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Abstract—A clustering coefficient control algorithm for
simple connected undirected graphs is studied. This algo-
rithm is based on the 2-switch which is a well-known graph
transformation that preserves the degree of each node. We
first derive an explicit formula for the amount of change in
the clustering coefficient caused by a single 2-switch. We
next show through computer simulations that the cluster-
ing coefficient of scale-free graphs can be controlled over a
wide range by using this algorithm.

1. Introduction

It is well known that most of large complex networks
in the real world have three common properties: 1) The
average path length is short; 2) The degree distribution fol-
lows the power law; 3) The clustering coefficient is high.
Watts-Strogatz (WS) model [1] and Barabási-Albert (BA)
model [2] are widely known as two important models for
complex networks, but these do not have all of the above
properties. The WS model has the first and third properties
but not the second one. On the other hand, the BA model
has the first and second properties but not the third one.
Hence there have been many attempts to construct network
models having all of the three properties [3–6].

Among those attempts, we focus our attention in this pa-
per on the 2-switch based approach [7,8]. The 2-switch is a
well-known graph transformation that preserves the degree
of each node [9]. Therefore, by applying a sequence of 2-
switches to a graph generated by the BA model, we may
obtain a graph having all of the above-mentioned proper-
ties. Furthermore, since the amount of change in the clus-
tering coefficient caused by a single 2-switch is very small,
the clustering coefficient may be finely controlled.

In this paper, we first derive an explicit formula for
the amount of change in the clustering coefficient caused
by a single 2-switch. We next show experimentally that
the clustering coefficient of scale-free graphs can be con-
trolled over a wide range by using an algorithm based on
2-switches, while the average path length is kept short.

2. Notations and Definitions

Throughout this paper, we consider only simple con-
nected undirected graph G = (V(G), E(G)) where V(G) =

{1, 2, . . . , n} is the set of nodes and E(G) = {e1, e2, . . . , em}
is the set of links. Each member of E(G) is an unordered
pair of distinct nodes and denoted by ek = {i, j}. For
a node i of G, the set of all nodes j such that {i, j} ∈
E(G) is called the neighborhood of the node i and de-
noted by Ni(G). If G has three nodes i, j and k such that
{{i, j}, { j, k}, {k, i}} ⊆ E(G) then we say that G has a tri-
angle with nodes i, j and k. When we add a link {i, j} to
G = (V(G), E(G)) such that {i, j} < E(G), we express this
operation as E(G)+{i, j}. Similarly, when we remove a link
{i, j} from G = (V(G), E(G)), we express this operation as
E(G) − {i, j}. The degree vector of a graph G is defined as

K(G) = (k1(G), k2(G), . . . , kn(G))

where ki(G) is the degree of node i. The clustering coeffi-
cient [1] of a graph G is defined as

C(G) =
1
n

∑
i∈V(G)

Ci(G)

where Ci(G) is the clustering coefficient of node i which is
defined as

Ci(G) =
{ ti(G)

ki(G)(ki(G)−1)/2 , if ki(G) ≥ 2
0, if ki(G) = 0, 1

where ti(G) represents the number of unordered pairs of
nodes { j, k} such that {{i, j}, { j, k}, {k, i}} ⊆ E(G), that is, the
number of triangles containing node i.

3. Control of Clustering Coefficient

3.1. 2-Switch Method

Let us begin with the following lemma.

Lemma 1 Let G = (V(G), E(G)) be a graph having four
nodes i, j, k, l such that {i, j}, {k, l} ∈ E(G) and {i, l}, { j, k} <
E(G). Let H be the graph obtained from G by removing
links {i, j} and {k, l} and adding links {i, l} and { j, k}. Then
G and H have the same degree vector.

It is clear from Fig. 1 that Lemma 1 holds true. The
transformation from one graph G into another graph H in
Lemma 1 is called the 2-switch in Reference [9]. So we
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G H

Figure 1: 2-switch

also use this terminology in the following. It is also shown
in Reference [9] that a sequence of 2-switches can trans-
form G into H if and only if K(G) = K(H).

The amount of change in the clustering coefficient
caused by a 2-switch is given in the following theorem.

