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Abstract—How to maintain the connectivity is an im-
portant issue in mobile agent networks. In this paper, we
propose a new continuous-time algorithm for calculating
the algebraic connectivity of the graph representing the in-
teraction between agents. This is simpler than the conven-
tional algorithm in the sense that less multiplications are
needed. We study the dynamical behavior of the proposed
algorithm and prove that it can find the algebraic connec-
tivity of the graph for almost all initial conditions.

1. Introduction

Mobile agent networks have found many applications
such as target tracking, formation control and environmen-
tal monitoring [1]. Each agent in a network not only moves
but also interacts with other agents to collect information
obtained by sensors. It is thus an important issue for mo-
bile agent networks how to maintain their connectivity.

A promising approach to maintaining the connectivity is
to compute the second smallest eigenvalue of the Lapla-
cian, or the algebraic connectivity [2], of the graph repre-
senting the interaction between agents. Since this quantity
is positive if and only if the graph is connected, the connec-
tivity is maintained if agents move so that its value is kept
positive. Recently, Yang et al. [3] proposed a continuous-
time algorithm for calculating the algebraic connectivity of
the graph. Their algorithm has an advantage that the calcu-
lation can be performed in a decentralized manner.

In this paper, we propose a new continuous-time algo-
rithm for calculating the algebraic connectivity of the graph
representing the interaction between agents. The proposed
algorithm is simpler than the one of Yang et al. in the sense
that less multiplications are needed. The reduction of the
number of multiplications is important for implementation.
We study dynamical properties of the proposed algorithm
theoretically. In particular, we prove that the proposed al-
gorithm can find the algebraic connectivity of the graph for
almost all initial conditions.

2. Algebraic Connectivity of Multi-Agent Networks

We consider a network of n agents in which each agent
can interact only with a small number of other agents. The
interaction between agents can be expressed by a simple

undirected graph G = (V, E) where V = {1, 2, . . . , n} is
the set of vertices representing n agents and E is the set
of edges which are represented as unordered pairs of dis-
tinct vertices. A pair {i, j} is a member of E if and only if
agents i and j can interact with each other.

The adjacency matrix A = (ai j) and the degree matrix
D = diag(d1, d2, . . . , dn) of G are defined by

ai j =

1, if {i, j} ∈ E
0, otherwise

and

di =

n∑
j=1

ai j, i = 1, 2, . . . , n

respectively. With these notations, the Laplacian matrix L
of G can be defined by L = D − A. Let λ1, λ2, . . . , λn be
eigenvalues of L. Since L is real and symmetric, its eigen-
values are all real. In the following, we assume without loss
of generality that λ1 ≤ λ2 ≤ · · · ≤ λn. Then the following
statements hold true.

1. λ1 = 0 and 1 = (1, 1, . . . , 1)T is the eigenvector corre-
sponding to λ1.

2. λ2 > 0 if and only if G is connected.

It follows from the second property that we can determine
whether the graph G is connected or not by calculating the
second smallest eigenvalue λ2 of L. In particular, the value
of λ2 plays an important role for maintaining the connec-
tivity of mobile agent networks. In algebraic graph theory,
the second smallest eigenvalue of L is called the algebraic
connectivity [2] of the graph G. So we hereafter use this
terminology.

Throughout this paper, we assume for simplicity that the
algebraic connectivity λ2 is simple, that is, λ2 is not a re-
peated eigenvalue of L. This implies that λ2 is positive.

Since L is real and symmetric, there exists an orthonor-
mal matrix P such that

PLPT = diag(0, λ2, . . . , λn) ≜ L∗ .

The i-th column of PT is denoted by pi. Then PT is ex-
pressed as PT = (p1 p2 · · · pn). Furthermore, the j-th ele-
ment of pi is denoted by pi j. This notation is very natural
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because the (i, j) element of P is denoted by pi j. Since λ2
is simple, p2 is an eigenvector of L corresponding to λ2.
Also, p1 is either 1√

n 1 or − 1√
n 1.

3. Previous Result

Yang et al. [3] proposed a continuous-time algorithm for
calculating the algebraic connectivity of the graph repre-
senting the interaction between agents. In this algorithm,
the i-th agent changes its state xi according to

ẋi = −k1

1
n

n∑
j=1

x j

−k2

n∑
j=1

ai j(xi− x j)−k3

1
n

n∑
j=1

x2
j − 1

 xi

(1)
where k1, k2 and k3 are positive constants. By introducing
x = (x1, x2, . . . , xn)T, we can rewrite (1) in a vector form as

ẋ = −k1

1
n

n∑
j=1

x j

 1 − k2Lx − k3

1
n

n∑
j=1

x2
j − 1

 x . (2)

In the above differential equations, it is assumed that the
averages 1

n
∑n

j=1 x j and 1
n
∑n

j=1 x2
j can be obtained instan-

taneously, while each agent cannot interact with all of
the other agents in general. However, this assumption
can be satisfied approximately by using a consensus algo-
rithm [1, 4] with a much smaller time constant than the
main algorithm (2).

