
Global Convergence of SMO Algorithm for
Support Vector Regression

Author(s): Norikazu Takahashi, Jun Guo and Tetsuo Nishi

Journal: IEEE Transactions on Neural Networks

Volume: 19

Number: 6

Pages: 971–982

Month: June

Year: 2008

Published Version: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4479862

c⃝2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be ob-

tained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4479862

1

Global Convergence of SMO Algorithm for
Support Vector Regression

Norikazu Takahashi,Member, IEEE,Jun Guo, and Tetsuo Nishi,Fellow, IEEE

Abstract— Global convergence of the sequential minimal opti-
mization (SMO) algorithm for support vector regression (SVR) is
studied in this paper. Givenl training samples, SVR is formulated
as a convex quadratic programming problem with l pairs of
variables. We prove that if two pairs of variables violating the
optimality condition are chosen for update in each step and
subproblems are solved in a certain way then the SMO algorithm
always stops within a finite number of iterations after finding an
optimal solution. Also, efficient implementation techniques for
the SMO algorithm are presented and compared experimentally
with other SMO algorithms.

Index Terms— support vector regression, sequential minimal
optimization, convergence, quadratic programming

I. I NTRODUCTION

T RAINING of a support vector machine (SVM) for pattern
classification is formulated as a quadratic programming

(QP) problem in a number of variables equal to the number of
training samples [1]. Recently several decomposition methods
for solving QP problems arising in the training of SVMs
have been proposed [2]–[6]. Sequential minimal optimiza-
tion (SMO) algorithm proposed by Platt [3] and SVMlight

proposed by Joachims [4] are well-known and widely used
decomposition methods. The basic strategy commonly used in
these methods is to repeat two operations: 1) choosing a fixed
number of variables and 2) solving the QP subproblem with
respect to the selected variables, until an optimal solution is
found. Compared with the direct application of traditional QP
solvers, decomposition methods not only use less amount of
memory but also require shorter computation time. In addition,
some properties on global convergence of the method have
recently been clarified [7]–[15].

This paper considers SMO algorithms for support vector
regression (SVR). Givenl training samples, SVR is formulated
as a QP problem with2l variables, sayα1, α2, . . ., αl, α̂1,
α̂2, . . ., α̂n, where two variablesαi andα̂i are closely related
to each other.

A simple approach to this problem is to consider the2l
variables:α1, α2, . . ., αl, α̂1, α̂2, . . ., α̂n, are independent
from each other and to apply decomposition methods for

This work was presented in part at the 2006 International Joint Conference
on Neural Networks, Vancouver, BC, Canada, July 16–21, 2006. This work
was partly supported by the Okawa Foundation research grant, the Ministry of
Education, Culture, Sports, Science and Technology, Grant-in-Aid for JSPS
Research Fellows, 18-9473, and the 21st Century COE Program “Reconstruc-
tion of Social Infrastructure Related to Information Science and Electrical
Engineering”.

N. Takahashi and J. Guo are with the Department of Computer Science and
Communication Engineering, Kyushu University, Fukuoka, 819-0395 Japan
(norikazu@csce.kyushu-u.ac.jp, guojun@kairo.csce.kyushu-u.ac.jp).

T. Nishi is with the Faculty of Science and Engineering, Waseda University,
Tokyo, 162-0072 Japan (nishi-t@waseda.jp).

pattern classification directly. For example, a software library
called LIBSVM [16], [17] selects two variables from the2l
variables and solves the QP subproblem with respect to the
selected variables in each step. This is thought of as a special
case of the generalized SMO algorithm [13]. An advantages
of this approach is that the global convergence is guaranteed
by some existing results concerning the global convergence of
the decomposition methods [7]–[15].

On the other hand, many researchers have tried to develop
SVR-oriented SMO algorithms by making use of the close
relationship betweenαi and α̂i. Smola and Scḧolkopf [18]
proposed an SMO algorithm for SVR by extending the basic
idea of Platt’s SMO. This algorithm selects two pairs of
variables (or four variables):αi, α̂i, αj and α̂j , in each step
according to the strategy similar to Platt’s SMO, and solves
the QP subproblem with respect to the selected variables
analytically by considering four cases depending on the values
of two pairs of variables. Shevadeet al. [19] pointed out that
the method for updating the bias in Smola and Schölkopf’s
algorithm is inefficient, and made some improvements. Also,
they proposed a new method for selecting variables based on
the degree of violation of the optimality condition. Flake and
Lawrence [20] showed that the QP problems with2l variables
can be transformed into non-smooth optimization problems
with l variablesβi , αi − α̂i, i = 1, 2, . . . , l, and proposed
an SMO algorithm for solving these non-smooth optimization
problems. An advantage of Flake and Lawrence’s algorithm is
that the procedure for solving subproblems can be expressed
in a very simple form.

While the global convergence property of SMO algorithms
for pattern classification has been clarified by several re-
searchers [12]–[15], this is not the case at all for the above
mentioned SMO algorithms for SVR. The most important dif-
ference is that SMO algorithms for SVR choose four variables
in each step while those for pattern classification choose two.
For this reason, the existing results cannot be directly applied
to the convergence analysis of SMO algorithms for SVR.

In this paper, we study the global convergence of a general
SMO algorithms based on Flake and Lawrence’s formulation.
By using the same approach as in [13] and [14], we prove
that the algorithm reaches an optimal solution within a finite
number of iterations if two conditions are satisfied. One is
that the algorithm must choose two variables violating the
optimality condition in each step. The other is that the values
of the selected variables must be updated by using not an exact
solution of the subproblem but an approximate solution in a
certain situation. One may think this is strange, but, as far as
the approach based on [13] and [14] is concerned, the global
convergence cannot be proved without this condition.

2

This paper is organized as follows. Section II describes the
basic principle of SVR and Flake and Lawrence’s formulation
as a non-smooth optimization problem. In Section III, the op-
timality condition for the problem, the notion of violating pair,
and a general form of the SMO algorithm are presented. How
to solve subproblems is addressed in Section IV. In Section V,
we give a rigorous proof for the global convergence of the
SMO algorithm. Implementation issues will be discussed in
Section VI. Finally, Section VII provides our conclusion.

II. SUPPORTVECTORREGRESSION

Consider a set of training samples{(xi, yi)}li=1, wherexi ∈
Rd is the i-th sample value of the input vector,yi ∈ R is the
corresponding value of the model output andl is the number
of training samples. The goal of regression is to provide an
estimate of the dependence ofy onx, which can be expressed
as

y = f(x) + ν

wheref(·) is an unknown nonlinear function andν is a noise
independent ofx.

Basic concepts of SVMs can be applied to regression prob-
lems by introducing a certain loss function such as quadratic
function, Laplace function, Huber function andε-insensitive
function. Among them,ε-insensitive function is one of the
most widely used loss functions because it can produce sparse
support vectors. Throughout this paper, we will focus our
attention on SVR with theε-insensitive function defined as

|x|ε =

{
0 if |x| < ε

|x| − ε otherwise

In SVR, the unknown functionf(x) is assumed to be
expressed in the following form:

fSVR(x) = wTϕ(x) + b

wherew is the coefficient vector,b is the bias, andϕ(·) is
the pre-specified nonlinear mapping. Values of the coefficient
vector and the bias are determined so that the functional
defined by

C
l∑

i=1

|yi − fSVR(xi)|ε + ∥w∥2

is minimized, whereC is a positive constant,| · |ε is the ε-
insensitive loss function defined above, and|| · || denotes the
Euclidean norm. The dual form of this problem leads to the
following convex QP problem with2l variables.

