
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017
2925

PAPER
Gauss-Seidel HALS Algorithm for Nonnegative Matrix
Factorization with Sparseness and Smoothness Constraints

Takumi KIMURA†a), Nonmember and Norikazu TAKAHASHI†b), Senior Member

SUMMARY Nonnegative Matrix Factorization (NMF) with sparseness
and smoothness constraints has attracted increasing attention. When these
properties are considered, NMF is usually formulated as an optimization
problem in which a linear combination of an approximation error term and
some regularization terms must be minimized under the constraint that the
factor matrices are nonnegative. In this paper, we focus our attention on the
error measure based on the Euclidean distance and propose a new iterative
method for solving those optimization problems. The proposed method
is based on the Hierarchical Alternating Least Squares (HALS) algorithm
developed by Cichocki et al. We first present an example to show that
the original HALS algorithm can increase the objective value. We then
propose a new algorithm called the Gauss-Seidel HALS algorithm that
decreases the objective value monotonically. We also prove that it has the
global convergence property in the sense of Zangwill. We finally verify
the effectiveness of the proposed algorithm through numerical experiments
using synthetic and real data.
key words: nonnegative matrix factorization, hierarchical alternating least
squares algorithm, Euclidean distance, global convergence, sparseness,
smoothness

1. Introduction

Nonnegative Matrix Factorization (NMF) [1]–[3] is an op-
eration that decomposes a given M × N nonnegative matrix
X = [Xmn] into an M × K nonnegative matrix W = [Wmk]
and a K × N nonnegative matrix HT = [Hnk]T (see Fig. 1).
Because NMF is useful for extraction of nonnegative bases
and dimensionality reduction, it has found many applications
in various fields such as face image processing [2], [4], text
mining [5], recommender systems [6], [7], and so on.

NMF is formulated as a constrained optimization prob-
lem in which an error between X and WHT must be mini-
mized under the constraint that all entries of W and H are
nonnegative. The Euclidean distance and various types of
divergences have been used as the error criterion. The Eu-
clidean distance-based NMF is formulated as the optimiza-
tion problem:

minimize
1
2
X −WHT2

F
subject to W ≥ 0M×K, H ≥ 0N×K

where ∥·∥F denotes the Frobenius norm, that is,

X −WHT2
F
=

M∑
m=1

N∑
n=1

(
Xmn − (WHT)mn

)2
,

Manuscript received July 5, 2017.
†The authors are with Okayama University, Okayama-shi, 700-

8530 Japan.
a) E-mail: kimu@momo.cs.okayama-u.ac.jp
b) E-mail: takahashi@cs.okayama-u.ac.jp

DOI: 10.1587/transfun.E100.A.2925

Fig. 1 Nonnegative matrix factorization.

0M×K (0N×K, resp.) is the M × K (N × K, resp.) matrix of
all zeros and the inequality holds componentwise. In gen-
eral, it is hard to find a global optimal solution of the NMF
optimization problem because the objective function is not
convex. So our goal is to find a local optimal solution.

The most popular algorithm for solving NMF optimiza-
tion problems is the multiplicative update rules (MURs) de-
veloped by Lee and Seung [3]. They considered the Eu-
clidean distance and the I-divergence as the error measure
and derived update rules based on the idea of minimizing
a strictly convex function called the auxiliary function in-
stead of the objective function itself. Later on, this idea
was generalized and applied to various types of error mea-
sures (see [8] for example). However, because the MURs
are expressed in the form of a fraction, they are not defined
for all pairs of nonnegative matrices W and H. Also, the
global convergence is not guaranteed because of this prob-
lem. By the global convergence, we mean that any sequence
of solutions has at least one convergent subsequence and the
limit of any convergent subsequence is a stationary point
of the corresponding optimization problem [9]. In order to
avoid the problem mentioned above, Gillis and Glineur [10]
devised a modified version of the MUR for the Euclidean
distance by using the idea of Cichocki et al. [11], which
prevents variables from being less than a small positive con-
stant. Furthermore, it was proved by Takahashi et al. that
this modification guarantees the global convergence of many
MURs [12]–[14].

The MURs have many good properties. They are sim-
ple and thus easy to implement. They are applicable to
various types of error measures. Also, they have the global
convergence property as mentioned above. However, the
MURs are very slow in general. Therefore, during the last
decades, many authors have developed faster algorithms for
NMF [11], [15]–[17] which require less number of iterations
than the MURs. Among them, the hierarchical alternating
least squares (HALS) algorithm proposed by Cichocki et
al. [11] is widely known as a simple and fast method for the

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers

2926
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

Euclidean distance based NMF. In this algorithm, W and H
are partitioned into 2K blocks as W = [w1,w2, . . . ,wK] and
H = [h1, h2, . . . , hK], and these 2K blocks are updated one
by one in a cyclic manner. A similar method is rank-one
residue iteration method proposed by Ho [16]. Also, Kim et
al. [18] recently showed that some algorithms including the
HALS algorithm can be derived using one common frame-
work of the block coordinate descent method. Because the
update rule of the HALS algorithm is expressed in the form
of a fraction as in the case of the MURs, they are not defined
for all pairs of nonnegative matrices W and H. In order to
solve this problem, Cichocki et al. [11] proposed a modified
HALS algorithm, and recently this algorithm was proved to
have the global convergence property [19].

In many applications of NMF, it is preferable that the
obtained factor matrices are sparse or/and smooth. A matrix
is said to be sparse if it has a small number of nonzero entries,
while it is said to be smooth if neighboring entries take
similar values. A simple way to control the sparseness and
the smoothness is to add regularization terms representing
the L1 norm and the Frobenius norm of W and H to the
objective function [20]–[24]. In this paper, we focus on
the NMF optimization problem considered by Cichocki et
al. [23], [24] which is described as

minimize f (W,H)
subject to W ≥ 0M×K, H ≥ 0N×K

(1)

where f (W,H) is given by

f (W,H) =
1
2
X −WHT2

F
+αsp ∥H∥1 +

αsm

2
∥LH∥2F ,

∥·∥1 denotes L1 norm, that is,

∥H∥1 =
N∑
n=1

K∑
k=1
|Hnk |.

Also, αsp > 0 and αsm > 0 are regularization parameters
controlling the levels of sparseness and smoothness, respec-
tively. As examples of L, Cichocki et al. [24] presented

L1 =

1 −1 0 · · · 0
0 1 −1
...

. . .
. . .

0 1 −1

,

L2 =

−1 2 −1 0 · · · 0
0 −1 2 −1
...

. . .
. . .

. . .

0 −1 2 −1

where L1 is a (N−1)×N matrix and L2 is a (N−2)×N matrix.
However, L is not restricted to these specific matrices, but
can be any T × N real matrix with 1 ≤ T ≤ N .

The objective of this paper is to develop a global con-
vergence guaranteed algorithm for solving (1) based on
the HALS algorithm. We first introduce the HALS algo-
rithm [23], [24] to solve (1). We then present an example

to show that the original HALS algorithm can increase the
objective value. We then propose a new algorithm called the
Gauss-Seidel HALS (GSHALS) algorithm with which the
objective value decreases monotonically, and prove that it
has the global convergence property in the sense mentioned
above. Finally, we verify the effectiveness of the proposed al-
gorithm through numerical experiments using synthetic and
real data.

Recently, various constraints have been considered for
NMF (see [25] and references therein). Although we fo-
cus our attention only on the sparseness and smoothness
constraints mentioned above, the idea behind the GSHALS
algorithm may be useful for some other constraints. For ex-
ample, the algorithm proposed by Liao and Zhang [26] for
the graph regularized NMF [27], which has the same prob-
lem as the HALS algorithm, can be easily modified by using
the same idea to guarantee the global convergence.

