (B) < hp, (B) on the steepest descent. It is apparent that any(g&ir, (™)
©) (0,0) 9 (C.0) Iy (B) < b, (B) satisfying (39) and (40) is a-violating pair because there
N (=C,—C) | hy (B) < hy, (B) exlsts at least one-violating pair(i, j) at 3™, which satisfies
(=G0 o) | h(B) <hhB) D; _W(,B(”)) > .Dj*.W(ﬁ("))_ +7, as far as@™ does not
2 (0.0) e (B) < he. (B) satisfy ther-optimality condition.
e) (0,0) : T The method expressed by (39) and (40) is identical to the
9 (€.0) h‘i ('?) < h‘f (?) one proposed by Shevadtal.[19]. On the other hand, Smola
f) (—C, —C) H (=G =€) h’i B) < h‘f ) and Sclolkopf [18] and Flake and Lawrence [20] used methods
N (©,-C) | hp(B) < hp (B) based on Platt’s SMO algorithm [3].
9 (C.0) 3) (C,C) hi(?) < h{l (8) How to implement Algorithm 3 is another important prob-
© (0.0) hy (B) < hp, (B) lem. Of course we can encode the algorithm exactly same as
h) (0, —C) b) (0,0) hy (B) < hay (B) described in Section 1V, but by using the technique introduced
’ d) (=C,0) hyy (B) < hp, (B) by Flake and Lawrence [20] we can obtain a code which is
more compact and faster.
The pseudo-code given in [21] is shown in Fig.6 where
TABLE Il sgn(u) takesl if u > 0 and —1 otherwise, and stép) takes
RELATION BETWEEN (p, q) AND (g, q1)- 1 if w > 0 and 0 otherwise. The first part (lines 4-20) is a
_ _ —— generalization of the code given in [20]. On the other hand,
Pra | Baar | 1 (B). hii (B) the second part (lines 21-39) was newly added by the authors,
a) (C,C) hdy (B) < hi (B) because the case wheye= 0 was not considered in [20].
3 (G.C) 9) (C,0) hay (B) < hi (B) It is important to note that the pseudo-code shown in Fig.6
b) (0,0) ha (B) < he (B) is equivalent to Algorithm 3 only if < e. However, since the
P (0,0 h) (0,=C) | hg (B) < hq (B) value ofr is usually set to a sufficiently small positive number
a) (¢, 0) ha, (B) < hi (B) comparing withe (see [19] for example), this assumption will
) (0,0) 9 (C,0) Iy, (B) < 1l (B) not be violated in practice.
8 (_C.0) b) (0,0) hay B) < hi(ﬁ:)
’ h) (0,=C) | hg (B) < hq (B) B. Experiments
e) (0,0) 9 0.0) h&tl (@ < h‘i@ In order to examine the efficiency of the authors’ SMO
€)(0,0) ha, (?) < hq (?) algorithm [21], we compare the following six algorithms in
n (—C.—0) d) (=¢,0) h?zfl (B) < hq (B) terms of CPU time and the number of iterations for several
N (=C,=C) | ha(B) <hq (B) benchmark data sets.
g) (C,0) 9 ©,0) h%l B) < hq_ ®) 1) The algorithm used in LIBSVM version 2.71 or earlier
€) (0,0) ha, (B) < hq (B) [16], [17]. Two variables which most violate the KKT
o) |2 (=C.0) h% (B) < hq (B) condition for Problem 1 are selected frath variables.
’ ) (=C,=C) | hqi(B) <hq (B) The relationship between; and &; is not considered

VI. IMPLEMENTATION AND EXPERIMENTS

explicitly. Subproblems are solved exactly.

2) Smola and Sdblkopf's SMO algorithm [18]. Two pairs
of variablesa;, &;, o; andé; are selected according to
the strategy similar to Platt's SMO algorithm. Subprob-
lems are solved exactly.