Yang et al. analyzed the dynamical behavior of (2) and
derived the following theorem.

Theorem 1 ([3]) Suppose that the initial value x(0) satis-
fies pT

2 x(0) , 0. Then any solution x(t) of (2) converges to
either µp2 or −µp2 where µ is a positive constant given by

µ =

√
n(k3 − k2λ2)

k3

if and only if positive constants k1, k2 and k3 satisfy the
following conditions.

k1 > k2λ2 (3)
k3 > k2λ2 (4)

From Theorem 1 we can easily see that

lim
t→∞

k3

k2

1 − 1
n

n∑
i=1

xi(t)2

 = k3

k2

(
1 − µ

2

n

)
= λ2

which means that the algebraic connectivity λ2 can be ob-
tained from the solution x(t) of (2).

4. New Algorithm and its Convergence

4.1. Proposed Algorithm

In this paper, we propose a new continuous-time algo-
rithm described by

ẋ = −k1

1
n

n∑
j=1

x j

 1 − k2Lx − k3

1
n

n∑
j=1

|x j| − 1

 x . (5)

This algorithm is identical with (2) except the third term
of the right-hand side. To be more specific, x2

j in (2) is re-
placed with |x j| in (5). It is interesting from a theoretical
point of view to see whether or not this replacement will
affect the convergence of the algorithm. Also, this replace-
ment is very important from a practical point of view. In
fact, (5) can be implemented by a simpler circuit than (2)
because the former requires less multipliers than the latter.

Introducing a new variable y = (y1, y2, . . . , yn)T which is
defined by y ≜ Px, (5) can be rewritten as

ẏ = −k1diag(1, 0, . . . , 0)y − k2L∗y − k3

(
∥PTy∥1

n
− 1

)
y

= −k2L̃∗y − k3

(
∥PTy∥1

n
− 1

)
y (6)

where L̃∗ = diag(k1/k2, λ2, λ3, . . . , λn). In the following,
the i-th diagonal element of L̃∗ is denoted by λ̃i for the sake
of notational simplicity, that is, λ̃1 = k1/k2 and λ̃i = λi for
i = 2, 3, . . . , n.

4.2. Equilibrium Points and Their Stability

The goal of this subsection is to specify all equilibrium
points of (6) and their local stability.

Lemma 1 Suppose that diagonal elements of L̃∗ are all dis-
tinct. Then the set of all equilibrium points of (6) is given
by {0} ∪ {±yi | i ∈ I} where I ≜ {i | k3 > k2λ̃i} ⊆ {1, 2, . . . , n}
and yi (i ∈ {1, 2, . . . , n}) is the vector such that the j-th
element is given by

(yi) j =

{
n(k3 − k2λ̃i)/(k3∥pi∥1), if j = i
0, otherwise

In particular, y2 and −y2 are equilibrium points of (6) if and
only if (4) is satisfied.

Proof: It is apparent from (6) that 0 is an equilibrium point.
Setting the right-hand side of (6) to zero, we have

L̃∗y = −k3

k2

(
∥PTy∥1

n
− 1

)
y (7)

which means that other equilibrium points are restricted to
eigenvectors of L̃∗. Let yi be an eigenvector corresponding
to the i-th eigenvalue λ̃i of L̃∗. Then the i-th element (yi)i

takes a nonzero value, say αi, and other elements vanish.
In the following, we assume without loss of generality that
αi is positive. Substituting y = yi = (0, . . . , 0, αi, 0, . . . , 0)T

into (7), we have

|αi| = αi =
n(k3 − k2λ̃i)

k3∥pi∥1
. (8)

Therefore, the eigenvector yi satisfies (7) if and only if the
right-hand side is positive, that is, k3 > k2λ̃i. This com-
pletes the proof for the first part. The second part is obvious
from the first part. □
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Theorem 2 Suppose that diagonal elements of L̃∗ are all
distinct. If positive constants k1, k2 and k3 satisfy (3) and
(4) then y2 and −y2 are asymptotically stable equilibrium
points of (6) and all other equilibrium points are unstable.
Proof: We first show that 0 is unstable. Let us consider the
solution y(t) of (6) starting from (0, ϵ2, 0, . . . , 0)T where ϵ2
is a positive constant. Since yi(t) = 0 holds for all t ≥ 0 and
all i except 2, it suffices for us to analyze the dynamical
behavior of y2(t) which obeys the differential equation:

ẏ2 =

(
k3 − λ2k2 −

k3∥p2∥1
n
|y2|

)
y2 . (9)

Note that k3 − λ2k2 is positive from the assumption (4).
Hence the quantity in the parenthesis of the right-hand side
is positive if and only if |y2| < n(k3 − λ2k2)/(k3∥p2∥1). This
means that y2(t) moves away from 0 if its initial value ϵ2 is
sufficiently small. Therefore, the origin 0 is unstable.