2. Nonnegative Matrix Factorization with Sparseness
and Smoothness Constraints

2.1 HALS Algorithm

Let us partition matrices W and H into 2K blocks as W =

[w1,w2, . . . ,wK] and H = [h1, h2, . . . , hK]. Then (1) can be
rewritten as follows:

minimize
1
2

X −
K∑
k=1

wkhT
k

2

F

+αsp

K∑
k=1
∥hk ∥1 +

αsm

2

K∑
k=1
∥Lhk ∥22

subject to wk ≥ 0M×1, hk ≥ 0N×1,
k = 1, 2, . . . , K .

The HALS algorithm [23], [24] tries to minimize the
objective value by updating 2K blocks w1,w2, . . . ,wK,
h1, h2, . . . , hK one by one in a cyclic manner. Typical update
orders are

w1 → h1 → w2 → h2 → · · · → wK → hK (2)

and

w1 → w2 → · · · → wK → h1 → h2 → · · · → hK . (3)

When updating wk , other 2K − 1 blocks are considered as
constants and the optimization problem:

minimize ϕk (wk) =
1
2
RT

k − hkwT
k
2

F
subject to wk ≥ 0M×1

(4)

is solved, where

Rk = X −
K∑

k̃=1,k̃,k

wk̃hT
k̃
.

Similarly, when updating hk , other 2K − 1 blocks are con-
sidered as constants and the optimization problem:

KIMURA and TAKAHASHI: GSHALS ALGORITHM FOR NMF WITH SPARSENESS AND SMOOTHNESS CONSTRAINTS
2927

minimize ψk (hk)
subject to hk ≥ 0N×1

(5)

is solved, where ψk (hk) is given by

ψk (hk) =
1
2
Rk − wkhT

k
2

F
+αsp ∥hk ∥1+

αsm

2
∥Lhk ∥22 .

As shown in [18], the problem (4) has a unique optimal
solution given by wk = [Rkhk]+/(hT

k
hk) if hk , 0N×1,

where [v]+ denotes the vector obtained from v by replacing
all negative entries with zero. As for the problem (5), we
cannot obtain the explicit formula for the optimal solution,
but it is easy to find the minimum point of ψk (hk) by solving
∇ψk (hk) = 0N×1, that is,

(wT
kwkIN×N + αsmLTL)hk = RT

kwk − αsp1N×1, (6)

where IN×N is the N × N identity matrix and 1N×1 is the
N-dimensional column vector of all ones. Suppose that wk ,
0N×1. Then wT

k
wkIN×N +αsmLTL is nonsingular and hence,

multiplying both sides of (6) by (wT
k
wkIN×N + αsmLTL)−1

from the left, we have

hk = (wT
kwkIN×N+αsmLTL)−1(RT

kwk−αsp1N×1). (7)

The right-hand side may have one or more negative entries,
but we can obtain a nonnegative vector from it by applying
the operator [·]+.

The HALS algorithm is based on the above idea, and
described by the following update rule:

wk ←
[Rkhk]+

hT
k
hk

, (8)

hk ← [(wT
kwkIN×N + αsmLTL)−1

× (RT
kwk − αsp1N×1)]+. (9)

Let the solution after l (≥ 0) rounds of updates be de-
noted by (W(l),H(l)). When using update rule (8) and (9),
it could occur that one or more columns of W(l) and H(l)

become zero for some l. If wk = 0M×1 and L = L2 for
instance, wT

k
wkIN×N +αsmLTL in the right-hand side of (9)

is not invertible. If hk = 0N×1, the denominator of the right-
hand side of (8) becomes zero. In these cases, the algorithm
has to be stopped before the solution is obtained. In order to
avoid this situation, Cichocki et al. [24] used the update rule
expressed by

wk ←
Rkhk

hT
k
hk

ϵ+ , (10)

hk ← [(wT
kwkIN×N + αsmLTL)−1

× (RT
kwk − αsp1N×1)]ϵ+ (11)

instead of (8) and (9), where [v]ϵ+ denotes the vector ob-
tained from v by replacing all entries less than ϵ with ϵ .

Fig. 2 Situation where ψk (hk) is increased by the HALS algorithm.

This notation is also used for scalars and matrices in later
discussion. When the update rule given by (10) and (11) is
used, we have to consider a modified optimization problem:

minimize f (W,H)
subject to W ≥ ϵ1M×K, H ≥ ϵ1N×K,

(12)

where 1M×K (1N×K) denotes the M × K (N × K) matrix of
all ones. In the following sections, by the HALS algorithm,
we mean the update rule given by (10) and (11).

2.2 Problem of HALS Algorithm

If wk ≥ ϵ1M×1 then the right-hand side of (7) is the minimum
point of ψk (hk). However, it is not always true that the right-
hand side of (11) is the optimal solution of the optimization
problem:

minimize ψk (hk)
subject to hk ≥ ϵ1N×1.

(13)

To make matters worse, it may occur that the value of ψk is
increased by the update (11). To see this, let us consider the
situation shown in Fig. 2 where h(0)

k
represents the current

solution and h∗
k

is the minimum point of ψk (hk). Because
the second entry of h∗

k
is less than ϵ , (11) returns h(1)

k
as the

new solution. However, looking at contours of ψk , we see
that ψk (h(1)

k
) is greater than ψk (h(0)

k
).

We now give a more concrete example to show that the
update (11) can increase the value of ψk . Let M = 1, N = 3,
K = 1, X = [3, 2, 1], L = [−1, 2,−1], αsp = 3/2, αsm = 1,
ϵ = 1, w(0)

1 = [1] and h(0)
1 = [6/5, 1, 1]T. Under this setting,

we have ψk (h(0)
1) = 6.94. If the value of h1 is updated by

(11), we have h(1)
1 = [3/2, 1, 1]T and ψk (h(1)

1) = 7, which is
greater than ψk (h0

1).

3. GSHALS Algorithm

3.1 Derivation of Update Rule

In order to solve the problem of the HALS algorithm pointed

2928
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

out in the previous section, we propose to update entries of hk

one by one instead of using (11). In the following discussion,
N entries of hk are denoted by hk1, hk2 . . . , hkN instead of
H1k, H2k, . . . , HNk . In addition, let the n-th columns of X
and Rk be denoted by xn and rkn. Here, rkn is given by

rkn = xn −
K∑

k̃=1,k̃,k

wk̃hk̃n.

Note that we do not focus on some specific update order
of entries of hk , but only assume that the update order is
fixed during the execution of the proposed algorithm. When
updating hkn, other N −1 entries are considered as constants
and the optimization problem:

minimize ψkn(hkn)
subject to hkn ≥ ϵ (14)

is solved, where

ψkn(hkn) =
1
2
∥rkn − wkhkn∥22

+ αsphkn +
αsm

2

T∑
t=1

(N∑
ñ=1

Lt ñhkñ
)2
.

Let h∗
kn

be the minimum point of ψkn(hkn). If h∗
kn

is greater
than or equal to ϵ then it is the optimal solution of (14)
because ψkn(hkn) is strictly convex (see Fig. 3(a)). Other-
wise, the optimal solution of (14) is ϵ (see Fig. 3(b)). These
observations can be summarized in the following lemma.

Lemma 1: If wk is positive then the optimization problem
(14) has a unique optimal solution given by

hkn =

rT
kn

wk − αsp − αsm

T∑
t=1

Ltn

N∑
ñ=1,ñ,n

Lt ñhkñ

wT
k
wk + αsm

T∑
t=1

L2
tn

ϵ+
.

