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Abstract

It is well known that one-dimensional cellular neural networks (1-D CNNs) with
the template A = [1, 2,−1] can perform connected component detection (CCD).
However this has been confirmed only by numerical and laboratory experiments. In
this paper, sufficient conditions for 1-D CNNs to perform CCD are obtained through
theoretical analysis. Main result shows that a wide class of templates including
A = [1, 2,−1] can be used for CCD.
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1 Introduction

Cellular neural networks (CNNs) proposed by Chua and Yang [1] have many
applications in the field of image processing [2]. As an important application
of one-dimensional (1-D) CNNs, this paper focuses on connected component
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detection (CCD) [3] which is a task to transform a given 1-D black-and-white
image into another black-and-white image such that the number of isolated
black pixels in the output image is equal to the number of blocks of consec-
utive black pixels in the input image (a more rigorous definition is given in
Section 2). Matsumoto et al. [3] first showed via computer simulation that a
1-D CNN with the template A = [1, 2,−1] can perform CCD. This fact was
also confirmed experimentally by Cruz and Chua with their CNN chips [4].

Dynamical behavior of 1-D CNNs has been extensively studied so far [5–14] in
relation to CCD. Zou and Nossek [6] considered a 1-D CNN with the antisym-
metric template A = [s, p,−s] (p > 1) and proved under the zero boundary
condition that it is completely stable if p − 1 > 2|s| and that it possesses no
stable equilibrium point if p − 1 < |s|. Thiran et al. [11] introduced the con-
cepts of local diffusion and global propagation into the dynamical behavior of
1-D CNNs and proved that 1-D CNNs with the template A = [r, p, s] (p > 1)
has a local diffusion behavior if p−1 > |s−r|. They also studied in detail 1-D
CNNs working in the local diffusion mode and presented many results on the
number of equilibrium points and the complete stability. On the other hand,
Setti et al. [12] proved that 1-D CNNs with the template A = [r, p, s] (p > 1)
has a global propagation behavior if p − 1 < |s − r|. They also studied in de-
tail 1-D CNNs working in the global propagation mode and presented many
results on the existence of periodic solutions and their stability under the pe-
riodic boundary condition. It should be noted that A = [1, 2,−1] satisfies the
condition for the global propagation mode. De Sandre [13] proved that 1-D
CNNs with the antisymmetric template A = [s, p,−s] (p > 1) are completely
stable under the fixed boundary condition if p − 1 > |s| × 1.25670414 · · · .

Although various properties of 1-D CNNs have been clarified so far as stated
above, no one has proved yet the validity of the template A = [1, 2,−1] for
CCD. There are two main reasons which make the analysis difficult. One is
that a 1-D CNN has to work in the global propagation mode, because it is
apparent from the definition of CCD that the color of each pixel in the output
image depends not only on those of its neighbors but also all pixels in the
input image. The other is that the state transient must not be monotonic [16],
because some pixels change their color from black to white and others from
white to black in the process of CCD.

In this paper, we consider 1-D CNNs with the opposite-sign template A =
[r, p,−s] (r > 0, p > 1, s > 0) and provide sufficient conditions for such 1-D
CNNs to perform CCD under the fixed boundary condition y0(t) = yn+1(t) =
−1 where n is the number of cells. As shown in Section 3, the sufficient con-
ditions are satisfied not only with A = [1, 2,−1] but also with a wide class
of templates. This is the main contribution of this paper. A key idea used
in our approach is to restrict ourselves to those 1-D CNNs which are locally
regular. [17,18]. In locally regular 1-D CNNs, |yi(t)| and |yi+1(t)| never become
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less than 1 at the same time, which makes the analysis easier. We first derive
sufficient conditions for 1-D CNNs to be locally regular and next show that
1-D CNNs can perform CCD under these conditions.

Although some results of this paper were presented at two conferences [19,20],
proofs in those conference papers were not rigorous due to the limited space.
So this paper is the first to provide a complete proof of the main result. Also,
some new material is given for better understanding of the main result and
future works.

2 Problem Formulation

2.1 CNN Model

Let us consider simple 1-D CNNs described by the set of differential equations:

ẋi(t) = −xi(t) + a−1yi−1(t) + a0yi(t) + a1yi+1(t), i = 1, 2, . . . , n (1)

where xi(t) and yi(t) represent the state and output of the i-th cell at time
t, respectively, and the dot means time derivative. The relationship between
xi(t) and yi(t) is given by

yi(t) = f(xi(t)) , 1

2
(|xi(t) + 1| − |xi(t) − 1|) . (2)

In this paper, we focus our attention on 1-D CNNs (1) having the opposite-sign
template:

A = [a−1, a0, a1] = [r, p,−s] (r > 0, p > 1, s > 0) (3)

under the fixed boundary condition:

y0(t) = yn+1(t) = −1, ∀t ≥ 0 . (4)

Two vectors x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Rn and y(t) = (y1(t), y2(t), . . . ,
yn(t)) ∈ [−1, 1]n represent the state and output of the 1-D CNN at time t,
respectively. Since each component of the output y(t) is bounded by −1 and
1, y(t) can be identified with a 1-D gray-scale image composed of n pixels
by regarding 1 and −1 as black and white, respectively. We therefore say
that yi(t) is black, white, and gray if yi(t) = 1, yi(t) = −1, and |yi(t)| < 1,
respectively. Throughout this paper, we assume that the initial output y(0)
is a black-and-white (or binary) image, that is,

|yi(0)| = 1, i = 1, 2, . . . , n (5)
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Input Image

Output Image

1 2 3 4 5 6 7 8

Fig. 1. Example of connected component detection.

which is equivalent to that |xi(0)| ≥ 1 for i = 1, 2, . . . , n.