Problem 1: Find α = [α1, α2, . . . , αl, α̂1, α̂2, . . . , α̂l]
T ∈

R2l that minimizes

Q(α) =−
l∑

i=1

yi(αi − α̂i) + ε
l∑

i=1

(αi + α̂i)

+
1

2

l∑
i=1

l∑
j=1

(αi − α̂i)(αj − α̂j)K(xi,xj)

subject to the constraints:
l∑

i=1

(αi − α̂i) = 0 (1)

0 ≤ αi ≤ C, i = 1, 2, . . . , l (2)

0 ≤ α̂i ≤ C, i = 1, 2, . . . , l (3)

whereK(xi,xj) = ϕ(xi)
Tϕ(xj) and ε is a user-specified

positive constant.
Let F1 ⊂ R2l be the feasible region of Problem 1.K(·, ·)

in the objective functionQ(α) is called a kernel function.
Throughout this paper, we assume that the kernel function
K(·, ·) satisfies Mercer’s condition. It is thus always guaran-
teed that thel × l matrix K = [kij] with kij = K(xi,xj) is
positive semi-definite.

Let α∗ = [α∗
1, α

∗
2, . . . , α

∗
l , α̂

∗
1, α̂

∗
2, . . . , α̂

∗
l]

T be any optimal
solution of Problem 1. Then it follows from the Karush-Kuhn-
Tucker (KKT) conditions for Problem 1 that the condition

α∗
i α̂

∗
i = 0, i = 1, 2, . . . , l (4)

holds [18], [19]. This means that the set of optimal solutions
of Problem 1 does not change even though the condition

αiα̂i = 0, i = 1, 2, . . . , l (5)

is added to the constraints (1)–(3). Let us now introduce
new variablesβi = αi − α̂i for i = 1, 2, . . . , l. Then,
sinceαi + α̂i can be expressed as|βi| under the conditions
(2), (3) and (5), Problem 1 can be reformulated in terms of
β = [β1, β2, . . . , βl]

T as follows [20]:
Problem 2: Find β = [β1, β2, . . . , βl]

T ∈ Rl that mini-
mizes

W (β) = −
l∑

i=1

yiβi + ε

l∑
i=1

|βi|+
1

2

l∑
i=1

l∑
j=1

βiβjkij (6)

subject to the constraints:

l∑
i=1

βi = 0

−C ≤ βi ≤ C, i = 1, 2, . . . , l
Note that the objective functionW (β) is neither quadratic

nor differentiable any more. However, it is still convex and
therefore Problem 2 has no local minimum. In the following,
the feasible region of Problem 2 is denoted byF2 ⊂ Rl. It is
apparent thatF2 is not empty.

Let β∗ = [β∗
1 , β

∗
2 , . . . , β

∗
l]

T be any optimal solution of
Problem 2. Then the approximating functionfSVR(x) derived
by SVR can be expressed as

fSVR(x) =

l∑
i=1

β∗
iK(xi,x) + b

where the value ofb is determined so that

fSVR(xm) =
l∑

i=1

β∗
iK(xi,xm) + b = ym − ε

holds for anym such that0 < β∗
m < C or

fSVR(xn) =
l∑

i=1

β∗
iK(xi,xn) + b = yn + ε

holds for anyn such that−C < β∗
n < 0 [20].

3

III. SMO A LGORITHM FOR SVR

In this section, we present a general form of SMO algo-
rithms for solving Problem 2. Before doing so, we derive
the optimality condition for Problem 2. We also introduce the
notion of violating pairs.

A. Optimality Condition

As shown in [19], it follows from the KKT condition for
Problem 1 thatα = [α1, α2, . . . , αl, α̂1, α̂2, . . . , α̂l] ∈ F1 is
an optimal solution if and only if there exists a constantλ such
that the following conditions are satisfied fori = 1, 2, . . . , l.

1) If 0 < αi < C and α̂i = 0 then yi − ε −
∑l

j=1(αj −
α̂j)kij = λ.

2) If αi = 0 and 0 < α̂i < C then yi + ε −
∑l

j=1(αj −
α̂j)kij = λ.

3) If αi = C andα̂i = 0 thenyi−ε−
∑l

j=1(αj−α̂j)kij ≥
λ.

4) If αi = 0 andα̂i = C thenyi+ε−
∑l

j=1(αj−α̂j)kij ≤
λ.

5) If αi = α̂i = 0 then yi − ε −
∑l

j=1(αj − α̂j)kij ≤ λ

andyi + ε−
∑l

j=1(αj − α̂j)kij ≥ λ.
Substitutingβi = αi− α̂i into these conditions, we can derive
the optimality conditions for Problem 2 as follows:

h+i (β) ≤ −λ, if βi = C
h+i (β) = −λ, if 0 < βi < C
h−i (β) ≤ −λ ≤ h+i (β), if βi = 0
h−i (β) = −λ, if −C < βi < 0
h−i (β) ≥ −λ, if βi = −C

(7)

where

h±i (β) = −yi ± ε+

l∑
j=1

kijβj . (8)

Since (7) is rewritten as

max
βi=C

h+i (β) ≤− λ

max
0<βi<C

h+i (β) ≤− λ ≤ min
0<βi<C

h+i (β)

max
βi=0

h−i (β) ≤− λ ≤ min
βi=0

h+i (β)

max
−C<βi<0

h−i (β) ≤− λ ≤ min
−C<βi<0

h−i (β)

− λ ≤ min
βi=−C

h−i (β)

we can express the optimality condition by a single inequality
as follows:

max

{
max

0<βi≤C
h+i (β), max

−C<βi≤0
h−i (β)

}
≤ min

{
min

−C≤βi<0
h−i (β), min

0≤βi<C
h+i (β)

}
. (9)

LetD+
i W (β) andD−

i W (β) denote the right-hand and left-
hand partial derivatives ofW (β) with respect toβi, that is,

D+
i W (β) = lim

δ→0+

W (β + δei)−W (β)

δ

D−
i W (β) = lim

δ→0−

W (β + δei)−W (β)

δ

whereei is the vector whosei-th element is+1 and others are
zero. Then it is easily seen that inF2 these partial derivatives
can be expressed in terms ofh+i (β) andh−i (β) defined in (8)
as follows:

D+
i W (β) =

{
h+i (β), βi ≥ 0
h−i (β), βi < 0

D−
i W (β) =

{
h+i (β), βi > 0
h−i (β), βi ≤ 0

Therefore, the optimality condition (9) can be rewritten in a
simpler form as

max
−C<βi≤C

D−
i W (β) ≤ min

−C≤βi<C
D+

i W (β) . (10)

Since the SMO algorithm generally does not provide an
exact optimal solution in a finite number of iterations, we will
consider hereafter the relaxed optimality condition:

max
−C<βi≤C

D−
i W (β) ≤ min

−C≤βi<C
D+

i W (β) + τ (11)

instead of (10), whereτ is a positive tolerance parameter.
Eq.(11) is called theτ -optimality condition.

B. Violating Pair

With the strict optimality condition (10), we can define the
violating pair as follows; a pair of indices(i, j) is said to be
a violating pair atβ ∈ F2 if the following conditions hold:

−C < βi ≤ C, −C ≤ βj < C, D−
i W (β) > D+

j W (β)

It is obvious that the optimality condition (10) holds atβ if
and only if there exists no violating pair atβ. Similarly, we
can define the violating pair corresponding to (11). A pair of
indices(i, j) satisfying

−C < βi ≤ C, −C ≤ βj < C, D−
i W (β) > D+

j W (β) + τ
(12)

is called a τ -violating pair at β ∈ F2. The τ -optimality
condition (11) holds atβ if and only if there exists noτ -
violating pair atβ. It is very important to note here that
two statements “(i, j) is a τ -violating pair” and “(j, i) is a
τ -violating pair” must be distinguished in this paper.

C. SMO Algorithm

A general SMO algorithm for solving Problem 2 is de-
scribed as follows:

Algorithm 1: Given training samples{(xi, yi)}li=1, kernel
functionK(·, ·) and positive constantsC, ε andτ , execute the
following procedure.

Step 1:Setn := 0 and choose an initial pointβ(0) ∈ F2.
Step 2:If β = β(n) satisfies theτ -optimality condition (11)

then stop.
Step 3: Choose aτ -violating pair (i(n), j(n)) at β(n)

and solve Problem 2 under the additional constraintsβk =
β
(n)
k , ∀k ̸∈ {i(n), j(n)}. Let β(n+1) be the point thus obtained.