(15)

Proof : The solution of the equation

ψ ′kn(hkn) = (wT
kwk)hkn − rT

knwk

+ αsp + αsm

T∑
t=1

Ltn

N∑
ñ=1

Lt ñhkñ = 0

is given by

hkn =

rT
kn

wk − αsp − αsm

T∑
t=1

Ltn

N∑
ñ=1,ñ,n

Lt ñhkñ

wT
k
wk + αsm

T∑
t=1

L2
tn

Fig. 3 The minimum pointh∗
kn

ofψkn (hkn). (a) The case whereh∗
kn
≥

ϵ . (b) The case where h∗
kn

< ϵ .

that minimizes ψkn(hkn) because ψkn(hkn) is strictly con-
vex. If this is greater than or equal to ϵ then it is a unique
optimal solution of (14). Otherwise, ϵ is a unique optimal
solution of (14) because ψkn(hkn) is strictly monotone in-
creasing in [ϵ,∞). Therefore, the optimal solution of (14) is
given by (15). □

From Lemma 1, we obtain the update rule for entries of
hk , which is expressed as

hkn ←

rT
kn

wk − αsp − αsm

T∑
t=1

Ltn

N∑
ñ=1,ñ,n

Lt ñhkñ

wT
k
wk + αsm

T∑
t=1

L2
tn

ϵ+
.

(16)

It is clear from the above discussion that the objective value
of (12) is not increased by the update (16).

Note that entries of hk are updated one by one by (16)
like the Gauss-Seidel method (see [28] for example) for solv-
ing linear equations. We thus call this algorithm the Gauss-
Seidel HALS (GSHALS) algorithm.

KIMURA and TAKAHASHI: GSHALS ALGORITHM FOR NMF WITH SPARSENESS AND SMOOTHNESS CONSTRAINTS
2929

3.2 Global Convergence of GSHALS Algorithm

In this section, we prove that the GSHALS algorithm has the
global convergence property in the sense of Zangwill [9].
Let the feasible region and the set of stationary points of (12)
be denoted by Fϵ and Sϵ , respectively. A point (W,H) ∈
Fϵ is called a stationary point if it satisfies the following
conditions:

∇W f (W,H) ≥ 0M×K, (17)
∇H f (W,H) ≥ 0N×K, (18)
∇W f (W,H) ⊙ (ϵ1M×K −W) = 0M×K, (19)
∇H f (W,H) ⊙ (ϵ1N×K −H) = 0N×K, (20)

where

∇W f (W,H) =(WHT − X)H,
∇H f (W,H) =(HWT − XT)W

+ αsp1N×K + αsmLTLH

and ⊙ represents componentwise multiplication.
In order to make discussions simple, we define one

round of updates of 2K blocks by using (10) and (16) as a
mapping A : Fϵ → Fϵ . Then the solution after l rounds of
updates is expressed as

(W(l),H(l)) = A(W(l−1),H(l−1))
= A2(W(l−2),H(l−2))
...

= Al (W(0),H(0)).

Note that we do not focus on some specific update order such
as (2) and (3), but only assume that the update order is fixed
during the execution of the algorithm.

The global convergence property of the GSHALS algo-
rithm is stated as follows.

Theorem 1: For any positive constant ϵ and initial solution
(W(0),H(0)) ∈ Fϵ , the sequence {(W(l),H(l))}∞

l=0 generated
by the GSHALS algorithm expressed by (10) and (16) has
at least one convergent subsequence and the limit of any
convergent subsequence belongs to Sϵ .

In the rest of this section, we prove Theorem 1 by using
Zangwill’s global convergence theorem [9]. Namely, we
show that the following statements hold true.

1. For any initial solution (W(0),H(0)) ∈ Fϵ , the sequence
{(W(l),H(l))}∞

l=0 = {A
l (W(0),H(0))}∞

l=0 is contained in
a closed bounded subset of Fϵ .

2. The mapping A and the objective function f satisfy the
following statements.

a. If (W,H) ∈ Fϵ \Sϵ then f (A(W,H)) < f (W,H).
b. If (W,H) ∈ Sϵ then f (A(W,H)) ≤ f (W,H).

3. The mapping A is continuous in Fϵ \ Sϵ .

It is clear from the update rule given by (10) and (16)
that the third statement is true. Therefore, we prove that the
remaining two statements hold.

First, we prove the second statement by the following
two lemmas. The first lemma shows the relation between Sϵ
and the optimal solutions of the subproblems. The second
one proves that f is strictly decreased by the mapping A if
the current solution is not a stationary point.

Lemma 2: (W∗,H∗) = ((w∗1, . . . ,w
∗
K), (h∗1, . . . , h

∗
K)) ∈ Fϵ

is a stationary point of (12) if and only if w∗
k

is a unique
optimal solution of the optimization problem:

minimize ϕk (wk)
subject to wk ≥ ϵ1M×1

(21)

for k = 1, 2, . . . , K and h∗
kn

is a unique optimal solution of
the optimization problem:

minimize ψkn(hkn)
subject to hkn ≥ ϵ (22)

for k = 1, 2, . . . , K and n = 1, 2, . . . , N .

Proof : The Lagrangian function for the optimization prob-
lem (21) is given by

L(wk, λ) = ϕk (wk) + λT(ϵ1M×1 − wk)

where λ = (λ1, . . . , λM)T is the Lagrange multiplier vector.
Then w∗

k
≥ ϵ1M×1 is a stationary point of (21) if and only if

there exists a λ that satisfies the following conditions:

∂L
∂wk

(w∗k, λ) = 0M×1, (23)

λ ⊙ (ϵ1M×1 − w∗k) = 0M×1, (24)
λ ≥ 0M×1. (25)

Here, the left-hand side of (23) is given by

∂L
∂wk

(w∗k, λ) = *.,w∗kh∗k
T
+

∑
k̃,k

w∗
k̃
h∗
k̃

T − X+/-h∗k − λ

= (W∗H∗T − X)h∗k − λ.

So the conditions (23)–(25) can be rewritten as

(W∗H∗T − X)h∗k ≥ 0M×1,(
(W∗H∗T − X)h∗k

)
⊙ (ϵ1M×1 − w∗k) = 0M×1.

Note that the problem (21) has a unique stationary point and
it is also a unique optimal solution because ϕk (wk) is strictly
convex. Therefore, w∗

k
≥ ϵ1M×1 is a unique optimal solution

of (21) for k = 1, 2, . . . , K if and only if

(W∗H∗T − X)H∗ ≥ 0M×K, (26)

(
(W∗H∗T − X)H∗

)
⊙ (ϵ1M×K −W∗) = 0M×K . (27)

2930
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

The Lagrangian function for the optimization problem
(22) is given by

L(hkn, µ) = ψkn(hkn) + µ(ϵ − hkn)

where µ is the Lagrange multiplier. Then h∗
kn
≥ ϵ is a

stationary point of (22) if and only if there exists a µ that
satisfies the following conditions:

∂L
∂hkn

(h∗kn, µ) = 0, (28)

µ ⊙ (ϵ − h∗kn) = 0, (29)
µ ≥ 0. (30)

Here, the left-hand side of (28) is given by

∂L
∂hkn

(h∗kn, µ)

=
*.,h∗knw∗k

T
+

∑
k̃,k

h∗
k̃n

w∗
k̃

T − xT
n
+/-w∗k + αsp

+ αsm

T∑
t=1

Ltn
*,Ltnh∗kn +

∑
ñ,n

Lt ñh∗kñ+- − µ
=
*.,

K∑
p=1

h∗pnw∗p
T − xT

n
+/-w∗k + αsp

+ αsm

T∑
t=1

Ltn

N∑
ñ=1

Lt ñh∗kñ − µ.