2.2 Connected Component Detection

In order to make our later discussion clear, we give here a rigorous definition
of CCD.

Definition 1 Given a 1-D binary image with n pixels, CCD is to output an-
other binary image with the same size as the original, which satisfies the fol-
lowing properties:

(1) The number of black pixels is equal to the number of blocks of consecutive
black pixels in the given image.

(2) The n-th pixel is black unless all pixes in the given image are white.
(3) All black pixels are isolated.
(4) There exists exactly one white pixels between two neighboring black pixels.

An example of CCD is shown in Fig.1 where three connected components in
the input image are represented by three isolated black pixels in the output
image.

2.3 Problem

A 1-D CNN is considered to perform an image processing task if we take the
initial output y(0) as the input image and the final output limt→∞ y(t) as the
output image. Apparently the output y(t) must converge in order for us to
get the output image. We now specify the relationship between 1-D CNNs and
CCD.

Definition 2 A 1-D CNN is said to perform CCD if y(t) converges to a
binary image which is identical to the result of CCD applied to y(0) for any
initial state x(0) such that |xi(0)| ≥ 1 for i = 1, 2, . . . , n.

The problem we tackle in this paper is to find conditions on the parameters
r, p and s in the template (3) under which the 1-D CNN described by (1)–(5)
performs CCD in the sense of Definition 2. If p− 1 ≥ r + s, the 1-D CNN can
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never perform CCD because y(t) = y(0) holds for t ≥ 0. Therefore we assume
in the following that

0 < p − 1 < r + s .

It is known that under this condition the 1-D CNN has a global propagation
behavior [12, Theorem 1].

3 Main Results

We first show a definition introduced by Hänggi [18] which will play an im-
portant role in our analysis.

Definition 3 A 1-D CNN is said to be locally regular if

|yi(t)| < 1 ⇒ |yi−1(t)| = |yi+1(t)| = 1

holds for all i and all t ≥ 0.

From a view point of image processing, the local regularity means that two
adjacent pixels of the output y(t) never become gray simultaneously.

Now we are ready to present the main results of this paper.

Theorem 1 If a 1-D CNN described by (1)–(5) satisfies

|r − s| < p − 1 < r + s (6)

g(p, r, s) ≥ 0 (7)

g(p, s, r) ≥ 0 (8)

where the function g is defined by

g(α, β, γ) , (β + γ + α − 1)
1

α−1{α(α − 1 − γ) + β(β + γ − 1)}
− (β + γ − α + 1)

1
α−1{α(α − 1 − γ) + β(β + γ + 1)}

then it is locally regular and its output y(t) satisfies

|yi(t)| < 1 ⇒ yi−1(t) yi+1(t) = −1 (9)

for i = 1, 2, . . . , n and all t ≥ 0.

Theorem 2 If a 1-D CNN described by (1)–(5) satisfies the same conditions
as in Theorem 1, it performs CCD.

Proofs of Theorems 1 and 2 are given in the next section.
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Fig. 2. Parameter regions in the (r, s)-plane for which (6)–(8) are satisfied with
p = 2, 3, 4 and 5.

Figure 2 shows the parameter regions (the areas surrounded by the closed
curves) in the (r, s)-plane for which the conditions (6)–(8) are satisfied with
p = 2, 3, 4 and 5. It is clearly seen from this figure that the 1-D CNN can
perform CCD for a wide range of parameter values. For example, in the case
where p = 5 and r = 4, the parameter s can take any value between 0 and 4.

As a special case of Theorem 2, we can easily derive a simple sufficient condi-
tion as follows:

Corollary 1 If a 1-D CNN described by (1)–(4) satisfies

p = 2, r ≤ 1, s ≤ 1, r + s > 1

then it performs CCD.