We next assume that k3 − k2λ̃1 = k3 − k1 > 0 in addition
to (3) and (4) and show that y1 is an unstable equilibrium
points of (6). Let us consider the solution y(t) of (6) starting
from (α1 + ϵ1, ϵ2, 0, . . . , 0)T where ϵ1 and ϵ2 are positive
constants. Since yi(t) = 0 holds for all t ≥ 0 and all i except
1 and 2, it suffices for us to analyze the dynamical behavior
of y1(t) and y2(t) which obey the set of differential equation:

ẏ1 = −k1y1 − k3

(
∥y1 p1 + y2 p2∥1

n
− 1

)
y1

ẏ2 = −k2λ2y2 − k3

(
∥y1 p1 + y2 p2∥1

n
− 1

)
y2

Here, we should note that

−k2λ2 − k3

(
∥y1 p1 + y2 p2∥1

n
− 1

)
≥ (k1 − k2λ2) − k3

n
(∥(y1 − α1)p1∥1 + ∥y2 p2∥1) .

Since k1 − k2λ2 is positive from the assumption (3), the
above quantity is positive if and only if |y1 − α1| × ∥p1∥1 +
|y2| × ∥p2∥1 < n(k1 − k2λ2)/k3. This means that y2(t) moves
away from 0 if ϵ1 and ϵ2 are sufficiently small. Therefore,
the equilibrium point y1 is unstable.

In the same way as above, we can show that the equi-
librium points yi and −yi (i = 3, 4, . . . , n) are, if they exist,
unstable.

We finally show that y2 is stable. It is obvious that the
right-hand side of (6) is locally Lipschitz continuous. Let

V(y) ≜
1
2

(y − y2)TC(y − y2)

where C = diag(c1, c2, . . . , cn) is a positive diagonal matrix
of which the diagonal elements are given by

c1 =
n2

k1 − k2λ2
(10)

c2 =
1

n(k3 − k2λ2)
(11)

ci =
n2

k2(λi − λ2)
(i = 3, 4, . . . , n) (12)

Then we immediately see that V(y2) = 0 and V(y) > 0
for all y , y2. We will show in the following that there
exists a domain D containing y2 such that V̇(y) < 0 for
all y ∈ D − {y2}. If this is true, we can conclude from [5,
Theorem 3.1] that y2 is asymptotically stable.

Let us define two index sets J1 and J2 by

J1 = { j | p2 j = 0}
J2 = {1, 2, . . . , n} − J1

If y is sufficiently close to y2, that is, y2 is sufficiently close
to α2 and |yi| is sufficiently small for all i except 2, then
∥PTy∥1 can be rewritten as follows:

∥PTy∥1 = y2∥p2∥1 + b

where

b = b(y1, y3, . . . , yn)

=
∑
j∈J1

∣∣∣∣∣∣∣y1 p1 j +

n∑
i=3

yi pi j

∣∣∣∣∣∣∣
+

∑
j∈J2

sgn(p2 j)

y1 p1 j +

n∑
i=3

yi pi j

 . (13)

The time derivative of V(y) along the solution of (6) around
y2 can be calculated as follows:

V̇(y) = (y − y2)TC
{
−k2L̃∗y − k3

(
∥PT y∥1

n
− 1

)
y
}

= (y − y2)TC
{
−k2L̃∗y − k3

(
y2∥p2∥1 + b

n
− 1

)
y
}

= −c1

(
k1 − k3 +

k3∥p2∥1α2

n

)
y2

1

− c2

(
k2λ2 − k3 +

2k3∥p2∥1α2

n

)
(y2 − α2)2

− c2

(
k2λ2 − k3 +

k3b
n
+

k3∥p2∥1α2

n

)
α2(y2 − α2)

−
n∑

i=3

ci

(
k2λi − k3 +

k3∥p2∥1α2

n

)
y2

i

+ O(∥y − y2∥31) (14)