So the conditions (28)–(30) can be rewritten as

*.,
K∑
p=1

h∗pnw∗p
T − xT

n
+/-w∗k + αsp

+ αsm

T∑
t=1

Ltn

N∑
ñ=1

Lt ñh∗kñ ≥ 0,

(*.,
K∑
p=1

h∗pnw∗p
T − xT

n
+/-w∗k + αsp

+ αsm

T∑
t=1

Ltn

N∑
ñ=1

Lt ñh∗kñ

)
(ϵ − h∗kn) = 0.

Note that the problem (22) has a unique stationary point
and it is also a unique optimal solution because ψkn(hkn)
is strictly convex. Therefore, hkn ≥ ϵ is a unique optimal
solution of the problem (22) for n = 1, 2, . . . , N if and only
if

(H∗W∗T − XT)w∗k + αsp1N×1

+ αsmLTLh∗k ≥ 0N×1, k = 1, 2, . . . , K,

(
(H∗W∗T − XT)w∗k + αsp1N×1 + αsmLTLh∗k

)

⊙ (ϵ1N×1 − h∗k) = 0N×1, k = 1, 2, . . . , K .

These equations can be rewritten as

(H∗W∗T − XT)W∗ + αsp1N×K

+ αsmLTLH∗ ≥ 0N×K, (31)

(
(H∗W∗T − XT)W∗ + αsp1N×K + αsmLTLH∗

)
⊙ (ϵ1N×K −H∗) = 0N×K . (32)

Note that the set of conditions (26)–(27) and (31)–(32) is
equivalent to set of conditions (17)–(20) with W = W∗ and
H = H∗, which is the necessary and sufficient condition for
(W∗,H∗) ∈ Fϵ to be a stationary point of (12). □

Lemma 3: If (W,H) ∈ Sϵ then A(W,H) = (W,H). If
(W,H) ∈ Fϵ \ Sϵ then f (A(W,H)) < f (W,H).

Proof : Suppose first that (W,H) ∈ Sϵ . Then it follows
from Lemma 2 that wk and hkn are unique optimal solutions
of (21) and (22), respectively, for k = 1, 2, . . . , K and n =
1, 2, . . . , N . In other words,

wk =

Rkhk

hT
k
hk

ϵ+
holds for k = 1, 2, . . . , K and

hkn =

rT
kn

wk − αsp − αsm

T∑
t=1

Ltn

N∑
ñ=1,ñ,n

Lt ñhkñ

wT
k
wk + αsm

T∑
t=1

L2
tn

ϵ+
holds for k = 1, 2, . . . , K and n = 1, 2, . . . , N . We thus
have A(W,H) = (W,H). Suppose next that (W,H) ∈
Fϵ \ Sϵ . Let K1 ⊆ {1, 2, . . . , K } be the set of k such
that wk is not an optimal solution of (21), and K2 ⊆
{(1, 1), (1, 2), . . . , (1, N), (2, 1), (2, 2), . . . , (K, N)} be the set
of pairs (k, n) such that hkn is not an optimal solution
of (22). Then it is clear that K1 , ∅ or K2 , ∅
holds. If wk̂ is the block first updated among all blocks
in {wk | k ∈ K1} ∪ {hkn | (k, n) ∈ K2}, the objective value
does not change before the update of wk̂ , strictly decreases
through the update of wk̂ , and does not increase after the
update of wk̂ . Similarly, if hk̂ n̂ is the block first updated
among all blocks in {wk | k ∈ K1} ∪ {hkn | (k, n) ∈ K2}, the
value of the objective function does not change before the
update of hk̂ n̂, strictly decreases through the update of hk̂ n̂,
and does not increase after the update of hk̂ n̂. From these
observations, we conclude that f (A(W,H)) is strictly less
than f (W,H). □

Finally, we prove the first statement.

Lemma 4: For any W(0) ≥ ϵ1M×K,H(0) ≥ ϵ1N×K , the se-
quence {(W(l),H(l))}∞

l=0 generated by (10) and (16) is con-
tained in a closed bounded set

KIMURA and TAKAHASHI: GSHALS ALGORITHM FOR NMF WITH SPARSENESS AND SMOOTHNESS CONSTRAINTS
2931

{(W,H) | f (W,H) ≤ f (W(0),H(0)),
W ≥ ϵ1M×K,H ≥ ϵ1N×K }. (33)

Proof : It is clear from Lemma 3 that {(W(l),H(l))}∞
l=0 is

contained in (33). So it suffices for us to prove that (33) is
bounded. Let C = f (W(0),H(0)). If f (W,H) ≤ C then we
have the following inequality:

1
2
X −WHT2

F
≤ C

which implies that

Xmn −
√

2C ≤
K∑
k=1

WmkHnk ≤ Xmn +
√

2C (34)

for all m and n. Moreover, if (W,H) ∈ Fϵ , it follows from
(34) that

Wmk ≤
Xmn +

√
2C

Hnk
≤ Xmn +

√
2C

ϵ
, (35)

Hnk ≤
Xmn +

√
2C

Wmk
≤ Xmn +

√
2C

ϵ
(36)

for all m, n and k. This means that (33) is bounded. □

In the above analysis, we took the same approach as in
the previous work [19], but the boundedness of solutions was
proved in a different way. In [19], a compact subset of Fϵ ,
which depends only on X and ϵ , was derived directly from the
update rule, while in this paper we proved the boundedness
of solutions by making use of the level set of the objective
function which is determined not only from X and ϵ but also
the initial solution (W(0),H(0)).

3.3 Finite Termination of GSHALS Algorithm

Note that Theorem 1 does not guarantee the convergence of
the whole sequence but only the existence of a subsequence
converging to a stationary point. This is, however, sufficient
for us because, by introducing an appropriate stopping con-
dition, we can obtain an algorithm that always stops within
a finite number of iterations after reaching an approximate
stationary point [12].

The necessary and sufficient condition described by
(17)–(20) for (W,H) ∈ Fϵ to be a stationary point can be
relaxed by using any positive constants δ1, δ2 as follows:

∇W f (W,H) ≥ −δ11M×K, (37)
∇H f (W,H) ≥ −δ11N×K, (38)
Wmk − ϵ ≤ δ2 if (∇W f (W,H))mk > δ1, (39)
Hnk − ϵ ≤ δ2 if (∇H f (W,H))nk > δ1. (40)

Let the set of (W,H) ∈ Fϵ which satisfies (37)–(40) be
denoted by S̄ϵ . Also, let R, R+ and R++ denote the set of
real numbers, the set of nonnegative real numbers, and the
set of positive real numbers, respectively. Furthermore, let
N denote the set of natural numbers. Then the algorithm

with a stopping condition is stated as follows.

Algorithm 1 GSHALS
Input: X ∈ RM×N

+ , L ∈ RT×N , K ∈ N, αsp, αsm, ϵ, δ1, δ2 ∈ R++
Output: (W,H) ∈ S̄ϵ
1: Choose (W,H) ∈ Fϵ .
2: Update 2K columns of W and H one by one in the fixed order by using

(10) and (16).
3: If (W,H) satisfies (37)–(40) then return (W,H) and stop. Otherwise

go to Step 2.

For Algorithm 1, we have the following theorem. The
proof is omitted because it is similar to [12].

Theorem 2: For any positive constants ϵ, δ1, δ2 and any
initial solution (W(0),H(0)) ∈ Fϵ , Algorithm 1 with the
stopping condition given by (37)–(40) always stops within a
finite number of iterations.