Proof. By substituting p = 2 into (6), (7) and (8), we have |r−s| < 1 < r+s,
s ≤ 1 and r ≤ 1, respectively. The first inequality |r − s| < 1 is redundant
because r + s > 1, s ≤ 1 and r ≤ 1 imply it. 2

Example 1 Let us consider a 1-D CNN with n = 8 and A = [r, p,−s] =
[1.8, 3,−0.8]. As is easily seen from Fig.2, this CNN satisfies (6)–(8) and hence
can perform CCD. Figure 3 shows the waveforms of x1(t), x2(t), . . . , x8(t) for
the initial condition x(0) = (1,−1, 1,−1, 1, 1, 1,−1), which were obtained by
solving (1) numerically. The output y(t) starting from (1,−1, 1,−1, 1, 1, 1,−1),
which corresponds to the input image in Fig.1, certainly converges to (−1,−1,−1,
1,−1, 1,−1, 1), which corresponds to the output image in Fig.1. Figure 4 shows
the waveforms of x3(t), x4(t) and x5(t), from which we can confirm that both
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|x3(t)| ≥ 1 and |x5(t)| ≥ 1 hold whenever |x4(t)| < 1.
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Fig. 3. Waveforms of x1(t), x2(t), . . . , x8(t) generated by the 1-D CNN considered
in Example 1.
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Fig. 4. Waveforms of x3(t), x4(t) and x5(t) generated by the 1-D CNN considered
in Example 1.

Example 2 Let us next consider a 1-D CNN with n = 8 and A = [r, p,−s] =
[2.6, 3,−0.8]. It is easily verified from Fig.2 that this template does not satisfy
(6)–(8). Figure 5 shows the waveforms of x3(t), x4(t) and x5(t) for the initial
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condition x(0) = (1,−1, 1,−1, 1, 1, 1,−1), from which we see that |x4(t)| < 1
and |x5(t)| < 1 hold simultaneously at t ≈ 0.6 and that |x3(t)| < 1 and
|x4(t)| < 1 hold simultaneously at t ≈ 1.1. Therefore, this CNN is not lo-
cally regular. However, as shown in Fig. 6, the output y(t) starting from
(1,−1, 1,−1, 1, 1, 1,−1) converges to (−1,−1,−1, 1,−1, 1,−1, 1) as in Exam-
ple 1. This indicates that (6)–(8) are sufficient for CCD but may not be nec-
essary.
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x4(t)
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Fig. 5. Waveforms of x3(t), x4(t) and x5(t) generated by the 1-D CNN considered
in Example 2.

4 Proof of Theorem 1

We first give four lemmas which show some fundamental properties of 1-D
CNNs satisfying (6)–(8) and play important roles in later discussions.

Lemma 1 Let y(t) be an output trajectory of a CNN satisfying (6). If (yi−1(t0),
yi(t0)) ∈ {(1, 1), (−1,−1)} holds for some i ∈ {1, 2, . . . , n} and some t0 ≥ 0
then yi(t) cannot become gray earlier than or at the same time as yi−1(t).

Proof. Let us first consider the case where (yi−1(t0), yi(t0)) = (1, 1). If
yi−1(t) = 1 and xi(t) = 1, we have

ẋi(t) = −1 + r + p − syi+1(t) ≥ p − 1 + r − s > 0

where the last inequality follows from (6). Therefore yi(t) = 1 holds as long
as yi−1(t) = 1. Moreover, yi−1(t) and yi(t) cannot become gray at the same
time. Let us next consider the case where (yi−1(t0), yi(t0)) = (−1,−1). If
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Fig. 6. Waveforms of x1(t), x2(t), . . . , x8(t) generated by the 1-D CNN considered
in Example 2.

yi−1(t) = −1 and xi(t) = −1, we have

ẋi(t) = 1 − r − p − syi+1(t) ≤ −p + 1 − r + s < 0

where the last inequality follows from (6). Therefore yi(t) = −1 holds as long
as yi−1(t) = −1. Moreover, yi−1(t) and yi(t) cannot become gray at the same
time. 2

Lemma 2 Let y(t) be an output trajectory of a CNN satisfying (6). If (yi(t0),
yi+1(t0)) ∈ {(1,−1), (−1, 1)} holds for some i ∈ {1, 2, . . . , n} and some t0 ≥ 0
then yi(t) cannot become gray earlier than or at the same time as yi+1(t).

We omit the proof of Lemma 2 because it is similar to that of Lemma 1.

Lemma 3 Let y(t) be an output trajectory of a CNN satisfying (6)–(8). If
(yi−1(t0), yi(t0), yi+1(t0)) = (−1, 1, 1) holds for some i ∈ {1, 2, . . . , n} and some
t0 ≥ 0 then yi(t) decreases monotonically until it reaches −1 at t = t1 ≥ t0 +T
where

T , 1

p − 1
log

(
r + s + p − 1

r + s − p + 1

)
. (10)

Moreover, yi−1(t) and yi+1(t) are constant for t0 ≤ t ≤ t1.
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Proof. It follows from Lemmas 1 and 2 that neither yi−1(t) nor yi+1(t) become
gray earlier than or at the same time as yi(t). Also, as far as (yi−1(t), yi(t),
yi+1(t)) = (−1, 1, 1), xi(t) decreases monotonically until it reaches 1 because

ẋi(t) = −xi(t) − r + p − s ≤ p − 1 − r − s < 0 .