3) Shevadaet al's SMO algorithm [19]. Two pairs of

A. Implementation of SMO Algorithm variablesa;, &;, o; andé; which most violate the KKT

o ) ) condition for Problem 1 are selected. Subproblems are
The authors have recently studied in detail how to imple-  gojyed exactly.

ment the SMO algorithm discussed in the previous sectiong) Flake and Lawrence’s SMO algorithm [20]. Two vari-

[21]. In the following, we will briefly review their results. ables 3; and j3; are selected according to the strat-
Convergence rate of the SMO algorithm strongly depends  egy similar to Platt's SMO algorithm. Subproblems are

on how to choose a violating pair in each iteration. The method  solved exactly.

used in [21] is to choos&™ and (™ so that the following 5) The authors’ SMO algorithm [21].
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1. s:= B+ dimension of the input patternsd)( the total number of
2. ni= ki + ki — 2k samples o¢a1), the number of samples used for traininy (
. = =yt 2,y kinBa s — 2y KinBa and the values of parameters 7, C' and o are specified.
4. it (n>0) { The values ofzx; andy; in training samples are normalized
Z' g = fjﬁ(T — o)/ before training so that; € [~1,1]¢ andy; € [~1, 1] hold for
7: if’ (ﬂ 8, >“0) ( all 5. The values of hypgrparametefsr and C are fixed to
8. m = B, - step(3:) — B; - (1 — step(B1)): 0.1, 0.01 and 10, respectively, for all data sets. On the other
9. A= 7/n; hand, the value of the kernel parametewas selected from
10. Bi = Bi — min{m, A}; {0.01,0.05,0.1,0.5} so that the error rate for test samples is
11. elseif (8; - B; < 0) { minimized.
12. A= (2e + 7 -sgn(B:))/n;
13, B = (ﬂ - mm{wf ] |)a)j/\, A} - sgn(); TABLE I
14. } BASIC INFORMATION ON BENCHMARK DATA SETS AND PARAMETER
15. if (s>0and 8; <s—C) SETTING
- elsg}'(s o < o) Data | d [lom | T [ e[ 7 [C o
18, By = —C; abalone 8 | 4177 | 1000 | 0.1 | 0.01 | 10 0.5
bodyfat | 14 | 252 | 100 | 0.1| 001 | 10 | 0.1
19. Bj = s = Bi; housing | 13 | 506 | 200 | 0.1 | 0.01| 10 | 0.1
20. mg 6| 1385| 600 | 0.1 0.01| 10| 05
21, else { mpg 7| 392 | 200|01|001|10]| 05
29. if (B; <0 and j3; > 0) pyrim 27 74 50 | 0.1 | 0.01| 10 | 0.01
93, Bi = 5 - step(s) — O space-ga| 6 | 3107 | 1000 | 0.1 | 0.01 | 10 | 0.1
oL clseif (3 > 0 amd f; > 0) or (3 <0 and 3, < 0)) { trizaines | 60 | 186 | 100 | 0.1 | 0.01 | 10 | 0.05
25. if (|s|] > C or v > 7 + 2¢)
;g elsf" i= - step(s) = €5 For each benchmark data sets, we generate ten sefts of
98, Bi = s+ (1— step(s)); tra!n!ng samples which are randoml_y sglected from the whole
29. } training samples, and apply the six different algorithms to
30. else { those ten sets of training samples. Experimental results are
31. if (v> T+ 2€) summarized in Table IV where the number of iterations, CPU
32. Bi = s - step(s) — C; time and the number of jumps are presented. Each value is
33. elseif (v > 7) obtained by averaging the results for ten sets. The number of
34. Bi = s - (1 = step(s)); jumps represents how many transitions between regiins
gZ' elseﬁ_ st S,, S5 and S, in Fig.1 occurred in solving QP subproblems.
37: ) i PLs); Although global convergence is thgoretically guaranteed only
38, B = s— _for Methods _1 and 5r-optimal solutions were always reached
39. in our experiments.
We first compare the six methods simply in terms of CPU
time. It is seen from Table IV that Method 1, the algorithm
Fig. 6. Pseudo code of Algorithm 3 used in LIBSVM version 2.71 or earlier, is the fastest for

six benchmark data sets. Methods 3, 5 and 6 are slower than
Method 1 but the difference is not so significant. Methods 2

6) The same algorithm as 5) except that subproblems @d 4 are the slowest. In particular, fog, they are about four

solved exactly by Algorithm 2 which is encoded in dime slower than others. In order to explain these results, we
similar way as the pseudo code shown in Fig.6. focus our attention on the number of jumps. Table IV shows