3.4 Fast GSHALS Algorithm

In the HALS algorithm, the computational cost per round
is reduced by updating matrices E = X − WHT and Rk

(k = 1, 2, . . . , K) in a proper way [23]. This technique can
be directly applied to the GSHALS algorithm. An important
point is that Rk can be efficiently computed from the current
values of E, wk and hk as

Rk = E + wkhT
k

and E can be efficiently computed from the current values of
Rk , wk and hk as

E = Rk − wkhT
k .

Another important point is that∇W f (W,H) and∇H f (W,H)
can be efficiently computed from the current values of W,
H and E as ∇W f (W,H) = −EH and ∇H f (W,H) = −ETW.
Therefore, we can determine whether the relaxed optimality
condition given by (37)–(40) is satisfied or not, by checking
the following conditions:

EH ≤ δ11M×K, (41)
ETW ≤ δ11N×K, (42)
Wmk − ϵ ≤ δ2 if (EH)mk < −δ1, (43)
Hnk − ϵ ≤ δ2 if (ETW)nk < −δ1. (44)

Making use of these ideas, we obtain two fast GSHALS
algorithms depending on the update order as follows.

2932
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

Algorithm 2 Fast GSHALS with update order (2)
Input: X ∈ RM×N

+ , L ∈ RT×N , K ∈ N, αsp, αsm, ϵ, δ1, δ2 ∈ R++
Output: (W,H) ∈ S̄ϵ
1: Set M← LTL.
2: Choose (W,H) ∈ Fϵ and set E← X −WHT.
3: Set k ← 1.
4: Set Rk ← E + wkhT

k
.

5: Set wk ←
[
Rkhk/hT

k
hk

]
ϵ+

.
6: Set n← 1.

7: Set hkn ←

rT
kn

wk − αsp − αsm
∑N

ñ=1, ñ,n Mnñhk ñ

wT
k

wk + αspMnn

 ϵ+.

8: If n = N then go to Step 9. Otherwise add 1 to n and go to Step 7.
9: Set E← Rk − wkhT

k
.

10: If k = K then go to Step 11. Otherwise add 1 to k and go to Step 4.
11: If (W,H) satisfies (41)–(44) then return (W,H) and stop. Otherwise

go to Step 3.

Algorithm 3 Fast GSHALS with update order (3)
Input: X ∈ RM×N

+ , L ∈ RT×N , K ∈ N, αsp, αsm, ϵ, δ1, δ2 ∈ R++
Output: (W,H) ∈ S̄ϵ
1: Set M← LTL.
2: Choose (W,H) ∈ Fϵ and set E← X −WHT.
3: Set k ← 1.
4: Set Rk ← E + wkhT

k
.

5: Set wk ←
[
Rkhk/hT

k
hk

]
ϵ+

.
6: Set E← Rk − wkhT

k
.

7: If k = K then go to Step 8. Otherwise add 1 to k and go to Step 4.
8: Set k ← 1.
9: Set Rk ← E + wkhT

k
.

10: Set n← 1.

11: Set hkn ←

rT
kn

wk − αsp − αsm
∑N

ñ=1, ñ,n Mnñhk ñ

wT
k

wk + αspMnn

 ϵ+.

12: If n = N then go to Step 13. Otherwise add 1 to n and go to Step 11.
13: Set E← Rk − wkhT

k
.

14: If k = K then go to Step 15. Otherwise add 1 to k and go to Step 9.
15: If (W,H) satisfies (41)–(44) then return (W,H) and stop. Otherwise

go to Step 3.

It is easy to see that the computational complexity per
round of Algorithms 2 and 3 is O(M NK + N2K). This is
equal to the computational complexity per round of the Fast
HALS algorithm because, using the eigenvalue decomposi-
tion LTL = QΛQT where Q is an orthogonal matrix and Λ
is a nonnegative diagonal matrix, we can rewrite (11) as

hk ← [Q(wT
kwkIN×N + αsmΛ)−1QT

× (RT
kwk − αsp1N×1)]ϵ+

which takes O(M N + N2) time. An important difference
between Algorithms 2 and 3 is that the former updates Rk

and E K times in each round, while the latter needs to do it
2K times. Therefore, the computation time of Algorithm 2
is shorter than that of Algorithm 3 for the same number of
rounds. However, we cannot conclude from this observa-
tion that Algorithm 2 is faster than Algorithm 3, because the
number of rounds required to reach an approximate station-
ary point depends on the update order.

4. Numerical Experiments

In order to examine the effectiveness of the GSHALS algo-
rithm, we compare the performance of the MUR, the HALS
algorithm and the GSHALS algorithm by using synthetic
and real datasets. The MUR can be easily obtained by using
the unified method proposed by Yang and Oja [8], and the
resulting update rule is described by

W←
[
W ⊙ XH ⊘WHTH

]
ϵ+
, (45)

H←
[
H ⊙ XTW

⊘
(
HWTW + αsp1N×K + αsmLTLH

)]
ϵ+
,

(46)

where ⊘ represents the componentwise division. The com-
putational complexity per round of the MUR is O(M NK +
N2K) like the HALS and GSHALS algorithms.

In all experiments, we set L = L2 and use (37)–(40) as a
stopping condition. The HALS and GSHALS algorithms are
implemented by using the technique described in Sect. 3.4.
In the GSHALS algorithm, hk is updated in the order hk1 →
hk2 → · · · → hkN . All methods are implemented in C
language with BLAS and LAPACK libraries, compiled with
gcc 5.3.0, and executed on a PC with Intel Core i7-6700,
16 GB memory and Windows 10.

4.1 Experiment Using Synthetic Datasets

We first compare the performance of the five methods:
MUR, HALS with (2), HALS with (3), GSHALS with
(2), and GSHALS with (3) by using synthetic datasets.
In this experiment, we set M = 100, N = 50, K = 10,
αsm = 0.1, αsp = 0.1, ϵ = 0.001, δ1 ∈ {0.1, 0.01, 0.001} and
δ2 ∈ {0.01, 0.001, 0.0001}. For each of the nine pairs of δ1
and δ2 values, we applied the five methods to 10 different
triples (X,W(0),H(0)) which were generated in such a way
that each entry of X, W(0) and H(0) was drawn from an inde-
pendent uniform distribution on the interval [0, 1] and then
all entries of W(0) and H(0) less than ϵ were replaced with ϵ
so that (W(0),H(0)) ∈ Fϵ . The performance of the five meth-
ods are compared in terms of the number of rounds and the
computation time. The maximum number of rounds were
set to 60000, that is, each algorithm stops when the number
of rounds reaches 60000 even if the stopping condition is not
satisfied.