Hence there exists a t∗(≥ t0) such that yi−1(t
∗) = −1, xi(t

∗) = 1 and yi+1(t
∗) =

1. In the following, we assume without loss of generality that t∗ = 0. Let
tmax , max{τ | yi−1(t) = −1, |xi(t)| ≤ 1, yi+1(t) = 1, ∀t ∈ [0, τ ]} Then
xi−1(t), xi(t) and xi+1(t) obey the following differential equations:

ẋi−1(t) = −xi−1(t) + ryi−2(t) − p − sxi(t) (11)

ẋi(t) = (p − 1)xi(t) − r − s (12)

ẋi+1(t) = −xi+1(t) + rxi(t) + p − syi+2(t) (13)

for 0 ≤ t ≤ tmax. By solving (12) with the initial condition xi(0) = 1, we can
obtain an explicit formula of xi(t) (0 ≤ t ≤ tmax) as follows:

xi(t) =

(
1 − r + s

p − 1

)
e(p−1)t +

r + s

p − 1
, a(t) (14)

It is easily seen from (6) that the function a(t) defined above is monotone
decreasing. Also, a(t) = −1 holds for

t =
1

p − 1
log

(
r + s + p − 1

r + s − p + 1

)
= T . (15)

In the following, we will show that xi+1(t) ≥ 1 holds for 0 ≤ t ≤ T if (6) and
(7) are satisfied, and that xi−1(t) ≤ −1 holds for 0 ≤ t ≤ T if (6) and (8) are
satisfied.

From (13) we obtain a formal expression of xi+1(t) (0 ≤ t ≤ tmax) as follows:

xi+1(t) = xi+1(0) e−t + e−t
∫ t

0
eτ (rxi(τ) + p − syi+2(τ)) dτ .

Since xi+1(0) ≥ 1 and yi+2(t) ≤ 1, we have

xi+1(t) ≥ e−t + e−t
∫ t

0
eτ (rxi(τ) + p − s) dτ . (16)
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Substituting (14) into (16), we can obtain a lower bound for xi+1(t) (0 ≤ t ≤
tmax) as

xi+1(t) ≥−
{

p − 1 +
r

p
− s +

r(r + s)

p

}
e−t

− r(r + s − p + 1)

p(p − 1)
e(p−1)t + p − s +

r(r + s)

p − 1

, b1(t) (17)

Now we will show that the function b1(t) defined above is greater than or equal
to 1 for 0 ≤ t ≤ T if (6) and (7) hold. First we easily see that b1(0) = 1. Next,
since

ḃ1(t) =

{
p − 1 − s +

r(r + s + 1)

p

}
e−t − r(r + s − p + 1)

p
e(p−1)t ,

we have from (6) that ḃ(0) = p − 1 − s + r > 0. Furthermore, since

p − 1 − s +
r(r + s + 1)

p
> −r +

r(r + s + 1)

p
=

r(r + s − p + 1)

p
> 0

holds from (6), the second derivative of b1(t) satisfies

b̈1(t) =−
{

p − 1 − s +
r(r + s + 1)

p

}
e−t − r(r + s − p + 1)(p − 1)

p
e(p−1)t

< 0

for all t, which means that b1(t) is a concave function. From these properties,
it suffices for us to show that b1(T ) ≥ 1. Substituting (15) into (17), we have

b1(T ) = −
{

p − 1 − s +
r(r + s + 1)

p

}(
r + s − p + 1

r + s + p − 1

) 1
p−1

− r(r + s + p − 1)

p(p − 1)
+ p − s +

r(r + s)

p − 1

from which we obtain

b1(T ) − 1 = −
{

p − 1 − s +
r(r + s + 1)

p

}(
r + s − p + 1

r + s + p − 1

) 1
p−1

− r(r + s + p − 1)

p(p − 1)
+ p − 1 − s +

r(r + s)

p − 1

= −
{

p − 1 − s +
r(r + s + 1)

p

}(
r + s − p + 1

r + s + p − 1

) 1
p−1

+ p − 1 − s +
r(r + s − 1)

p
.
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It is easily seen that the right-hand side is nonnegative if (7) is satisfied.
Therefore we can conclude that b1(t) ≥ 1 holds for 0 ≤ t ≤ T . Relationships
among xi(t), xi+1(t) and b1(t) are depicted in Fig. 5.

From (11) we obtain the formal expression of xi−1(t) (0 ≤ t ≤ tmax) as follows:

xi−1(t) = xi−1(0) e−t + e−t
∫ t

0
eτ (ryi−2(τ) − p − sxi(τ)) dτ .

Since xi−1(0) ≤ −1 and yi−2(t) ≤ 1, we have

xi−1(t) ≤ −e−t + e−t
∫ t

0
eτ (r + p − sxi(τ)) dτ . (18)

Substituting (14) into (18), we can obtain an upper bound for xi−1(t) (0 ≤
t ≤ tmax) as

xi−1(t) ≤
{

p − 1 +
s

p
− r +

s(r + s)

p

}
e−t

+
s(r + s − p + 1)

p(p − 1)
e(p−1)t − p + r − s(r + s)

p − 1

, b2(t) .