Setn := n+ 1 and go to Step 2.
It is apparent that the objective functionW (β) is bounded

from below in the feasible regionF2 and the sequence

4

{W (β(n))}∞n=0 obtained by Algorithm 1 is monotone decreas-
ing, that is,W (β(n+1)) ≤W (β(n)) holds for alln. Therefore
W (β(n)) necessarily converges to a certain value. On the other
hand, however, it is not clear whether or not Algorithm 1
always stops within a finite number of iterations. To make clear
the condition which guarantees the termination of Algorithm 1
is one of the main goal in this paper.

Since the optimization problems arising in Step 3, which
will be called subproblems in the following, have only two
variables, they can be solved very easily. In the next section,
we will describe in detail how these subproblems can be
solved.

IV. H OW TO SOLVE SUBPROBLEMS

As a general form of subproblems arising in Step 3 of
Algorithm 1, we will consider in this section the following
problem: Given a point̃β = [β̃1, β̃2, . . . , β̃l]

T ∈ F2 and two
indices i, j ∈ {1, 2, . . . , l} such that(i, j) is a τ -violating
pair at β̃, find β that minimizesW (β) under the constraints
β ∈ F2 andβk = β̃k, ∀k ̸= i, j. This problem has essentially
only two variablesβi andβj and they must satisfyβi + βj =
β̃i + β̃j . Therefore it is convenient for us to parameterizeβ
asβ(t) = [β1(t), β2(t), . . . , βl(t)]

T where

βi(t) = β̃i + t, βj(t) = β̃j − t, βk(t) = β̃k, ∀k ̸= i, j.

Then the problem can be reformulated as follows:
Problem 3: Find t that minimizes

ψ(t) =W (β(t))

= (−yi +
l∑

k=1

β̃kkik + yj −
l∑

k=1

β̃kkjk)t

+
1

2
ηt2 + ε|β̃i + t|+ ε|β̃j − t|+Wc

subject to−C ≤ βi(t) ≤ C and −C ≤ βj(t) ≤ C, where
η = kii + kjj − 2kij ≥ 0 andWc represents a collection of
constant terms.

We now introduce some notations for later discussions.
First, according to the notation used in [13], we express
(βi, βj) as βij for simplicity. We also useβ(n)

ij and βij(t)
in the same sense. LetS be the square region defined by
S = [−C,C]× [−C,C] ⊂ R2. Let S1, S2, S3 andS4 be four
square regions defined as follows:

S1 = {βij ∈ S : 0 < βi ≤ C, 0 ≤ βj < C}
S2 = {βij ∈ S : −C < βi ≤ 0, 0 ≤ βj < C}
S3 = {βij ∈ S : −C < βi ≤ 0, −C ≤ βj < 0}
S4 = {βij ∈ S : 0 < βi ≤ C, −C ≤ βj < 0}

The interior and boundary of each regionSi are denoted
by intSi and ∂Si, respectively. Similarly, the interior and
boundary of the regionS are denoted by intS and ∂S,
respectively. Vertices of four square regionsS1, S2, S3 andS4

are denoted byV1 = (C, 0), V2 = (C,C), V3 = (0, C), V4 =
(−C,C), V5 = (−C, 0), V6 = (−C,−C), V7 = (0,−C) and

βi

βj

S

S1S2

S3 S4

O V1

V2V3V4

V5

V6 V7 V8

E1

E2E3

E4

E10

E5

E6 E7

E8

E12

E9

E11

Fig. 1. Square regionsS, S1, . . . , S4, verticesV1, V2, . . . , V8, and sides
E1, E2, . . . , E12.

V8 = (C,−C). Also, the sides excluding vertices of square
regions, are denoted byE1, E2, . . . , E12 as

E1 = {βij ∈ S : βi = C, 0 < βj < C},
E2 = {βij ∈ S : 0 < βi < C, βj = C},

and so on (see Fig.1).
Figure 2 shows the diagonal line on which the pointβij(t)

moves with t, and the graph of the objective functionψ(t)
versust. It is obvious that the objective functionψ(t) is convex
and hence there is no local minimum. However, sinceψ(t)
is not differentiable att = −β̃i and t = β̃j , we need to
consider two types of derivatives: the right-hand and left-hand
derivatives defined by

ψ′
+(t) = lim

δ→0+

ψ(t+ δ)− ψ(t)

δ

ψ′
−(t) = lim

δ→0−

ψ(t+ δ)− ψ(t)

δ

at these two points. With these notations, we can say, for
example, thatt = t∗ is an optimal solution of Problem 3
if βij(t∗) is an interior point ofS andψ′

−(t
∗) ≤ 0 ≤ ψ′

+(t
∗)

holds. Here we should note thatψ′
−(t) = ψ′

+(t) holds for any
t ̸∈ {−β̃i, β̃j}.

Lemma 1:The following equations hold for the derivatives
of ψ(t) andW (β).

ψ′
+(t) =D

+
i W (β(t))−D−

j W (β(t)) (13)

ψ′
−(t) =D

−
i W (β(t))−D+

j W (β(t)) (14)
Proof: We will prove only (13) because (14) can be done

in the same way. Sincedβi(t)/dt = 1 anddβj(t)/dt = −1,
the right-hand derivative ofψ(t) at t = 0 can be expressed as
follows:

ψ′
+(0) =D

+
i W (β̃) · dβi(t)

dt
+D−

j W (β̃) · dβj(t)
dt

=D+
i W (β̃)−D−

j W (β̃) (15)

Furthermore, sinceψ′
+(t) = ψ′

+(0)
∣∣
β̃=β(t)

holds, by substi-

tuting β̃ = β(t) into (15) we can derive (13).

5

βi

βj

(βi(t), βj(t))

(β̃i, β̃j)

t = β̃j

t = −β̃i

t = 0

t0β̃j−β̃i

ψ(t)

ψ′

+
(β̃j)

ψ′

−
(β̃j)

(a)

(b)

Fig. 2. (a) Diagonal line represented by(βi(t), βj(t)). (b) Objective function
ψ(t) and its right-hand and left-hand derivatives.

Lemma 2:The pair of indices(i, j) is a τ -violating pair at
β(t) if and only if

−C < βi(t) ≤ C, −C ≤ βj(t) < C, ψ′
−(t) > τ .

Proof: The conditions can be immediately derived by
substituting (14) into (12).

Lemma 3:Let t∗ be an optimal solution of Problem 3. Then
t∗ < 0.

Proof: Since(i, j) is a τ -violating pair atβ(0) = β̃, it
follows from Lemma 2 that̃βi > −C, β̃j < C andψ′

−(0) >
τ > 0. Sinceψ(t) is convex,t∗ must be negative.

Lemma 4: t∗ is an optimal solution of Problem 3 if and
only if one of the following two conditions hold.

1) βij(t∗) ∈ intS andψ′
−(t

∗) ≤ 0 ≤ ψ′
+(t

∗)
2) βij(t∗) ∈

(
∪5
k=3{Vk}

)
∪
(
∪5
k=2Ek

)
andψ′

+(t
∗) ≥ 0

Proof: It is apparent from the convexity ofψ(t) and
Lemma 3.

We easily see from these lemmas that an optimal solutiont∗

can be found by decreasing the value oft from 0 until βij(t)
satisfies one of two conditions given in Lemma 4. This search
process is formally stated as follows.

Algorithm 2: For Problem 3, findt∗ by executing the fol-
lowing procedure.

Step 1:Setm := 0 and tm := 0.

Step 2:If η ̸= 0 then settmin := −ψ′
−(tm)/η. Otherwise,

set tmin := −∞.
Step 3:Let Sk be the region to whichβij(tm) belongs. If

βij(tmin) ∈ Sk then sett∗ := tmin and stop. Otherwise, set
t̂min := inf{t : βij(t) ∈ Sk}.