Results of the experiment are shown in Tables 1–3. We
first see from these tables that the computational cost is not
so sensitive to the value of δ2 for all algorithms. From
Tables 1 and 2 where the results for δ1 = 0.1 and δ1 = 0.01
are given respectively, we see that i) the HALS and the
GSHALS algorithms are much faster than the MUR, ii) the
update order (2) is faster than (3) for the same algorithm,
and iii) HALS with (2) is faster than GSHALS with (3).
However, some of these properties do not hold for a smaller
value of δ1. In fact, we see from Table 3, where the results

KIMURA and TAKAHASHI: GSHALS ALGORITHM FOR NMF WITH SPARSENESS AND SMOOTHNESS CONSTRAINTS
2933

for δ1 = 0.001 are given, that the HALS algorithm did not
satisfy the stopping condition before the number of rounds
reached 60000 in all cases. This is because the objective
value eventually stops decreasing as explained in Sect. 2.2.
In contrast, the MUR and the GSHALS algorithm stopped
within 60000 rounds in all cases. The GSHALS algorithm is
much faster than the MUR. In particular, the GSHALS with

Table 1 Results for synthetic data (δ1 = 0.1).
δ2 Method Number of Rounds Computation Time [s]

Ave. Min. Max. Ave. Min. Max.
0.01 MUR 6173.3 2969 10985 2.191 1.032 3.891

HALS (2) 375.9 210 539 0.113 0.063 0.157
HALS (3) 1049.9 919 1178 0.433 0.375 0.469
GSHALS (2) 379.5 204 739 0.121 0.063 0.235
GSHALS (3) 1237.8 1126 1728 0.512 0.484 0.672

0.001 MUR 7618.8 4819 11179 2.704 1.719 3.985
HALS (2) 495.8 319 752 0.155 0.093 0.235
HALS (3) 1146.8 1030 1268 0.464 0.422 0.515
GSHALS (2) 354.7 220 585 0.107 0.063 0.172
GSHALS (3) 1165.5 1060 1214 0.478 0.438 0.516

0.0001 MUR 8203.5 4888 15777 2.977 1.708 5.678
HALS (2) 433.8 267 772 0.131 0.078 0.235
HALS (3) 1155.5 925 1521 0.469 0.375 0.609
GSHALS (2) 306.5 125 515 0.096 0.037 0.160
GSHALS (3) 1212.4 1096 1577 0.507 0.451 0.670

Table 2 Results for synthetic data (δ1 = 0.01).
δ2 Method Number of Rounds Computation Time [s]

Ave. Min. Max. Ave. Min. Max.
0.01 MUR 15793.2 10982 24186 6.018 4.104 9.168

HALS (2) 1229.1 694 2296 0.374 0.204 0.687
HALS (3) 2664.8 2271 3702 1.083 0.922 1.548
GSHALS (2) 962.8 342 1467 0.313 0.103 0.473
GSHALS (3) 2788.2 2564 2927 1.211 1.118 1.307

0.001 MUR 16336.0 10403 33477 6.141 3.642 12.894
HALS (2) 1051.0 571 2233 0.314 0.172 0.672
HALS (3) 2564.4 2295 2870 1.030 0.922 1.156
GSHALS (2) 1163.6 487 2512 0.377 0.152 0.779
GSHALS (3) 2790.7 2632 2919 1.207 1.110 1.312

0.0001 MUR 20129.8 10458 38751 7.268 3.657 14.140
HALS (2) 1092.5 571 1601 0.335 0.172 0.485
HALS (3) 2631.5 2470 3015 1.077 1.000 1.235
GSHALS (2) 1150.8 641 1583 0.355 0.192 0.481
GSHALS (3) 2945.8 2683 3848 1.229 1.107 1.584

Table 3 Results for synthetic data (δ1 = 0.001).
δ2 Method Number of Rounds Computation Time [s]

Ave. Min. Max. Ave. Min. Max.
0.01 MUR 27251.0 14184 46474 9.474 4.647 18.340

HALS (2) 60000.0 60000 60000 18.522 18.174 18.799
HALS (3) 60000.0 60000 60000 24.867 24.424 25.260
GSHALS (2) 1633.0 852 4352 0.526 0.249 1.377
GSHALS (3) 4554.1 4281 4795 1.930 1.754 2.162

0.001 MUR 24850.6 11136 53797 8.676 3.672 19.908
HALS (2) 60000.0 60000 60000 18.496 18.189 18.690
HALS (3) 60000.0 60000 60000 24.705 24.471 25.003
GSHALS (2) 2152.1 1232 3723 0.655 0.371 1.141
GSHALS (3) 4577.6 4426 4798 1.894 1.838 1.968

0.0001 MUR 27367.8 14684 41168 9.453 5.047 13.377
HALS (2) 60000.0 60000 60000 18.636 18.361 18.955
HALS (3) 60000.0 60000 60000 24.939 24.534 25.519
GSHALS (2) 1195.5 985 1995 0.370 0.296 0.609
GSHALS (3) 4554.4 4444 4921 1.930 1.812 2.172

Table 4 Final objective values for synthetic data (δ1 = 0.1, δ2 = 0.0001).
Method Final Objective Value

Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6 Setting 7 Setting 8 Setting 9 Setting 10
MUR 127.268 124.773 125.814 130.235 127.546 126.461 127.147 126.615 124.520 130.190
HALS (2) 127.285 124.595 126.137 129.923 127.276 126.836 127.428 126.627 125.085 130.319
HALS (3) 127.107 124.482 125.736 130.007 127.714 127.004 127.449 126.471 124.609 130.028
GSHALS (2) 127.607 124.732 126.211 130.167 127.889 126.309 128.165 126.610 125.574 130.470
GSHALS (3) 127.080 124.599 125.854 130.128 127.625 126.216 127.182 126.397 124.541 130.049

(2) is the fastest.
It should be noted that the objective value when the

stopping condition is satisfied differs depending on the algo-
rithm, even if the same parameter values and the same initial
condition are used. It often occurs that the final objective
value reached by an algorithm is less than that by a faster al-
gorithm. In fact, we see from Table 4 that the final objective
value obtained by the GSHALS algorithm with the update
order (2), which is the fastest among five methods as shown
in Table 1, is not the smallest for all settings. This means
that different algorithms may reach different approximate
stationary points.

4.2 Experiment Using Real Datasets

We next compare the performance of the three methods:
MUR, GSHALS with (2), and GSHALS with (3) by using
three kinds of real datasets. We do not consider the HALS
algorithm in this experiment because we have observed in the
previous experiment that the HALS algorithm always shows
a similar or worse performance than the GSHALS algorithm
and, more importantly, the HALS algorithm does not always
reach an approximate stationary point.

The first dataset is the ORL Database of Faces† which is
a facial image dataset offered by AT&T Laboratories Cam-
bridge. This dataset contains 400 grayscale facial images
and the size of each image is 92 × 112. Reducing the size
of all images to 46 × 56, transforming them into column
vectors, we obtain a 2576 × 400 nonnegative matrix X. We
set αsm = 0.1, αsp = 0.1, ϵ = 1.0, δ1 = 10.0, δ2 = 1.0
and K = 5, and run the three algorithms for 10 different
initial solutions (W(0),H(0)) which are generated in such a
way that each entry is drawn from an independent uniform
distribution on the interval [0, 10] and then all entries less
than ϵ are replaced with ϵ so that (W(0),H(0)) ∈ Fϵ .

The second dataset is the Wisconsin Diagnostic Breast
Cancer (WDBC) dataset which can be obtained from the UCI
Machine Learning Repository††. This dataset contains 569
instances each of which consists of 32 features. Excluding
the first two features (the first is ID number and the second
is diagnosis), normalizing each of the remaining 30 features
so that the values belong to the interval [0, 1], we obtain a
30×569 nonnegative matrix X. We set αsm = 0.1, αsp = 0.1,
ϵ = 0.001, δ1 = 0.005, δ2 = 0.001 and K = 2, and run the
three algorithms for 10 different initial solutions (W(0),H(0))
which are generated in the same way as in the case of the
†http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.

html
††http://archive.ics.uci.edu/ml/

2934
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.12 DECEMBER 2017

Table 5 Results for ORL dataset.
Method Number of Rounds Computation Time [s]

Ave. Min. Max. Ave. Min. Max.
MUR 7197.3 6366 8909 466.319 420.269 560.454
GSHALS (2) 1509.0 1121 1587 64.733 46.488 75.769
GSHALS (3) 3662.3 3264 3834 222.477 207.611 237.239

Table 6 Results for WDBC dataset.
Method Number of Rounds Computation Time [s]

Ave. Min. Max. Ave. Min. Max.
MUR 27032.4 24760 27801 20.924 19.033 23.362
GSHALS (2) 14780.8 10457 17660 13.608 10.376 15.752
GSHALS (3) 11109.1 8289 15332 11.123 8.500 15.987

Table 7 Results for CLUTO (tr23) dataset.
Method Number of Rounds Computation Time [s]

Ave. Min. Max. Ave. Min. Max.
MUR 3928.9 2063 6152 306.357 162.234 480.680
GSHALS (2) 830.0 742 887 40.009 35.865 43.442
GSHALS (3) 784.5 764 804 56.870 54.368 61.082

ORL dataset except that the interval [0, 1] is used instead of
[0, 10].