Here we should note that the function b2(t) defined above is identical to the one
obtained by exchanging r and s in −b1(t). Thus we can immediately conclude
that b2(t) ≤ −1 holds for 0 ≤ t ≤ T if (8) is satisfied. Relationships among
xi(t), xi−1(t) and b2(t) are depicted in Fig. 5. 2

0 t

1

−1

T

xi+1(t)

xi−1(t)

b2(t)

b1(t)

xi(t)

Fig. 7. Relationships among xi(t), xi+1(t), xi−1(t), b1(t) and b2(t) when (6)–(8) and
(yi−1(0), xi(0), yi+1(0)) = (−1, 1, 1) are satisfied.

Lemma 4 Let y(t) be an output trajectory of a CNN satisfying (6)–(8). If
(yi−1(t0), yi(t0), yi+1(t0)) = (1,−1,−1) holds for some i ∈ {1, 2, . . . , n} and
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some t0 ≥ 0 then yi(t) increases monotonically until it reaches 1 at t = t1 ≥
t0 + T where T is defined by (10). Moreover, yi−1(t) and yi+1(t) are constant
for t0 ≤ t ≤ t1.

Proof of Lemma 4 is omitted because it is similar to that of Lemma 3.

Now we are ready to prove Theorem 1. The proof is done by mathematical
induction. We first show as the basis step that (9) holds for i = 1, 2, . . . , n and
0 ≤ t ≤ T where T is defined by (10). We next show as the induction step
that if (9) holds for i = 1, 2, . . . , n and 0 ≤ t ≤ kT where k is any positive
integer then it also holds for i = 1, 2, . . . , n and kT ≤ t ≤ (k + 1)T .

Lemma 5 Let y(t) be an output trajectory of a CNN satisfying (6)–(8). If
|yi−1(t0)| = |yi(t0)| = |yi+1(t0)| = 1 holds for some t0 ≥ 0, then (9) holds for
t0 ≤ t ≤ t0 + T .

Proof. If (yi−1(t0), yi(t0), yi+1(t0)) ∈ {(−1, 1, 1), (1,−1,−1)} then it is easily
seen from Lemmas 3 and 4 that (9) holds for t0 ≤ t ≤ t0+T . If (yi−1(t0), yi(t0),
yi+1(t0)) 6∈ {(−1, 1, 1), (1,−1,−1)} then at least one of the following two con-
ditions holds.

(yi−1(t0), yi(t0)) ∈ {(1, 1), (−1,−1)}
(yi(t0), yi+1(t0)) ∈ {(1,−1), (−1, 1)}

In the following, we will focus our attention on the case where (yi−1(t0), yi(t0))
= (1, 1) and show that yi(t) is constant for t0 ≤ t ≤ t0 + T which means that
(9) holds for t0 ≤ t ≤ t0 +T . Although other three cases will not be considered
here, the same conclusion can be drawn in a similar way.

Let us assume without loss of generality that t0 = 0. As far as yi(t) = 1 is
satisfied, xi(t) can be expressed as follows:

xi(t) = xi(0)e−t + e−t
∫ t

0
eτ (ryi−1(τ) + p − syi+1(τ))dτ .

Note that yi−1(t) decreases most rapidly when yi−2(0) = −1 and xi−1(0) = 1
and in this case yi(t) = xi(t) = a(t) holds for 0 ≤ t ≤ T where a(t) is defined
in (14). Note also that xi(0) ≥ 1 and yi+1(t) ≤ 1. From these observation, we
have

xi(t) ≥ e−t + e−t
∫ t

0
eτ (ra(τ) + p − s)dτ = b1(t) .

Since b1(t) ≥ 1 holds for 0 ≤ t ≤ T , as we have seen in the proof of Lemma 3,
yi(t) = 1 holds for 0 ≤ t ≤ T . 2

By substituting t0 = 0 into Lemma 5, we immediately see that (9) holds for
i = 1, 2, . . . , n and 0 ≤ t ≤ T , which completes the proof of the basis step of
the mathematical induction. Now we proceed to the induction step. Let j be
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any integer between 1 and n. The goal is to show that

|yj(t)| < 1 ⇒ yj−1(t)yj+1(t) = −1 (19)

holds for kT ≤ t ≤ (k + 1)T under the assumption that (9) holds for i =
1, 2, . . . , n and 0 ≤ t ≤ kT . To do so, we divide the problem into the following
five cases:

(1) |yj−1(kT )| = |yj(kT )| = |yj+1(kT )| = 1
(2) |yj(kT )| < 1
(3) |yj−1(kT )| < 1, |yj(kT )| = 1, |yj+1(kT )| < 1
(4) |yj−1(kT )| < 1, |yj(kT )| = |yj+1(kT )| = 1
(5) |yj−1(kT )| = |yj(kT )| = 1, |yj+1(kT )| < 1

The first case has already been proved by Lemma 5. So we will consider in the
following the remaining four cases.

Lemma 6 Let y(t) be an output trajectory of a CNN satisfying (6)–(8). Sup-
pose that (9) holds for i = 1, 2, . . . , n and 0 ≤ t ≤ kT . If |yj(kT )| < 1 then i)
(19) holds for kT ≤ t ≤ (k+1)T and ii) there exists a t∗ ∈ (kT, (k+1)T ) such
that |yj(t)| < 1 for kT ≤ t < t∗ and (yj−1(t

∗), yj(t
∗), yj+1(t

∗)) is (−1,−1, 1)
or (1, 1,−1).