Theorem 1 Let G and H be the same as in Lemma 1. Then
the difference of the clustering coefficient between G and H
is given by

C(H) −C(G)

=
1
n

( ∑
a∈Nil(G)

1
ka(G)(ka(G) − 1)/2

+
∑

b∈N jk(G)

1
kb(G)(kb(G) − 1)/2

−
∑

c∈Ni j(G)

1
kc(G)(kc(G) − 1)/2

−
∑

d∈Nkl(G)

1
kd(G)(kd(G) − 1)/2

+
|Nil(G)| − |Ni j(G)|
ki(G)(ki(G) − 1)/2

+
|Nk j(G)| − |Ni j(G)|
k j(G)(k j(G) − 1)/2

+
|Nk j(G)| − |Nkl(G)|
kk(G)(kk(G) − 1)/2

+
|Nil(G)| − |Nkl(G)|
kl(G)(kl(G) − 1)/2

)
(1)

where Ni j(G) = (Ni(G) ∩ N j(G)) ∩ (V(G) − {i, j, k, l}) and
N jk(G), Nkl(G), Nil(G) are defined similarly.

Proof: By the definition of the clustering coefficient and
Lemma 1, we have

C(H) −C(G) =
1
n

n∑
a=1

(Ca(H) −Ca(G))

=
1
n

n∑
a=1

ta(H) − ta(G)
ka(G)(ka(G) − 1)/2

=
1
n

( ∑
a∈V(G)−{i, j,k,l}

ta(H) − ta(G)
ka(G)(ka(G) − 1)/2

+
∑

a∈{i, j,k,l}

ta(H) − ta(G)
ka(G)(ka(G) − 1)/2

)
(2)

We first investigate the first term of (2) in more detail. Let a
be any node other than i, j, k and l. Then we easily observe
that the following statements hold true.

1. If a ∈ Ni j(G) then G has a triangle with nodes a, i and
j but H does not have this triangle.

2. If a ∈ Nkl(G) then G has a triangle with nodes a, k and
l but H does not have this triangle.

3. If a ∈ Nil(G) then H has a triangle with nodes a, i and
l but G does not have this triangle.

4. If a ∈ N jk(G) then H has a triangle with nodes a, j and
k but G does not have this triangle.

5. If G has a triangle with nodes a, b and c such that
{b, c} , {i, j}, {k, l}, {i, l}, { j, k} then H also has this
triangle because none of three links {a, b}, {b, c} and
{c, a} is removed by the 2-switch. Conversely, if H
has a triangle with nodes a, b and c such that {b, c} ,
{i, j}, {k, l}, {i, l}, { j, k} then G also has this triangle.

From these observations, we have

ta(H) − ta(G)
= INil(G)(a) + IN jk(G)(a) − INi j(G)(a) − INkl(G)(a)

where IA(a) is the indicator function of a subset A of V(G)
defined by

IA(a) =
{

1, if a ∈ A
0, if a < A

Therefore, the first term of the right-hand side of (2) can be
transformed as follows.∑

a∈V(G)−{i, j,k,l}

ta(H) − ta(G)
ka(G)(ka(G) − 1)/2

=
∑

a∈V(G)−{i, j,k,l}

1
ka(G)(ka(G) − 1)/2

×(INil(G)(a) + IN jk(G)(a) − INi j(G)(a) − INkl(G)(a))

=
∑

a∈Nil(G)

1
ka(G)(ka(G) − 1)/2

+
∑

a∈N jk(G)

1
ka(G)(ka(G) − 1)/2

−
∑

a∈Ni j(G)

1
ka(G)(ka(G) − 1)/2

−
∑

a∈Nkl(G)

1
ka(G)(ka(G) − 1)/2

Let us next consider the second term of (2). In the follow-
ing, we deal only with the case where a = i because the
remaining cases are similar. Since neither G nor H con-
tains the triangle with nodes i, j and l, all triangles in G and
H containing node i are divided into three disjoint classes:
1) Node j is contained; 2) Node l is contained; 3) Neither
node j nor node l is contained. For these classes of trian-
gles, the following statements hold true.
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1. G has a triangle with nodes i, j and c if and only if c ∈
Ni j(G), while H does not have such triangles because
{i, j} < E(H).

2. H has a triangle with nodes i, l and c if and only if c ∈
Nil(G), while G does not have such triangles because
{i, l} < E(G).

3. If G has a triangle with nodes i, b and c such that
j < {b, c} and l < {b, c} then H also has this trian-
gle because none of three links {i, b}, {b, c} and {c, i}
is removed by the 2-switch. Conversely, if H has a
triangle with nodes i, b and c such that j < {b, c} and
l < {b, c} then G also has this triangle.

From these observations, we have

ti(H) − ti(G) = |Nil| − |Ni j|

which completes the proof for the case where a = i. □

3.2. Algorithm for Controlling Clustering Coefficient

By applying a sequence of 2-switches to a graph, we can
finely control the clustering coefficient while keeping the
degree vector unchanged. To be more specific, if we repeat
two operations: 1) selecting four nodes i, j, k, l such that
the right-hand side of (1) is positive (negative, resp.) and
2) applying a 2-switch to the selected four nodes then the
clustering coefficient increases (decreases, resp.) gradually.
In addition, by using Theorem 1, it is easy to check whether
there exists a 2-switch that can increase (or decrease) the
clustering coefficient of a graph.