Step 4:If either i) βij(t̂min) ∈ ∂S or ii) βij(t̂min) ∈ intS
andψ′

−(t̂min) ≤ 0 holds, sett∗ := t̂min and stop. Otherwise
setm := m+ 1 and tm := t̂min and go to Step 2.

One can easily see thatt∗ found by Algorithm 2 is always
an optimal solution of Problem 3. However, we will hereafter
not consider Algorithm 2 but Algorithm 3 given below, which
is obtained by replacing the conditionψ′

−(t̂min) ≤ 0 in Step 4
of Algorithm 2 with ψ′

−(t̂min) ≤ τ where τ is the positive
tolerance parameter introduced in (11). The reason why we
do not consider Algorithm 2 will be explained later.

Algorithm 3: For Problem 3, findt∗∗ by executing the
following procedure.

Step 1:Setm := 0 and tm := 0.
Step 2:If η ̸= 0 then settmin := −ψ′

−(tm)/η. Otherwise,
set tmin := −∞.

Step 3:Let Sk be the region to whichβij(tm) belongs. If
βij(tmin) ∈ Sk then sett∗∗ := tmin and stop. Otherwise, set
t̂min := inf{t : βij(t) ∈ Sk}.

Step 4:If either i) βij(t̂min) ∈ ∂S or ii) βij(t̂min) ∈ intS
andψ′

−(t̂min) ≤ τ holds, sett∗∗ := t̂min and stop. Otherwise
setm := m+ 1 and tm := t̂min and go to Step 2.

Difference in the behavior of Algorithms 2 and 3 is illus-
trated in Fig.3 where it is assumed thatψ(t) is minimized
at t = tA, the point (β1(tA), β2(tA)) belongs toS, ψ(t) is
not smooth att = tB ∈ (tA, 0), and the derivatives ofψ(t)
at t = tB satisfy 0 < ψ′

−(tB) ≤ τ < ψ′
+(tB). In this case,

Algorithm 2 returns the optimal solutiontA while Algorithm 3
returns the approximate solutiontB .

The following lemma shows some important properties of
Algorithm 3.

Lemma 5:Let t∗∗ be the solution obtained by Algorithm 3.
Then the following statements hold true.

1) ψ(t∗∗) < ψ(0).
2) The right-hand derivative ofψ(t) at t = t∗∗ satisfies

ψ′
+(t

∗∗) ≥ 0

in any case. The left-hand derivative satisfies

ψ′
−(t

∗∗) ≤ τ (16)

if βij(t∗∗) ∈ intS. In particular,

ψ′
−(t

∗∗) = ψ′
+(t

∗∗) = 0

holds if βij(t∗∗) ∈ ∪4
k=1intSk.

3) The pair(i, j) is not aτ -violating pair atβ(t∗∗).
4) The following inequality holds:

ψ(0)− ψ(t∗∗) ≥ τ

2
√
2
∥β̃ − β(t∗∗)∥ (17)

where∥ · ∥ is the Euclidean norm.
Proof: It is obvious from Lemma 3 and Algorithm 3 that

the first and second statements hold true. Substituting (14) into
(16), we have

D−
i W (β(t∗∗)) ≤ D+

j W (β(t∗∗)) + τ

6

t

ψ(t)

ψ′

+
(tB) > τ

ψ′

−
(tB) ≤ τ

(a)

t∗ = tA tB

t

ψ(t)

ψ′

+
(tB) > τ

ψ′

−
(tB) ≤ τ

(b)

tA t∗∗ = tB

Fig. 3. Comparison between (a) Algorithm 2 and (b) Algorithm 3.

which implies that(i, j) is not aτ -violating pair. Thus the third
statement holds true. The fourth statement can be proved in
the same way as [13, Lemma 1]. Let̄m be the value ofm
when Algorithm 3 stops. Then there are three possible cases:
m̄ = 0, m̄ = 1 and m̄ = 2. We will consider here only the
last one, because it is the most general among three. In this
case,ψ(t) can be expressed as

ψ(t) =
1

2
η(t− t2)

2 + ψ′
−(t2)(t− t2) + ψ(t2)

in the intervalt∗∗ ≤ t ≤ t2, where we easily see from Step 4
of Algorithm 3 that

ψ′
−(t2) > τ . (18)

Let us show now that

ψ(t2)− ψ(t∗∗) ≥ τ

2
(t2 − t∗∗) (19)

holds for anyη ≥ 0. Suppose first thatη = 0. Sinceψ(t) is
linear in this case, we have from (18) thatψ(t2) − ψ(t∗∗) >
τ(t2 − t∗∗). Thus (19) apparently holds. Suppose next that
η > 0. If the constraintβij(t) ∈ S is ignored, the function
ψ(t) is minimized att = tQ , t2 − ψ′

−(t2)/η < 0. Since
tQ ≤ t∗∗ ≤ t2 andψ(t) is convex, we have

t2 − t∗∗

t2 − tQ
· ψ(tQ) +

t∗∗ − tQ
t2 − tQ

· ψ(t2) ≥ ψ(t∗∗) .

Sinceψ(tQ) = ψ(t2)− (ψ′
−(t2))

2/(2η), the above inequality
can be transformed as follows:

ψ(t2)− ψ(t∗∗) ≥ t2 − t∗∗

t2 − tQ
·
(ψ′

−(t2))
2

2η

SubstitutingtQ = t2−ψ′
−(t2)/η and taking (18) into account,

we derive (19). Therefore (19) holds for anyη ≥ 0. Applying
the above argument to the intervalst2 ≤ t ≤ t1 and t1 ≤ t ≤
0, we have

ψ(t1)− ψ(t2) ≥
τ

2
(t1 − t2) (20)

ψ(0)− ψ(t1) ≥
τ

2
(−t1) (21)

From (19)-(21), we obtain

ψ(0)− ψ(t∗∗) ≥ τ

2
(−t∗∗) = τ

2
√
2
∥β̄ − β(t∗∗)∥

which completes the proof.
We should note that the inequality like (17) cannot be

derived for Algorithm 2. Inequality (17) plays an important
role in our convergence proof for Algorithm 1, which will be
presented in the next section. This is the main reason why we
consider Algorithm 3 instead of Algorithm 2.

V. GLOBAL CONVERGENCE OFALGORITHM 1

In this section, we prove the convergence of Algorithm 1
under the assumption that the subproblems in Step 3 are solved
approximately by Algorithm 3. Although the subproblems are
not solved exactly, it is apparently true thatβ(n) belongs to the
feasible regionF2 of Problem 2 for alln and thatW (β(n)) is
monotone decreasing with respect ton. This implies that the
sequence{W (β(n))}∞n=0 converges to a certain value since
W (β) is bounded from below inF2.

The following theorem is the main result of this paper.
Theorem 1:Algorithm 1 stops in a finite number of iter-

ations for anyτ > 0 if subproblems in Step 3 are solved
approximately by Algorithm 3.

For any execution of Algorithm 1, we define the set of
integersL(p, q) as

L(p, q) = {n : (i(n), j(n)) = (p, q)}

where(p, q) is any pair of indices. LetI∞ be the set of pairs
(p, q) such that|L(p, q)| = ∞ where |L(p, q)| represents the
cardinality of the setL(p, q). Obviously an execution of the
Algorithm 1 stops within a finite number of iterations if and
only if I∞ = ∅.

The first step to prove Theorem 1 is to show that the
sequence{β(n)}∞n=1 is convergent.

Lemma 6:The sequence{β(n)}∞n=0 generated by Algo-
rithm 1 converges to a point inF2 asn→ ∞.

Proof: Since {W (β(n))}∞n=0 is a decreasing sequence
that is bounded from below, it converges to some value as
n→ ∞. It follows from (17) that

2
√
2

τ

(
W (β(n))−W (β(n+1))

)
≥ ∥β(n) − β(n+1)∥ .