Proof. Let t1 = max{τ | |yj(τ)| = 1, 0 ≤ τ < kT}. Then the following two
conditions apparently hold.

|yj(t1)| = |xj(t1)| = 1 (20)

|yj(t)| < 1, t1 < t ≤ kT (21)

By the assumption and (21), we have

yj−1(t)yj+1(t) = −1, t1 < t ≤ kT .

Since y(t) is continuous, we have

yj−1(t1)yj+1(t1) = −1 . (22)

From (20) and (22), (yj−1(t1), yj(t1), yj+1(t1)) must be one of the following:
(−1, 1, 1), (1,−1,−1), (−1,−1, 1) or (1, 1,−1). However, by Lemmas 1–4, (20)
occurs if and only if (yj−1(t1), yj(t1), yj+1(t1)) is either (−1, 1, 1) or (1,−1,−1).
In the former (latter) case, by Lemma 3 (Lemma 4), yj(t) decreases (increases)
monotonically until it reaches −1 (1) at t = t1 + T while yj−1(t) and yj+1(t)
are constant for t1 ≤ t ≤ t1 + T . Hence (19) holds for t1 ≤ t ≤ t1 + T . Note
that t1 + T is greater than kT because otherwise |yj(t)| = 1 holds for some
t ∈ (t1, kT ] which contradicts the assumption |yj(kT )| < 1 or the definition of
t1. This completes the proof of the second statement. Since |yj−1(t1 + T )| =
|yj(t1 + T )| = |yj+1(t1 + T )| = 1, it follows from Lemma 5 that (19) holds for
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t1 + T ≤ t ≤ t1 + 2T where t1 + 2T is greater than (k + 1)T . Thus (19) holds
for kT ≤ t ≤ (k + 1)T . 2

Lemma 7 Let y(t) be an output trajectory of a CNN satisfying (6)–(8). Sup-
pose that (9) holds for i = 1, 2, . . . , n and 0 ≤ t ≤ kT . If |yj−1(kT )| < 1,
|yj(kT )| = 1 and |yj+1(kT )| < 1 then (9) holds for kT ≤ t ≤ (k + 1)T .

Proof. By the assumption and Lemma 6, |yj−1(t)| = 1 holds for some t ∈
(kT, (k + 1)T ). Similarly, |yj+1(t)| = 1 holds for some t ∈ (kT, (k + 1)T ). Let
t1 = min{τ | |yj−1(τ)| = 1, τ > kT} and t2 = min{τ | |yj+1(τ)| = 1, τ > kT}.
Then, by Lemma 6, we have

yj(t) = yj(kT ) ∈ {1,−1}, kT ≤ t ≤ max{t1, t2} (23)

which means (19) holds for kT ≤ t ≤ max{t1, t2}. If t1 ≤ t2 then yj−1(t1)yj(t1)
= −1 follows from Lemma 6 and

yj−1(t) = −yj(kT ) ∈ {1,−1}, t1 ≤ t ≤ t2

follows from (23) and Lemma 2. Hence we have |yj−1(t2)| = |yj(t2)| = |yj+1(t2)|
= 1. Then, by Lemma 5, (19) holds for t2 ≤ t ≤ t2+T where t2+T is apparently
greater than (k + 1)T . If t1 > t2, on the other hand, then yj(t2)yj+1(t2) = 1
follows from Lemma 6 and

yj+1(t) = yj(kT ) ∈ {1,−1}, t2 ≤ t ≤ t1

follows from (23) and Lemma 1. Hence we have |yj−1(t1)| = |yj(t1)| = |yj+1(t1)|
= 1. Then, by Lemma 5, (19) holds for t1 ≤ t ≤ t1+T where t1+T is apparently
greater than (k + 1)T . 2

Lemma 8 Let y(t) be an output trajectory of a CNN satisfying (6)–(8). Sup-
pose that (9) holds for i = 1, 2, . . . , n and 0 ≤ t ≤ kT . If |yj−1(kT )| < 1,
|yj(kT )| = 1 and |yj+1(kT )| = 1 then (19) holds for kT ≤ t ≤ (k + 1)T .

Proof. Let t1 = min{τ | |yj−1(τ)| = 1, τ > kT}. Then, from the assumption
and Lemma 6,

|yj−1(t)| < 1 ⇒ yj−2(t)yj(t) = −1, kT ≤ t ≤ (k + 1)T

and
|yj(t)| = 1, kT ≤ t ≤ t1 (24)

hold. If |yj+1(t1)| = 1 then it follows from Lemma 5 that (19) holds for t1 ≤
t ≤ t1 + T . Thus we will focus our attention on the case where |yj+1(t1)| < 1.