Since k3∥p2∥1α2/n = k3 − k2λ2 follows from (8), (14) can
be rewritten as

V̇(y) = −c1(k1 − k2λ2)y2
1 − c2(k3 − k2λ2)(y2 − α2)2

− c2
k3b
n
α2(y2 − α2) −

n∑
i=3

cik2(λi − λ2)y2
i

+ O(∥y − y2∥31)
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Since |b| ≤ 2n(|y1| +
∑n

i=3 |yi|) follows from (13) and α2 ≤
n(k3 − k2λ2)/k3 follows from (8), we further have

V̇(y) ≤ −c1(k1 − k2λ2)y2
1 − c2(k3 − k2λ2)(y2 − α2)2

+ 2c2n(k3 − k2λ2)|y2 − α2|
|y1| +

n∑
i=3

|yi|


−
n∑

i=3

cik2(λi − λ2)y2
i + O(∥y − y2∥31) (15)

Substituting (10)–(12) into the right-hand side, we have

V̇(y) ≤ −n2|y1|2 −
1
n
|y2 − α2|2

+ 2|y2 − α2|
|y1| +

n∑
i=3

|yi|
 − n2

n∑
i=3

|yi|2

+ O(∥y − y2∥31)
= − δTFδ + O(∥δ∥31)

where δ = (|y1|, |y2 − α2|, |y3|, . . . , |yn|)T and

F =



n2 −1 0 0 · · · 0
−1 1/n −1 −1 · · · −1
0 −1 n2 0 · · · 0

0 −1 0 n2 . . .
...

...
...

...
. . .

. . . 0
0 −1 0 · · · 0 n2


.

Here we can easily show that F is positive definite by us-
ing Sylvester’s criterion. Therefore, V̇(y) is negative if y is
sufficiently close to y2. □

4.3. Global Convergence

We will show in this subsection that for almost all ini-
tial conditions the solution of (6) converges to either y2 or
−y2. This implies that the solution of (5) converges to ei-
ther α2 p2 = {n(k3 − k2λ2)/(k3∥p2∥1)}p2 or −α2 p2. As in the
case of (2), the algebraic connectivity λ2 can be obtained
from the solution x(t) of (5) because the following holds.

lim
t→∞

k3

k2

(
1 − ∥x(t)∥1

n

)
=

k3

k2

(
1 − α2∥p∥1

n

)
= λ2

Lemma 2 Let y(t) = (y1(t), y2(t), . . . , yn(t))T be any solu-
tion of (6). Then |yi(t)| ≤ max{|yi(0)|, n} holds for all t ≥ 0
and all i ∈ {1, 2, . . . , n}.
Proof: If |yi(t)| ≥ n then we have ∥PTy(t)∥1 ≥ ∥PTy(t)∥2 =
∥y(t)∥2 ≥ n. Substituting this inequality into (6), we have

ẏi(t)
{
≤ −k2λ̃iyi(t) ≤ −k2λ̃in < 0, if yi(t) ≥ n
≥ −k2λ̃iyi(t) ≥ k2λ̃in > 0, if yi(t) ≤ −n

Therefore, if |yi(0)| ≥ n then |yi(t)| decreases monotonically
as long as |yi(t)| ≥ n and reaches n at some time t0 ∈ [0,∞).
Furthermore, |yi(t)| < n holds for all t ≥ t0. □

The convergence property of the proposed algorithm (5)
is stated as follows.

Theorem 3 Suppose that diagonal elements of L̃∗ are all
distinct. Suppose also that the initial value y(0) is not an
equilibrium point of (6) and y2(0) , 0. Then any solution
y(t) of (6) converges to either y2 or −y2 if positive constants
k1, k2 and k3 satisfy the conditions (3) and (4).

Proof: Let i be any member of {1, 2, . . . , n}−{2}. If yi(0) = 0
then yi(t) = 0 for all t ≥ 0. If yi(0) , 0 then y2(t)/yi(t) goes
to infinity because

d
dt

ln
∣∣∣∣∣y2

yi

∣∣∣∣∣ = ẏ2

y2
− ẏi

yi
= k2(λ̃i − λ2) > 0 .

On the other hand, by Lemma 2, y2(t) is bounded for all
t ≥ 0. These two facts imply that yi(t) converges to zero.
Therefore, for sufficiently large t, y2(t) obeys the differen-
tial equation (9). It is easily seen that the solution y2(t) of
(9) converges either α2 or −α2. Therefore, the solution y(t)
of (6) converges to either y2 or −y2. □

5. Conclusion

We have proposed a new continuous-time algorithm for
calculating the algebraic connectivity of mobile agent net-
works. The proposed algorithm is simpler than the one of
Yang et al. but has the same convergence property. In fu-
ture works, we will study the dynamics of the proposed
algorithm for the case where the averages 1

n
∑n

i=1 xi and
1
n
∑n

i=1 |xi| are not obtained in real-time but estimated with
a continuous-time consensus algorithm.
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