By repeated application of the triangle inequality we get

2
√
2

τ

(
W (β(n))−W (β(n+k))

)
≥ ∥β(n) − β(n+k)∥

which means{β(n)}∞n=0 is a Cauchy sequence. SinceF2 is
closed,{β(n)}∞n=0 converges to some point inF2.

7

The limit point of the sequence{β(n)}∞n=0 will be denoted
by β̄ in the following.

Lemma 7:Let (p, q) be any pair belonging toI∞. There
exists ann0 such thatβ(n+1)

pq belongs to∪4
k=1∂Sk for all

n ∈ L(p, q) ≥ n0.
Proof: We will only show in the following that

β(n+1)
pq ∈ intS2 (22)

does not hold infinitely many times. The proofs for the regions
S1, S3 andS4 are omitted because they are similar to the one
given here. Assume that (22) holds for infinitely manyn’s in
L(p, q). Then, at least one of the following two cases occurs
infinitely many times.

1) β(n)
pq ∈ S2 andβ(n+1)

pq ∈ intS2

2) β(n)
pq ∈ S1 ∪ S3 ∪ S4 andβ(n+1)

pq ∈ intS2

We first consider Case 1). LetM1(p, q) ⊆ L(p, q) be the set
of integersn such thatβ(n)

pq ∈ S2 andβ(n+1)
pq ∈ intS2. Since

(p, q) is a τ -violating pair atβ(n) for all n ∈M1(p, q),

D−
p W (β(n))−D+

p W (β(n)) = h−p (β
(n))− h+q (β

(n)) > τ

holds for alln ∈M1(p, q). By taking the limit, we have

h−p (β̄)− h+q (β̄) ≥ τ . (23)

On the other hand, sinceβ(n+1)
pq ∈ intS2 for all n ∈M1(p, q),

it follows from Part 2) of Lemma 5 that

D−
p W (β(n+1))−D+

p W (β(n+1)) = h−p (β
(n+1))−h+q (β(n+1)) = 0

holds for alln ∈M1(p, q). Thus we have

h−p (β̄)− h+q (β̄) = 0

which contradicts (23). We next consider Case 2). In this case,
β̄pq belongs to∂S2∩ (∂S1∪∂S3∪∂S4) = {V3}∪E9∪{O}∪
E10 ∪ {V5}. Let M2(p, q) ⊆ L(p, q) be the set of integersn
such thatβ(n)

pq ∈ S1 ∪ S3 ∪ S4 and β(n+1)
pq ∈ intS2. Since

β
(n+1)
pq ∈ intS2 for all n ∈M2(p, q),

D−
p W (β(n+1))−D+

p W (β(n+1)) = h−p (β
(n+1))−h+q (β(n+1)) = 0

holds for infinitely manyn’s. By taking the limit, we have

h−p (β̄)− h+q (β̄) = 0 (24)

Let θn be the positive number satisfying

(1− θn)β
(n)
pq + θnβ

(n+1)
pq ∈ ∂S2

and let us defineγ(n) as

γ(n) = (1− θn)β
(n) + θnβ

(n+1)

Sinceγ(n)pq ∈ ∂S2 ∩ (∂S1 ∪ ∂S3 ∪ ∂S4) converges tōβpq, we
see from (24) that there exists ann1 such that

h−p (γ
(n))− h+q (γ

(n)) ≤ τ, ∀n ∈M2(p, q) ≥ n1 .

This equation together with the fact thatβ(n+1)
pq ∈ intS2

contradicts Step 4 of Algorithm 3.
Lemma 8: If (p, q) ∈ I∞ then β̄pq belongs to∪4

k=1∂Sk.
Proof: We prove the thesis by contradiction. Assume

without loss of generality that̄βpq ∈ intS1. Since intS1 is an

open set, there exists ann1 such thatβ(n)
pq ∈ intS1, ∀n ≥ n1.

However, this contradicts Lemma 7.
Lemma 9:There exists ann0 such that β(n)

i(n)j(n) ∈
∪4
k=1∂Sk andβ(n+1)

i(n)j(n) ∈ ∪4
k=1∂Sk for all n ≥ n0.

Proof: It is easily seen from Lemma 7 and the definition
of I∞ that there exists ann1 such that(i(n), j(n)) ∈ I∞ and
β
(n+1)

i(n)j(n) ∈ ∪4
k=1∂Sk hold for all n ≥ n1. Therefore for each

n ≥ n1 there are two possibilities: i)β(n)

i(n)j(n) ∈ ∪4
k=1∂Sk

and ii) β(n)

i(n)j(n) ∈ ∪4
k=1intSk. Let B(n) denote the number

of components ofβ(n) satisfyingβ(n)
i ∈ {−C, 0, C}. In Case

i) B(n+1) is equal toB(n) or greater thanB(n) by one. On
the other hand, in Case ii)B(n+1) is greater thanB(n) by
at least one. Therefore Case ii) cannot occur infinitely many
times aftern reachesn1 because otherwiseB(n) goes to
infinity, which of course contradicts the fact that the number
of components ofβ(n) is finite.

From the above discussions we see that for any pair(p, q) ∈
I∞ one of the following situations occurs.

a) β(n)
pq ∈ E1 and β(n+1)

pq ∈ E2 hold for infinitely many
n’s in L(p, q). In this case,̄βpq = V2 = (C,C) and the
following inequality holds.

h+p (β̄) ≥ h+q (β̄) + τ (25)

b) β(n)
pq ∈ E12 and β(n+1)

pq ∈ E9 hold for infinitely many
n’s in L(p, q). In this case,β̄pq = O = (0, 0) and the
inequality (25) holds.

c) β(n)
pq ∈ E9 and β(n+1)

pq ∈ E3 hold for infinitely many
n’s in L(p, q). In this case,̄βpq = V3 = (0, C) and the
following inequality holds.

h−p (β̄) ≥ h+q (β̄) + τ (26)

d) β(n)
pq ∈ E10 and β(n+1)

pq ∈ E4 hold for infinitely many
n’s in L(p, q). In this case,̄βpq = V5 = (−C, 0) and the
inequality (26) holds.

e) β(n)
pq ∈ E11 andβ(n+1)

pq ∈ E10 hold for infinitely many
n’s in L(p, q). In this case,β̄pq = O = (0, 0) and the
following inequality holds.

h−p (β̄) ≥ h−q (β̄) + τ (27)

f) β
(n)
pq ∈ E6 and β(n+1)

pq ∈ E5 hold for infinitely many
n’s in L(p, q). In this case,̄βpq = V6 = (−C,−C) and
the inequality (27) holds.

g) β(n)
pq ∈ E8 and β(n+1)

pq ∈ E12 hold for infinitely many
n’s in L(p, q). In this case,̄βpq = V1 = (C, 0) and the
following inequality holds.

h+p (β̄) ≥ h−q (β̄) + τ (28)

h) β(n)
pq ∈ E7 and β(n+1)

pq ∈ E11 hold for infinitely many
n’s in L(p, q). In this case,β̄pq = V7 = (0,−C) and
the inequality (28) holds.

The eight possible movements fromβ(n)
pq to β

(n+1)
pq for

sufficiently largen ∈ L(p, q) are shown in Fig.4.
We are now ready for giving the proof of Theorem 1.
Proof of Theorem 1:Suppose that Algorithm 1 does not

stop. ThenI∞ has at least one pair. Let(p, q) be any pair in

8

βi

βj

S1S2

S3 S4

O

V1

V2V3V4

V5

V6 V7 V8

E1

E2E3

E4

E10

E5

E6 E7

E8

E12

E9

E11

a)

b)

c)

d)

e) g)

f) h)

Fig. 4. Eight possible movements fromβ(n)
pq to β(n+1)

pq .