Let us assume for the moment that

|yj+1(t)| < 1 ⇒ yj(t)yj+2(t) = −1, kT ≤ t ≤ t1 (25)
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holds. Then, since |yj−1(t1−ε)| < 1, |yj(t1−ε)| = 1 and |yj+1(t1−ε)| < 1 hold
for sufficiently small ε > 0, it follows from Lemma 7 that (19) holds for t1−ε ≤
t ≤ t1 − ε + T . This and (24) imply that (19) holds for kT ≤ t ≤ (k + 1)T .
In the following, we will show that (25) indeed holds. Consider first the case
where |yj+2(kT )| = 1. In this case, by Lemma 5, (25) holds. Consider next the
case where |yj+2(kT )| < 1. Let t2 = min{τ | |yj+2(τ)| = 1, τ > kT}. Then it is
apparent that |yj+1(t)| = 1 for kT ≤ t ≤ t2. In addition, we have kT < t2 < t1
because otherwise yj+1(t) must satisfy |yj+1(t)| = 1 for kT ≤ t ≤ t1 which
contradicts |yj+1(kT )| < 1. Since |yj(t2)| = |yj+1(t2)| = |yj+2(t2)| = 1, we can
conclude from Lemma 5 that (25) holds. 2

Lemma 9 Let y(t) be an output trajectory of a CNN satisfying (6)–(8). Sup-
pose that (9) holds for i = 1, 2, . . . , n and 0 ≤ t ≤ kT . If |yj−1(kT )| = 1,
|yj(kT )| = 1 and |yj+1(kT )| < 1 then (19) holds for kT ≤ t ≤ (k + 1)T .

Proof of Lemma 9 is omitted because it is similar to that of Lemma 8.

5 Proof of Theorem 2

Proof of Theorem 2 is done in two steps. We first show that the output y(t)
always converges to a binary vector and that limt→∞ y(t) satisfies the condi-
tions 2), 3) and 4) in Definition 1. We next show that limt→∞ y(t) also satisfies
the condition 1) in Definition 1.

Lemma 10 Let y(t) be an output trajectory of a CNN satisfying (6)–(8).
Suppose that yi+1(t) = α ∈ {1,−1} for all t ≥ t0 where i ∈ {1, 2, . . . , n}. Then
the following statements are true: i) If α = 1 then there exists a t1(≥ t0) such
that yi(t) = −1 for all t ≥ t1, ii) If α = −1 and y1(t0) = y2(t0) = · · · =
yi(t0) = −1 then y1(t), y2(t), . . . , yi(t) remain constant for all t ≥ t0, and iii)
If α = −1 and yj(t0) > −1 holds for some j ∈ {1, 2, . . . , i} then there exists a
t1(≥ t0) such that yi(t) = 1 for all t ≥ t1.

Proof. Let us begin with the first statement. If yi(t0) = −1 then, by Lemma 2,
yi(t) = −1 holds for all t ≥ t0. If |yi(t0)| < 1 then, by Lemma 6, yi(t) becomes
−1 within a finite period of time and, by Lemma 2, yi(t) remains constant
thereafter. If yi(t0) = 1 then by letting j∗ = max{j | yj(t0) = −1, 0 ≤ j ≤ i−1}
we have

(yj∗(t0), yj∗+1(t0), yj∗+2(t0), . . . , yi(t0)) = (−1, γ, 1, . . . , 1)

where −1 < γ ≤ 1. By Lemmas 3 and 6, yj∗+1(t) decreases monotonically and
reaches −1 within a finite period of time. During this period, yj∗+2(t), yj∗+3(t),
. . . , yi(t) are constant due to Lemmas 1 and 6. After that yj∗+2(t) starts de-
creasing and reaches −1 within a finite period of time. During this period,
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yj∗+3(t), . . . , yi(t) are constant due to Lemmas 1 and 6. This process is re-
peated and finally yi(t) starts decreasing and reaches −1 within a finite pe-
riod of time. Once yi(t) becomes −1, it remains constant thereafter due to
Lemma 2.

Let us next prove the second statement. If y0(t0) = y1(t0) = · · · = yi(t0) = −1
then, by Lemma 1, y1(t), y2(t), . . . , yi(t) are constant for all t ≥ t0.

Let us finally prove the third statement. If yi(t0) = 1 then, by Lemma 2,
yi(t) = 1 holds for all t ≥ t0. If |yi(t0)| < 1 then, by Lemma 6, yi(t) becomes
1 within a finite period of time and, by Lemma 2, yi(t) remains constant
thereafter. If yi(t0) = −1 then yj(t) > −1 holds for some j ∈ {1, 2, . . . , i − 1}
and, by Theorem 1, there exists at least one j ∈ {1, 2, . . . , i − 1} satisfying
yj(t0) = 1. Let j∗ = max{j | yj(t0) = 1, 0 ≤ j ≤ i − 1}. Then we have

(yj∗(t0), yj∗+1(t0), yj∗+2(t0), . . . , yi(t0)) = (1, γ,−1, . . . ,−1)

where −1 ≤ γ < 1. By Lemmas 4 and 6, yj∗+1(t) increases monotonically and
reaches 1 within a finite period of time. During this period, yj∗+2(t), yj∗+3(t), . . . ,
yi(t) are constant due to Lemmas 1 and 6. After that yj∗+2(t) starts in-
creasing and reaches 1 within a finite period of time. During this period,
yj∗+3(t), . . . , yi(t) are constant due to Lemmas 1 and 6. This process is re-
peated and finally yi(t) starts increasing and reaches 1 within a finite period
of time. Once yi(t) becomes 1, by Lemma 2, it remains 1 thereafter. 2

Lemma 11 If a CNN satisfies (6)–(8) then its output y(t) always converges
to a binary vector which satisfies the conditions 2), 3) and 4) of Definition 1.