The third dataset is “tr23” in the CLUTO datasets. The
CLUTO datasets have been used in evaluating the perfor-
mance of document clustering algorithms and can be ob-
tained from the CLUTO web site†. The dataset “tr23” con-
tains 204 instances corresponding to 204 documents from six
categories, and each instance contains 5832 features. Hence
a 5832 × 204 nonnegative matrix X can be obtained from
this dataset. We set αsm = 0.1, αsp = 0.1, ϵ = 0.1, δ1 = 1.0,
δ2 = 0.1 and K = 6, and run the three algorithms for 10
different initial solutions (W(0),H(0)) which are generated
in the same way as in the case of the ORL dataset.

Results of the experiment are shown in Tables 5–7. It is
seen from these tables that the GSHALS algorithm is faster
than the MUR for all datasets, as in the case of synthetic data.
As for the update order of the GSHALS algorithm, which is
faster depends on the dataset. The computation time of the
GSHALS algorithm with (2) is shorter than that with (3) for
the ORL and the CLUTO datasets, but the latter is faster for
the WDBC dataset.

5. Conclusion

The HALS algorithm for NMF with sparseness and smooth-
ness constraints has been studied in this paper. We have
proposed the GSHALS algorithm based on the HALS algo-
rithm, and proved that it has the global convergence property.
We have also showed experimentally that the GSHALS al-
gorithm outperforms the HALS algorithm and the MUR in
terms of computation time. The GSHALS algorithm can be
easily applied to the case where regularization terms for W
added to the objective function, though it is not considered
in this paper. A future problem is the global convergence
analysis of the GSHALS algorithm when the update order is
not fixed.
†http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview/

Acknowledgments

The authors would like to thank anonymous reviewers for
their valuable comments to improve the quality of this paper.
This work was supported by JSPS KAKENHI Grant Number
JP15K00035.

References

[1] P. Paatero and U. Tapper, “Positive matrix factorization: A non-
negative factor model with optimal utilization of error estimates of
data values,” Environmetrics, vol.5, no.2, pp.111–126, June 1994.
DOI: 10.1002/env.3170050203

[2] D.D. Lee and H.S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol.401, pp.788–792, 1999.
DOI: 10.1038/44565

[3] D.D. Lee and H.S. Seung, “Algorithms for non-negative matrix fac-
torization,” in Advances in Neural Information Processing Systems,
T.K. Leen, T.G. Dietterich, and V. Tresp, Eds., vol.13, pp.556–562,
2001.

[4] P.O. Hoyer, “Non-negative matrix factorization with sparseness con-
straints,” J. Machine Learning Research, vol.5, pp.1457–1469, 2004.

[5] V.P. Pauca, F. Shahnaz, M.W. Berry, and R.J. Plemmons, “Text
mining using non-negative matrix factorizations,” Proc. 4th SIAM
International Conference on Data Mining, pp.452–456, 2004. DOI:
10.1137/1.9781611972740.45

[6] S. Zhang, W. Wang, J. Ford, and F. Makedon, “Learning from in-
complete ratings using non-negative matrix factorization,” Proc. 6th
SIAM International Conference on Data Mining, pp.548–552, 2006.
DOI: 10.1137/1.9781611972764.58

[7] X. Luo, M. Zhou, Y. Xia, and Q. Zhu, “An efficient non-negative
matrix-factorization-based approach to collaborative filtering for
recommender systems,” IEEE Trans. Ind. Informat., vol.10, no.2,
pp.1273–1284, 2014. DOI: 10.1109/TII.2014.2308433

[8] Z. Yang and E. Oja, “Unified development of multiplicative algo-
rithms for linear and quadratic nonnegative matrix factorization,”
IEEE Trans. Neural Netw., vol.22, no.12, pp.1878–1891, Dec. 2011.
DOI: 10.1109/TNN.2011.2170094

[9] W.I. Zangwill, Nonlinear Programming: A Unified Approach,
Prentice-Hall, 1969.

[10] N. Gillis and F. Glineur, “Nonnegative matrix factorization and the
maximum edge biclique problem,” arXiv0810.4225, 2008.

[11] A. Cichocki, R. Zdunek, and S. Amari, “Hierarchical ALS algo-
rithms for nonnegative matrix and 3D tensor factorization,” Springer
Lecture Notes in Computer Science, vol.4666, pp.169–176, 2007.
DOI: 10.1007/978-3-540-74494-8_22

[12] N. Takahashi and R. Hibi, “Global convergence of modified mul-
tiplicative updates for nonnegative matrix factorization,” Compu-
tational Optimization and Applications, vol.57, no.2, pp.417–440,
2014. DOI: 10.1007/s10589-013-9593-0

[13] N. Takahashi, J. Katayama, and J. Takeuchi, “A generalized sufficient
condition for global convergence of modified multiplicative updates
for NMF,” Proc. 2014 International Symposium on Nonlinear Theory
and its Applications, pp.44–47, 2014.

[14] N. Takahashi and M. Seki, “Multiplicative update for a class of
constrained optimization problems related to NMF and its global
convergence,” Proc. 2016 European Signal Processing Conference,
pp.438–442, 2016. DOI: 10.1109/EUSIPCO.2016.7760286

[15] C.-J. Lin, “Projected gradient methods for nonnegative matrix factor-
ization,” Neural Computation, vol.19, no.10, pp.2756–2779, 2007.
DOI: 10.1162/neco.2007.19.10.2756

[16] N.D. Ho, Nonnegative Matrix Factorization Algorithms and Appli-
cations, Ph.D thesis, Univ. Catholique de Louvain, 2008.

[17] N. Guan, D. Tao, Z. Luo, and B. Yuan, “NeNMF: An opti-
mal gradient method for nonnegative matrix factorization,” IEEE