I∞. In case a) described above, sinceβ(n)
pq moves fromE1

to E2 infinitely many times, it must return fromE2 to E1

infinitely many times. In order for this to occur, there must
exist an indexp1 such thatβ(n)

p1p moves either i) fromE1 to
E2 or ii) from E9 to E3 infinitely many times, and an index
q1 such thatβ(n)

qq1 moves either i) fromE1 to E2 or ii) from
E8 to E12 infinitely many times (see Fig.5). Therefore(p1, p)
belongs toI∞ and one of the following conditions holds:

β̄p1p = (C,C), h+p1
(β̄) ≥ h+p (β̄) + τ (29)

β̄p1p = (0, C), h−p1
(β̄) ≥ h+p (β̄) + τ (30)

Similarly (q, q1) belongs toI∞ and one of the following
conditions holds:

β̄qq1 = (C,C), h+q (β̄) ≥ h+q1(β̄) + τ (31)

β̄qq1 = (C, 0), h+q (β̄) ≥ h−q1(β̄) + τ (32)

We easily see from (29)–(32) thatp, q, p1 andq1 are different
from each other. For example, in the case whereβ̄p1p = (C,C)
and β̄qq1 = (C,C), we have from (25), (29) and (31)

h+q1(β̄) < h+q (β̄) < h+p (β̄) < h+p1
(β̄)

Thusp, q, p1 andq1 are different from each other. In the case
where β̄p1p = (0, C) and β̄qq1 = (C, 0), it is obvious that
p1 ̸= p, q andq1 ̸= p, q. Moreover, since

h−q1(β̄) < h+q (β̄) < h+p (β̄) < h−p1
(β̄)

holds from (25), (30) and (32), we can conclude thatp1 ̸= q1.
In each case b) to h), there must be two indicesp1 and

q1 such that(p1, p) ∈ I∞, (q, q1) ∈ I∞, and p, q, p1 and
q1 are different from each other, as we have seen in case a).
Relationship between(p, q) and (p1, p) for cases a) – h) is
summarized in Table I, and relationship between(p, q) and
(q, q1) for cases a) – h) is summarized in Table II.

In the following, we will show from Table I thatI∞ must
contain infinitely many pairs. We will not consider Table II,
but the same discussion can be made by using Table II. Let
us first suppose that one of the cases a), c), e) and g) occurs

βp

βq β̄pq = V2

O

βp1

βp β̄p1p
= V2

O
βp1

βp

β̄p1p
= V3

O

βq

βq1 β̄qq1
= V2

O

βq

βq1 β̄qq1
= V1

O

(a)

(b)

(c)

Fig. 5. Possible movements of (a)β(n)
pq , (b)β(n)

p1p and (c)β(n)
qq1 for sufficiently

largen.

for (p, q) ∈ I∞. Then, by applying the relationship shown
in Table I repeatedly, we see that there must exist an infinite
sequence of indicesp0(= p), p1, p2, . . . such that

(pi+1, pi) ∈ I∞, i = 0, 1, 2, . . . (33)

β̄pi ∈ {0, C}, i = 0, 1, 2, . . . (34)

hs0p0
(β̄) < hs1p1

(β̄) < hs2p2
(β̄) < · · · (35)

where si represents “+” if β̄pi
= C and “−” if β̄pi

= 0.
Eq.(35) implies that all indicesp, p1, p2, . . . are different from
each other. Therefore,I∞ must contain infinitely many pairs.
Let us next suppose that one of the cases b), d), f) and h) occurs
for (p, q) ∈ I∞. Then there must exist an infinite sequence of
indicesp0(= p), p1, p2, . . . such that

(pi+1, pi) ∈ I∞, i = 0, 1, 2, . . . (36)

β̄pi ∈ {0,−C}, i = 0, 1, 2, . . . (37)

hs0p0
(β̄) < hs1p1

(β̄) < hs2p2
(β̄) < · · · (38)

wheresi represents “+” if β̄pi = 0 and “−” if β̄pi = −C.
Eq.(38) implies that all indicesp, p1, p2, . . . are different each
other. Therefore,I∞ must contain infinitely many pairs.

Since these results apparently contradict the fact that the
number of different pairs contained inI∞ is finite, we can
conclude thatI∞ is empty, that is, Algorithm 1 always stops
within a finite number of iterations.

9

TABLE I

RELATION BETWEEN (p, q) AND (p1, p).

β̄pq β̄p1p h±p (β̄), h±p1 (β̄)

a) (C,C) h+p (β̄) < h+p1 (β̄)
a) (C,C)

c) (0, C) h+p (β̄) < h−p1 (β̄)

b) (0, 0) h+p (β̄) < h+p1 (β̄)
b) (0, 0)

d) (−C, 0) h+p (β̄) < h−p1 (β̄)

e) (0, 0) h−p (β̄) < h−p1 (β̄)
c) (0, C)

g) (C, 0) h−p (β̄) < h+p1 (β̄)

f) (−C,−C) h−p (β̄) < h−p1 (β̄)
d) (−C, 0)

h) (0,−C) h−p (β̄) < h+p1 (β̄)

e) (0, 0) h−p (β̄) < h−p1 (β̄)
e) (0, 0)

g) (C, 0) h−p (β̄) < h+p1 (β̄)

f) (−C,−C) h−p (β̄) < h−p1 (β̄)
f) (−C,−C)

h) (0,−C) h−p (β̄) < h+p1 (β̄)

a) (C,C) h+p (β̄) < h+p1 (β̄)
g) (C, 0)

c) (0, C) h+p (β̄) < h−p1 (β̄)

b) (0, 0) h+p (β̄) < h+p1 (β̄)
h) (0,−C)

d) (−C, 0) h+p (β̄) < h−p1 (β̄)

TABLE II

RELATION BETWEEN (p, q) AND (q, q1).

β̄pq β̄qq1 h±q (β̄), h±q1 (β̄)

a) (C,C) h+q1 (β̄) < h+q (β̄)
a) (C,C)

g) (C, 0) h−q1 (β̄) < h+q (β̄)

b) (0, 0) h+q1 (β̄) < h+q (β̄)
b) (0, 0)

h) (0,−C) h−q1 (β̄) < h+q (β̄)

a) (C,C) h+q1 (β̄) < h+q (β̄)
c) (0, C)

g) (C, 0) h−q1 (β̄) < h+q (β̄)

b) (0, 0) h+q1 (β̄) < h+q (β̄)
d) (−C, 0)

h) (0,−C) h−q1 (β̄) < h+q (β̄)

c) (0, C) h+q1 (β̄) < h−q (β̄)
e) (0, 0)

e) (0, 0) h−q1 (β̄) < h−q (β̄)

d) (−C, 0) h+q1 (β̄) < h−q (β̄)
f) (−C,−C)

f) (−C,−C) h−q1 (β̄) < h−q (β̄)

c) (0, C) h+q1 (β̄) < h−q (β̄)
g) (C, 0)

e) (0, 0) h−q1 (β̄) < h−q (β̄)

d) (−C, 0) h+q1 (β̄) < h−q (β̄)
h) (0,−C)

f) (−C,−C) h−q1 (β̄) < h−q (β̄)

VI. I MPLEMENTATION AND EXPERIMENTS

A. Implementation of SMO Algorithm

The authors have recently studied in detail how to imple-
ment the SMO algorithm discussed in the previous section
[21]. In the following, we will briefly review their results.

Convergence rate of the SMO algorithm strongly depends
on how to choose a violating pair in each iteration. The method
used in [21] is to choosei(n) and j(n) so that the following

two conditions are satisfied.

i(n) ∈ {i : D−
i W (β(n)) ≥ D−

k W (β(n)), ∀k} (39)

j(n) ∈ {j : D+
j W (β(n)) ≤ D+

k W (β(n)), ∀k} (40)

Sinceϕ′−(t) is expressed as (14), the objective functionW (β)
is expected to decrease most rapidly wheni(n) andj(n) satisfy
(39) and (40), respectively. In this sense, this method is based
on the steepest descent. It is apparent that any pair(i(n), j(n))
satisfying (39) and (40) is aτ -violating pair because there
exists at least oneτ -violating pair(i, j) atβ(n), which satisfies
D−

i W (β(n)) > D+
j W (β(n)) + τ , as far asβ(n) does not

satisfy theτ -optimality condition.
The method expressed by (39) and (40) is identical to the

one proposed by Shevadaet al. [19]. On the other hand, Smola
and Scḧolkopf [18] and Flake and Lawrence [20] used methods
based on Platt’s SMO algorithm [3].