Although some new variable selection methods have dhat those methods which select variables most violating the

cently been proposed for pattern classification problems [2ZRtimality condition (Methods 3, 5 and 6) require a much
[24], we do not consider these methods in our experimerg@'aller number of jumps than those methods which select
because it is not clear whether they can be applied to Prifdfiables in a way similar to Platt's SMO algorithms (Methods
lem 2 directly. However, it is of course important to veri and 4). Since all variables are set to zero |n|'t|ally, this
the applicability of these methods to Problem 2. This will bEY€@ns that the former group of methods select variables more
another research topic for future. appropriately th_an the_latter one. Table IV also shows that
All the above algorithms were implemented in MATLAB!E number of Jumps 1S zero or extremely small compared
and run on a PC with Intel Xeon dual processor 2.8GHz afdy the_ number of iterations for Methods 3, 5 qnd 6. These
2GB of RAM. As the kernel function, we used the RBF kerndpXP€rimental results strongly support a conclusion from [17,
defined byK (z,y) = exp(—|z — y|?/(202)). Benchmark Theorem 2] which says that no jump occurs at the final stage.

data sets are from UCI Machine Learning Repository [25] IS Obvious that the advantage of updating two variaffies

StatLib [26] and [20], and listed in Table Hiwhere the ndd; in Methods 5 and 6 (or two pairs of variables a:, o,
and¢é; in Methods 2, 3 and 4) becomes small as the number

1Al data sets in Table Il are also available at [16]. of jumps decreases. In particular, if no jump occurs, these



TABLE IV
EXPERIMENTAL RESULTS

Data Method Iteration CPU Time (sec) Jumps
abalone 1 27566.0 29.1142
2 34146.2 38.9869 119.3
3 27480.6 29.0673 28.8
4 34088.8 38.3673 117.7
5 27219.7 29.0467 28.7
6 27480.6 29.1021 28.8
bodyfat 1 66.1 0.3465
2 402.8 0.5306 37.6
3 66.1 0.3491 0
4 411.9 0.5318 38.4
5 66.1 0.3488 0
6 66.1 0.3493 0
housing 1 140.8 1.2289
2 935.2 2.0986 131.2
3 140.8 1.2492 0
4 906.9 2.0513 125.6
5 140.8 1.2364 0
6 140.8 1.2380 0
mg 1 18779.5 16.5560
2 48012.3 38.2765 518.9
3 18649.8 16.5473 29.2
4 48758.4 38.3542 532.1
5 18741.1 16.5728 29.3
6 18649.8 16.5095 29.2 [1
mpg 1 15415 1.1145 2]
2 4876.8 4.0746 401.8
3 1544.7 1.1583 5.3
4 4962.7 4.1538 410.3 [3]
5 1555.0 1.1685 54
6 1544.7 1.1567 5.3
pyrim 1 64.5 0.0972
2 181.9 0.1453 14.9 [4]
3 64.5 0.1046 0
4 186.7 0.1484 15.0
5 64.5 0.1012 0
6 64.5 0.1037 0 [5]
space-ga 1 265.8 6.1267
2 1364.5 9.1324 263.7
3 265.8 6.1358 0 [6]
4 1327.8 9.0638 257.1
5 265.8 6.1338 0 [7]
6 265.8 6.1325 0
trizaines 1 219.6 0.3621
2 644.8 0.8346 20.1 [8l
3 219.6 0.3687 0
4 684.8 0.8665 21.6
5 219.6 0.3649 0 [l
6 219.6 0.3652 0

11

It is seen from Table IV that there is no significant difference
between these two methods. This is because the behavior of
Algorithms 2 and 3 differ only when the jump occurs and the
number of jumps is very small for all benchmark data sets.

VIl. CONCLUSION

We have proved that if a-violating pair is chosen for
update in each step and subproblems are solved by Algo-
rithm 3 then the SMO algorithm stops within a finite number of
iterations after finding a&-optimal solution. On the other hand,
however, it is still not clear whether or not the SMO algorithm
converges to ar-optimal solution when subproblems are
solved exactly. This may be a future problem to be attacked.
Another future problem is to study global convergence of more
general decomposition algorithms for SVR where more than
two variables are updated in each step. This issue is also
mentioned in [8].
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