http://dx.doi.org/10.1002/env.3170050203
http://dx.doi.org/10.1002/env.3170050203
http://dx.doi.org/10.1002/env.3170050203
http://dx.doi.org/10.1002/env.3170050203
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1137/1.9781611972740.45
http://dx.doi.org/10.1137/1.9781611972740.45
http://dx.doi.org/10.1137/1.9781611972740.45
http://dx.doi.org/10.1137/1.9781611972740.45
http://dx.doi.org/10.1137/1.9781611972764.58
http://dx.doi.org/10.1137/1.9781611972764.58
http://dx.doi.org/10.1137/1.9781611972764.58
http://dx.doi.org/10.1137/1.9781611972764.58
http://dx.doi.org/10.1109/TII.2014.2308433
http://dx.doi.org/10.1109/TII.2014.2308433
http://dx.doi.org/10.1109/TII.2014.2308433
http://dx.doi.org/10.1109/TII.2014.2308433
http://dx.doi.org/10.1109/TNN.2011.2170094
http://dx.doi.org/10.1109/TNN.2011.2170094
http://dx.doi.org/10.1109/TNN.2011.2170094
http://dx.doi.org/10.1109/TNN.2011.2170094
https://arxiv.org/abs/0810.4225
https://arxiv.org/abs/0810.4225
http://dx.doi.org/10.1007/978-3-540-74494-8_22
http://dx.doi.org/10.1007/978-3-540-74494-8_22
http://dx.doi.org/10.1007/978-3-540-74494-8_22
http://dx.doi.org/10.1007/978-3-540-74494-8_22
http://dx.doi.org/10.1007/s10589-013-9593-0
http://dx.doi.org/10.1007/s10589-013-9593-0
http://dx.doi.org/10.1007/s10589-013-9593-0
http://dx.doi.org/10.1007/s10589-013-9593-0
http://dx.doi.org/10.1109/EUSIPCO.2016.7760286
http://dx.doi.org/10.1109/EUSIPCO.2016.7760286
http://dx.doi.org/10.1109/EUSIPCO.2016.7760286
http://dx.doi.org/10.1109/EUSIPCO.2016.7760286
http://dx.doi.org/10.1162/neco.2007.19.10.2756
http://dx.doi.org/10.1162/neco.2007.19.10.2756
http://dx.doi.org/10.1162/neco.2007.19.10.2756
http://dx.doi.org/10.1109/TSP.2012.2190406
http://dx.doi.org/10.1109/TSP.2012.2190406

KIMURA and TAKAHASHI: GSHALS ALGORITHM FOR NMF WITH SPARSENESS AND SMOOTHNESS CONSTRAINTS
2935

Trans. Signal Process., vol.60, no.6, pp.2882–2898, 2012. DOI:
10.1109/TSP.2012.2190406

[18] J. Kim, Y. He, and H. Park, “Algorithms for nonnegative matrix
and tensor factorization: A unified view based on block coordinate
descent framework,” J. Global Optimization, vol.58, no.2, pp.285–
319, 2014. DOI: 0.1007/s10898-013-0035-4

[19] T. Kimura and N. Takahashi, “Global convergence of a modi-
fied HALS algorithm for nonnegative matrix factorization,” Proc.
2015 IEEE 6th International Workshop on Computational Ad-
vances in Multi-Sensor Adaptive Processing, pp.21–24, 2015. DOI:
10.1109/CAMSAP.2015.7383726

[20] P.O. Hoyer, “Non-negative sparse coding,” Proc. 2002 IEEE 12th
International Workshop on Neural Networks for Signal Processing,
pp.557–565, 2002. DOI: 10.1109/NNSP.2002.1030067

[21] M.W. Berry, M. Browne, A.N. Langville, V.P. Pauca, and R.J. Plem-
mons, “Algorithms and applications for approximate nonnegative
matrix factorization,” Computational Statistics & Data Analysis,
vol.52, no.1, pp.155–173, 2007. DOI: 10.1016/j.csda.2006.11.006

[22] A. Cichocki, S. Amari, R. Zdunek, R. Kompass, G. Hori, and Z.
He, “Extended SMART algorithms for non-negative matrix factor-
ization,” Lecture Notes in Computer Science, Springer, vol.4029,
pp.548–562, 2006. DOI:10.1007/11785231_58

[23] A. Cichocki and A.H. Phan, “Fast local algorithms for large scale
nonnegative matrix and tensor factorization,” IEICE Trans. Funda-
mentals, vol.E92-A, no.3, pp.708–721, March 2009.

[24] A. Cichocki, R. Zdunek, A.H. Phan, and S. Amari, Nonnegative Ma-
trix and Tensor Factorizations: Applications to Exploratory Multi-
Way Data Analysis and Blind Source Separation, John Wiley & Sons,
2009.

[25] Y. Wang and Y. Zhang, “Nonnegative matrix factorization: A com-
prehensive review,” IEEE Trans. Knowl. Data Eng., vol.25, no.6,
pp.1336–1353, June 2013. DOI: 10.1109/TKDE.2012.51

[26] Q. Liao and Q. Zhang, “Efficient rank-one residue approximation
method for graph regularized non-negative matrix factorization,”
Proc. European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, Part II, pp.242–255,
2013. DOI: 10.1007/978-3-642-40991-2_16

[27] D. Cai, X. He, J. Han, and T.S. Huang, “Graph regularized non-
negative matrix factorization for data representation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol.33, no.8, pp.1548–
1560, Aug. 2011. DOI: 10.1109/TPAMI.2010.231

[28] O. Axelsson, Iterative Solution Methods, Cambridge University
Press, 1996.

Takumi Kimura received the B.E. degree
in information technology and M.E. degree in
electronic and information systems engineering
from Okayama University, Japan in 2015 and
2017, respectively. He is now with ASTEC Co.,
Ltd., Osaka, Japan. His research interests in-
clude nonnegative matrix factorization and its
applications.

Norikazu Takahashi received the B.E.,
M.E. and D.E. degrees from Kyushu Univer-
sity, Japan, in 1991, 1993 and 1996, respec-
tively. He is currently a Professor in the Depart-
ment of Computer Science, Okayama University,
Japan. His research interests include optimiza-
tion theory, nonlinear systems, multiagent sys-
tems, graph theory, and neural networks. He is a
member of IEEE and Japanese Neural Network
Society.

http://dx.doi.org/10.1109/TSP.2012.2190406
http://dx.doi.org/10.1109/TSP.2012.2190406
http://dx.doi.org/10.1109/TSP.2012.2190406
http://dx.doi.org/0.1007/s10898-013-0035-4
http://dx.doi.org/0.1007/s10898-013-0035-4
http://dx.doi.org/0.1007/s10898-013-0035-4
http://dx.doi.org/0.1007/s10898-013-0035-4
http://dx.doi.org/10.1109/CAMSAP.2015.7383726
http://dx.doi.org/10.1109/CAMSAP.2015.7383726
http://dx.doi.org/10.1109/CAMSAP.2015.7383726
http://dx.doi.org/10.1109/CAMSAP.2015.7383726
http://dx.doi.org/10.1109/CAMSAP.2015.7383726
http://dx.doi.org/10.1109/NNSP.2002.1030067
http://dx.doi.org/10.1109/NNSP.2002.1030067
http://dx.doi.org/10.1109/NNSP.2002.1030067
http://dx.doi.org/10.1016/j.csda.2006.11.006
http://dx.doi.org/10.1016/j.csda.2006.11.006
http://dx.doi.org/10.1016/j.csda.2006.11.006
http://dx.doi.org/10.1016/j.csda.2006.11.006
http://dx.doi.org/DOI:10.1007/11785231_58
http://dx.doi.org/DOI:10.1007/11785231_58
http://dx.doi.org/DOI:10.1007/11785231_58
http://dx.doi.org/DOI:10.1007/11785231_58
http://dx.doi.org/10.1587/transfun.e92.a.708
http://dx.doi.org/10.1587/transfun.e92.a.708
http://dx.doi.org/10.1587/transfun.e92.a.708
http://dx.doi.org/10.1109/TKDE.2012.51
http://dx.doi.org/10.1109/TKDE.2012.51
http://dx.doi.org/10.1109/TKDE.2012.51
http://dx.doi.org/10.1007/978-3-642-40991-2_16
http://dx.doi.org/10.1007/978-3-642-40991-2_16
http://dx.doi.org/10.1007/978-3-642-40991-2_16
http://dx.doi.org/10.1007/978-3-642-40991-2_16
http://dx.doi.org/10.1007/978-3-642-40991-2_16
http://dx.doi.org/10.1109/TPAMI.2010.231
http://dx.doi.org/10.1109/TPAMI.2010.231
http://dx.doi.org/10.1109/TPAMI.2010.231
http://dx.doi.org/10.1109/TPAMI.2010.231