How to implement Algorithm 3 is another important prob-
lem. Of course we can encode the algorithm exactly same as
described in Section IV, but by using the technique introduced
by Flake and Lawrence [20] we can obtain a code which is
more compact and faster.

The pseudo-code given in [21] is shown in Fig.6 where
sgn(u) takes1 if u ≥ 0 and−1 otherwise, and step(u) takes
1 if u ≥ 0 and 0 otherwise. The first part (lines 4–20) is a
generalization of the code given in [20]. On the other hand,
the second part (lines 21–39) was newly added by the authors,
because the case whereη = 0 was not considered in [20].

It is important to note that the pseudo-code shown in Fig.6
is equivalent to Algorithm 3 only ifτ < ϵ. However, since the
value ofτ is usually set to a sufficiently small positive number
comparing withϵ (see [19] for example), this assumption will
not be violated in practice.

B. Experiments

In order to examine the efficiency of the authors’ SMO
algorithm [21], we compare the following six algorithms in
terms of CPU time and the number of iterations for several
benchmark data sets.

1) The algorithm used in LIBSVM version 2.71 or earlier
[16], [17]. Two variables which most violate the KKT
condition for Problem 1 are selected from2l variables.
The relationship betweenαi and α̂i is not considered
explicitly. Subproblems are solved exactly.

2) Smola and Scḧolkopf’s SMO algorithm [18]. Two pairs
of variablesαi, α̂i, αj andα̂j are selected according to
the strategy similar to Platt’s SMO algorithm. Subprob-
lems are solved exactly.

3) Shevadaet al.’s SMO algorithm [19]. Two pairs of
variablesαi, α̂i, αj andα̂j which most violate the KKT
condition for Problem 1 are selected. Subproblems are
solved exactly.

4) Flake and Lawrence’s SMO algorithm [20]. Two vari-
ables βi and βj are selected according to the strat-
egy similar to Platt’s SMO algorithm. Subproblems are
solved exactly.

5) The authors’ SMO algorithm [21].

10

1. s := β̄i + β̄j ;

2. η := kii + kjj − 2kij ;

3. v := −yi +
∑l

n=1
kinβ̄n + yj −

∑l

n=1
kjnβ̄n;

4. if (η > 0) {

5. βi := β̄i + (τ − v)/η;

6. βj := s − βi;

7. if (βi · βj > 0) {

8. m := βi · step(βi) − βj · (1 − step(βi));

9. ∆ := τ/η;

10. βi := βi − min{m, ∆};

11. elseif (βi · βj < 0) {

12. ∆ := (2ǫ + τ · sgn(βi))/η;

13. βi := βi − min{|βi|, |βj |, ∆} · sgn(βi);

14. }

15. if (s ≥ 0 and βi < s − C)

16. βi := s − C;

17. elseif (s < 0 and βi < −C)

18. βi := −C;

19. βj := s − βi;

20. }

21. else {

22. if (β̄i ≤ 0 and β̄j ≥ 0)

23. βi := s · step(s) − C;

24. elseif ((β̄i > 0 and β̄j ≥ 0) or (β̄i ≤ 0 and β̄j < 0)) {

25. if (|s| ≥ C or v > τ + 2ǫ)

26. βi := s · step(s) − C;

27. else

28. βi := s · (1 − step(s));

29. }

30. else {

31. if (v > τ + 2ǫ)

32. βi := s · step(s) − C;

33. elseif (v > τ)

34. βi := s · (1 − step(s));

35. else

36. βi := s · step(s);

37. }

38. βj := s − βi;

39. }

Fig. 6. Pseudo code of Algorithm 3

6) The same algorithm as 5) except that subproblems are
solved exactly by Algorithm 2 which is encoded in a
similar way as the pseudo code shown in Fig.6.

Although some new variable selection methods have re-
cently been proposed for pattern classification problems [22]–
[24], we do not consider these methods in our experiments
because it is not clear whether they can be applied to Prob-
lem 2 directly. However, it is of course important to verify
the applicability of these methods to Problem 2. This will be
another research topic for future.

All the above algorithms were implemented in MATLAB
and run on a PC with Intel Xeon dual processor 2.8GHz and
2GB of RAM. As the kernel function, we used the RBF kernel
defined byK(x,y) = exp(−∥x − y∥2/(2σ2)). Benchmark
data sets are from UCI Machine Learning Repository [25],
StatLib [26] and [20], and listed in Table III1 where the

1All data sets in Table III are also available at [16].

dimension of the input patterns (d), the total number of
samples (ltotal), the number of samples used for training (l),
and the values of parametersε, τ , C and σ are specified.
The values ofxi and yi in training samples are normalized
before training so thatxi ∈ [−1, 1]d andyi ∈ [−1, 1] hold for
all i. The values of hyperparametersε, τ andC are fixed to
0.1, 0.01 and 10, respectively, for all data sets. On the other
hand, the value of the kernel parameterσ was selected from
{0.01, 0.05, 0.1, 0.5} so that the error rate for test samples is
minimized.

TABLE III

BASIC INFORMATION ON BENCHMARK DATA SETS AND PARAMETER

SETTING

Data d ltotal l ε τ C σ

abalone 8 4177 1000 0.1 0.01 10 0.5
bodyfat 14 252 100 0.1 0.01 10 0.1
housing 13 506 200 0.1 0.01 10 0.1
mg 6 1385 600 0.1 0.01 10 0.5
mpg 7 392 200 0.1 0.01 10 0.5
pyrim 27 74 50 0.1 0.01 10 0.01
space-ga 6 3107 1000 0.1 0.01 10 0.1
trizaines 60 186 100 0.1 0.01 10 0.05

For each benchmark data sets, we generate ten sets ofl
training samples which are randomly selected from the whole
training samples, and apply the six different algorithms to
those ten sets of training samples. Experimental results are
summarized in Table IV where the number of iterations, CPU
time and the number of jumps are presented. Each value is
obtained by averaging the results for ten sets. The number of
jumps represents how many transitions between regionsS1,
S2, S3 andS4 in Fig.1 occurred in solving QP subproblems.
Although global convergence is theoretically guaranteed only
for Methods 1 and 5,τ -optimal solutions were always reached
in our experiments.

We first compare the six methods simply in terms of CPU
time. It is seen from Table IV that Method 1, the algorithm
used in LIBSVM version 2.71 or earlier, is the fastest for
six benchmark data sets. Methods 3, 5 and 6 are slower than
Method 1 but the difference is not so significant. Methods 2
and 4 are the slowest. In particular, formg, they are about four
time slower than others. In order to explain these results, we
focus our attention on the number of jumps. Table IV shows
that those methods which select variables most violating the
optimality condition (Methods 3, 5 and 6) require a much
smaller number of jumps than those methods which select
variables in a way similar to Platt’s SMO algorithms (Methods
2 and 4). Since all variables are set to zero initially, this
means that the former group of methods select variables more
appropriately than the latter one. Table IV also shows that
the number of jumps is zero or extremely small compared
to the number of iterations for Methods 3, 5 and 6. These
experimental results strongly support a conclusion from [17,
Theorem 2] which says that no jump occurs at the final stage.
It is obvious that the advantage of updating two variablesβi
andβj in Methods 5 and 6 (or two pairs of variablesαi, α̂i, αj

and α̂j in Methods 2, 3 and 4) becomes small as the number
of jumps decreases. In particular, if no jump occurs, these