Proof. Since yn+1(t) is fixed to −1 for all t ≥ 0, we see from Lemma 10 that
y1(t) = y2(t) = · · · = yn(t) = −1 for all t ≥ 0 if y1(0) = y2(0) = · · · =
yn(0) = −1 and there exists a t1(≥ 0) such that yn(t) = 1 for all t ≥ t1
otherwise. In the latter case, we see again from Lemma 10 that there exists
a t2(≥ t1) such that yn−1(t) = −1 for all t ≥ t2. By applying this argument
to yn−2(t), yn−3(t), . . . , y1(t), we can conclude that y(t) becomes a constant
binary vector which satisfies the conditions 2), 3) and 4) of Definition 1 within
a finite period of time. 2

The final step to prove Theorem 2 is to show that the number of connected
components in limt→∞ y(t) is equal to that in y(0). We will do this by using not
the number of connected components but the number of transitions defined
below.

Definition 4 An index i ∈ {0, 1, . . . , n} is said to be transitional in y(t) if
|yi(t)| = 1 and yi(t)yi+1(t) < 1. The number of transitions in y(t), which is
denoted by NT(t), is defined to be the number of transitional indices.
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For example, if y(t) = (y1(t), y2(t), . . . , y8(t)) = (0.3, 1,−1,−1,−0.5, 1, 1,−1)
then NT(t) = 4 because i = 0, 2, 4 and 7 are transitional indices.

An important property of the number of transitions in y(t) is that it is equal
to twice the number of connected components in y(t) when y(t) is a binary
vector. Therefore, it suffices for us to show that limt→∞ NT(t) is equal to
NT(0). This is indeed true as shown in the following lemma.

Lemma 12 If a CNN satisfies (6)–(8) then the number of transitions NT(t)
is invariant for all t ≥ 0.

Proof. The value of NT(t) can change only when at least one component of
y(t) becomes gray from black/white or becomes black/white from gray. Let us
suppose that this occurs at t = t∗ for the set of indices M ⊆ {1, 2, . . . , n}. If
neither i nor i+1 belongs to M then the status of the index i, that is, whether
or not i is transitional in y(t), does not change around t = t∗. So the number
of transitional indices among those i such that neither i nor i + 1 belongs to
M does not change around t = t∗. If either i or i + 1 belongs M then the
status of the index i may change, but the total number of transitional indices
among those i such that either i or i + 1 belongs M does not change around
t = t∗ as shown below.

(1) If yi(t) becomes gray from black at t = t∗ then yi−1(t) and yi+1(t) must be
−1 and 1, respectively, at and just after t = t∗. Thus i− 1 is transitional
and i is not transitional in y(t) at and just after t = t∗.

(2) If yi(t) becomes gray from white at t = t∗ then yi−1(t) and yi+1(t) must be
1 and −1, respectively, at and just after t = t∗. Thus i− 1 is transitional
and i is not transitional in y(t) at and just after t = t∗.

(3) If yi(t) becomes black from gray at t = t∗ then yi−1(t) and yi+1(t) must be
1 and −1, respectively, just before and at t = t∗ Thus i−1 is transitional
and i is not transitional in y(t) just before t = t∗, while i − 1 is not
transitional and i is transitional in y(t) at t = t∗.

(4) If yi(t) becomes white from gray at t = t∗ then yi−1(t) and yi+1(t) must be
−1 and 1, respectively, just before and at t = t∗. Thus i−1 is transitional
and i is not transitional in y(t) just before t = t∗, while i − 1 is not
transitional and i is transitional in y(t) at t = t∗.

From these observations, we can conclude that the number of transitions NT(t)
does not change around t = t∗. This completes the proof. 2
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6 Concluding Remarks

We have derived sufficient conditions for 1-D CNNs to perform CCD by re-
stricting ourselves to locally regular 1-D CNNs. However, the local regularity
may not be necessarily required for CCD as shown in Example 2. Thus if we
remove this restriction, that is, if we allow adjacent cells to become gray at the
same time, then milder conditions may be obtained. Exploring this possibility
is one of the future problems.

Also, properties of the solutions of the inequalities (7) and (8) are not well
understood except in some special cases [21]. In fact, parameter regions in
Fig.2 were obtained by just solving (7) and (8) numerically. Further analysis
will give us deeper understanding of these two inequalities.

Finally, we should note that the conditions (6)–(8) do not imply the complete
stability of 1-D CNNs because in this paper we have considered only those
state trajectories x(t) with |xi(0)| ≥ 1 for all i. Complete stability analysis is
also one of the future problems.
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