The idea of using 2-switches to control the clustering co-
efficient of graphs is not new (see, for example, [7] and [8]).
However, to the best of the authors’ knowledge, Theorem 1
is the first to provide an explicit formula for the amount of
change in the clustering coefficient caused by a 2-switch.

In order to confirm the effectiveness of Theorem 1, we
show that graphs such that not only they have the scale-free
property but also their clustering coefficients are as high (or
low) as possible can be generated by using 2-switches. A
simple algorithm for constructing such a graph is shown
in Fig. 2 where G, the input to the algorithm, is assumed
to be a graph generated by the BA model and D(i, j,k,l)(G)
represents the right-hand side of (1). It is important to note
that this algorithm terminates if and only if there is no 2-
switch to increase the clustering coefficient of Gt.

We first applied our algorithm to small graphs with 10
nodes generated by the BA model. Some of the results are
shown in Fig. 3. Although it is difficult to perceive the dif-
ference between the initial and final graphs, the clustering
coefficient is certainly increased by the algorithm to about
0.8 in all cases. We next applied our algorithm to larger
graphs with sizes ranging from 50 to 250 nodes. The results
are summarized in Fig. 4 where the horizontal axis repre-
sents the number of nodes, the vertical axis represents the
clustering coefficient, and ∆m is the number of links con-
necting a new node to the existing nodes in the BA model.

1: Set G0 to G
2: Initialize t to 0
3: Initialize (i, j, k, l) to (1, 2, 3, 4)
4: while (i, j, k, l) , (n − 2, n − 1, n, n + 1) do
5: if {i, j}, {k, l} ∈ E(Gt) and {i, l}, { j, k} < E(Gt) then
6: if D(i, j,k,l)(Gt) > 0 then
7: Apply 2-switch to Gt and let the obtained graph

be denoted by Gt+1
8: Add 1 to t
9: Reset (i, j, k, l) to (1, 2, 3, 4)

10: else
11: Update (i, j, k, l)
12: end if
13: end if
14: end while
15: return Gt and C(Gt)

Figure 2: Algorithm for constructing a graph that has the
same degree vector as G and a high clustering coefficient.

For each value of n ∈ {50, 60, . . . , 250} and ∆m ∈ {2, 3, 4},
the average of ten results is plotted in the graph. We see
from Fig. 4 that the clustering coefficient of the final graph
is about 0.8 in all cases, while the clustering coefficient of
the initial graph is between 0.07 and 0.28. Since the amount
of change in the clustering coefficient caused by a single 2-
switch is very small, this result means that a sequence of
2-switches can control the clustering coefficient of scale-
free graphs over a wide range.

Finally, we investigated the effect of our algorithm on the
average path length. The results are shown in Fig. 5 where
the horizontal axis represents the number of nodes and the
vertical axis represents the average path length. From these
results, we see that the average path length is increased by
our algorithm but still low.

By using 2-switches, we can also decrease the cluster-
ing coefficient while keeping the degree vector unchanged.
In order to verify the effectiveness of this approach, we ap-
plied an algorithm similar to the one in Fig. 2 to graphs with
sizes ranging from 50 to 250 generated by the BA model.
We then observed that the clustering coefficient of the gen-
erated graph was exactly or nearly zero in all cases.

4. Conclusions

We have studied a 2-switch based clustering coefficient
control algorithm for undirected graphs. We first derived an
explicit formula for the amount of change in the clustering
coefficient caused by a single 2-switch. We next applied the
algorithm to graphs generated by the BA model with sizes
ranging from 50 to 250 nodes. Experimental results show
that the clustering coefficient can be finely controlled over a
wide range between about 0 and 0.8, while the average path
length is kept short. This means that the 2-switch based
algorithm is a useful tool for constructing graphs having
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(a)

(b)

(c)

Figure 3: Results of the application of our algorithm to
small graphs. The initial and final graphs are shown at left
and right, respectively. The clustering coefficients are (a)
0.453333 (left) and 0.793333 (right), (b) 0.618333 (left)
and 0.801667 (right), (c) 0.694524 (left) and 0.790714
(right).

the three properties mentioned in Section 1.
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Figure 4: Results of the application of our algorithm to
larger graphs. (a) Clustering coefficients of initial graph
generated by the BA model. (b) Clustering coefficient of
the final graph.
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Figure 5: Effect of our algorithm on the average path
length. (a) Average path length of the initial graph. (b)
Average path length of the final graph.
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