11

TABLE IV

EXPERIMENTAL RESULTS

Data Method Iteration CPU Time (sec) Jumps
abalone 1 27566.0 29.1142

2 34146.2 38.9869 119.3
3 27480.6 29.0673 28.8
4 34088.8 38.3673 117.7
5 27219.7 29.0467 28.7
6 27480.6 29.1021 28.8

bodyfat 1 66.1 0.3465
2 402.8 0.5306 37.6
3 66.1 0.3491 0
4 411.9 0.5318 38.4
5 66.1 0.3488 0
6 66.1 0.3493 0

housing 1 140.8 1.2289
2 935.2 2.0986 131.2
3 140.8 1.2492 0
4 906.9 2.0513 125.6
5 140.8 1.2364 0
6 140.8 1.2380 0

mg 1 18779.5 16.5560
2 48012.3 38.2765 518.9
3 18649.8 16.5473 29.2
4 48758.4 38.3542 532.1
5 18741.1 16.5728 29.3
6 18649.8 16.5095 29.2

mpg 1 1541.5 1.1145
2 4876.8 4.0746 401.8
3 1544.7 1.1583 5.3
4 4962.7 4.1538 410.3
5 1555.0 1.1685 5.4
6 1544.7 1.1567 5.3

pyrim 1 64.5 0.0972
2 181.9 0.1453 14.9
3 64.5 0.1046 0
4 186.7 0.1484 15.0
5 64.5 0.1012 0
6 64.5 0.1037 0

space-ga 1 265.8 6.1267
2 1364.5 9.1324 263.7
3 265.8 6.1358 0
4 1327.8 9.0638 257.1
5 265.8 6.1338 0
6 265.8 6.1325 0

trizaines 1 219.6 0.3621
2 644.8 0.8346 20.1
3 219.6 0.3687 0
4 684.8 0.8665 21.6
5 219.6 0.3649 0
6 219.6 0.3652 0

methods will be slower than Method 1 because the procedure
for solving QP subproblems is unnecessarily complicated. This
is a possible reason why Method 1 is faster than Methods 3,
5 and 6.

We next evaluate the effectiveness of the pseudo code of
Algorithm 3 shown in Fig. 6. This evaluation can be done
by comparing Methods 3 and 6 because these two methods
differ only in the procedure for finding exact solutions of QP
subproblems. It is seen from Table IV that Method 6 is faster
than Method 3 for most data sets but the difference is very
small. Therefore the implementation technique shown in Fig. 6
did not have the intended effect for the benchmark data sets
used in our experiments.

We finally consider the influence of using Algorithm 3 for
solving QP subproblems instead of Algorithm 2 on the perfor-
mance of the SMO algorithm by comparing Methods 5 and 6.

It is seen from Table IV that there is no significant difference
between these two methods. This is because the behavior of
Algorithms 2 and 3 differ only when the jump occurs and the
number of jumps is very small for all benchmark data sets.

VII. C ONCLUSION

We have proved that if aτ -violating pair is chosen for
update in each step and subproblems are solved by Algo-
rithm 3 then the SMO algorithm stops within a finite number of
iterations after finding aτ -optimal solution. On the other hand,
however, it is still not clear whether or not the SMO algorithm
converges to aτ -optimal solution when subproblems are
solved exactly. This may be a future problem to be attacked.
Another future problem is to study global convergence of more
general decomposition algorithms for SVR where more than
two variables are updated in each step. This issue is also
mentioned in [8].

REFERENCES

[1] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[2] E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm for

support vector machines,” inProceedings of the 1997 IEEE Workshop
on Neural Networks for Signal Processing, 1997, pp. 511–519.

[3] J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” inAdvances in Kernel Methods: Support Vector
Machines, B. Scḧolkopf, C. Burges, and A. Smola, Eds. Cambridge,
MA: MIT Press, 1998.

[4] T. Joachims, “Making large-scale support vector machine learning
practical,” in Advances in Kernel Methods: Support Vector Machines,
B. Scḧolkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT
Press, 1998.

[5] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,
“Improvements to Platt’s SMO algorithm for SVM classifier design,”
Neural Computation, vol. 13, pp. 637–649, 2001.

[6] C.-W. Hsu and C.-J. Lin, “A simple decomposition method for support
vector machines,”Machine Learning, vol. 46, pp. 291–314, 2002.

[7] C.-C. Chang, C.-W. Hsu, and C.-J. Lin, “The analysis of decomposition
methods for support vector machines,”IEEE Trans. Neural Networks,
vol. 11, no. 4, pp. 1003–1008, 2000.

[8] C.-J. Lin, “On the convergence of the decomposition method for support
vector machines,”IEEE Trans. Neural Networks, vol. 12, pp. 1288–1298,
Nov. 2001.

[9] ——, “A formal analysis of stopping criteria of decomposition methods
for support vector machines,”IEEE Trans. Neural Networks, vol. 13,
pp. 1045–1052, Sept. 2002.

[10] N. List and H. U. Simon, “A general convergence theorem for the
decomposition method,” inProceedigns of the 17th Annual Conference
on Learning Theory, 2004, pp. 363–377.

[11] N. Takahashi and T. Nishi, “Global convergence of decomposition
learning methods for support vector machines,”IEEE Trans. Neural
Networks, vol. 17, no. 6, pp. 1362–1369, Nov. 2006.

[12] C.-J. Lin, “Asymptotic convergence of an SMO algorithm without any
assumption,”IEEE Trans. Neural Networks, vol. 13, pp. 248–250, Jan.
2002.

[13] S. S. Keerthi and E. G. Gilbert, “Convergence of a generalized SMO
algorithm for SVM classifier design,”Machine Learning, vol. 46, pp.
351–360, 2002.

[14] N. Takahashi and T. Nishi, “Rigorous proof of termination of SMO
algorithm for support vector machines,”IEEE Trans. Neural Networks,
vol. 16, no. 3, pp. 774–776, May 2005.

[15] P.-H. Chen, R.-E. Fan, and C.-J. Lin, “A study on SMO-type decom-
position methods for support vector machines,”IEEE Trans. Neural
Networks, vol. 17, no. 4, pp. 893–908, July 2006.

[16] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector
machines,” 2001. [Online]. Available: http://www.csie.ntu.edu.tw/∼cjlin/
libsvm/

[17] S.-P. Liao, H.-T. Lin, and C.-J. Lin, “A note on the decomposition
methods for support vector regression,”Neural Computation, vol. 14,
pp. 1267–1281, 2002.

12

[18] A. J. Smola and B. Scḧolkopf, “A tutorial on support vector regression,”
Royal Holloway College, London, UK, NeuroCOLT Technical Report
NC-TR-98-030, 1998.

[19] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy,
“Improvements to the SMO algorithm for SVM regression,”IEEE Trans.
Neural Networks, vol. 11, no. 5, pp. 1188–1193, Sept. 2000.

[20] G. W. Flake and S. Lawrence, “Efficient SVM regression training with
SMO,” Machine Learning, vol. 46, pp. 271–290, 2002.

[21] J. Guo, N. Takahashi, and T. Nishi, “A novel sequential minimal opti-
mization algorithm for support vector regression,” inNeural Information
Processing (Proceedings of the 13th International Conference on Neural
Information Processing), ser. Lecture Notes in Computer Science, vol.
4232, Oct. 2006, pp. 827–836.

[22] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using
second order information for training support vector machines,”Journal
of Machine Learning Research, vol. 6, pp. 1889–1918, 2005.

[23] D. Hush, P. Kelly, C. Scovel, and I. Steinwart, “QP algorithms with
guaranteed accuracy and run time for support vector machines,”Journal
of Machine Learning Research, vol. 7, pp. 733–769, 2006.

[24] T. Glasmachers and C. Igel, “Maximum-gain working set selection for
SVMs,” Journal of Machine Learning Research, vol. 7, pp. 1437–1466,
2006.

[25] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007.
[Online]. Available: http://www.ics.uci.edu/∼mlearn/MLRepository.html

[26] “StatLib – datasets archive.” [Online]. Available: http://lib.stat.cmu.edu/
datasets/

