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Abstract—A multiplicative update for solving convex
quadratic programming problems with nonnegativity con-
straints, which was proposed by Shaet al., has three advan-
tages: 1) nonnegativity of solutions is automatically satis-
fied, 2) no parameter tuning is needed, and 3) implemen-
tation is easy because of simple update formula. However,
the global convergence of the update is not always guar-
anteed. In this paper, we propose a modified version of
the multiplicative update and prove its global convergence
without any assumption on the problem. We also show ex-
perimentally that our modification affects neither the com-
putation time nor the number of iterations

1. Introduction

Problems of minimizing an objective function under
nonnegativity constraints arise in various fields. For ex-
ample, Nonnegative Matrix Factorization (NMF) [1, 2],
which is to approximate a given large nonnegative ma-
trix by the product of two small nonnegative matrices and
has attracted remarkable attention in the fields of machine
learning, signal processing and so on, is formulated as an
optimization problem with nonnegativity constraints. In
this paper, as an important class of these problems, we con-
sider convex quadratic programming (QP) problems with
nonnegativity constraints.

Shaet al. [3] recently proposed a multiplicative update
for convex QP problems with nonnegativity constraints,
which is based on multiplicative updates for NMF devel-
oped by Lee and Seung [1]. The algorithm of Shaet al.has
three main advantages: 1) nonnegativity of variables is au-
tomatically satisfied, 2) no parameter tuning is needed, and
3) implementation is easy because of simple update for-
mula. Furthermore, under some assumptions on the QP
problem and the initial solution, Shaet al.proved that any
sequence of solutions generated by their update converges
to the unique optimal solution.

In this paper, we propose a modified version of the mul-
tiplicative update of Shaet al. and prove its global conver-
gence without any assumption on the QP problem and the
initial solution. We also construct an multiplicative update
algorithm which always stops within a finite number of it-
erations after finding an approximate solution. We finally

show experimentally that our modification affects neither
the computation time nor the number of iterations.

2. Multiplicative Update Proposed by Sha et al.

We consider optimization problems of the form:

minimize F(v) = 1
2vTAv + bTv

subject to v ≥ 0
(1)

where v = [v1, v2, . . . , vn]T ∈ Rn is a variable vector,
A = [Ai j ] ∈ Rn×n is a positive definite constant matrix, and
b = [b1, b2, . . . , bn]T ∈ Rn is a constant vector. Through-
out this paper, the inequality between two vectors means
componentwise inequality. Based on the idea behind the
development of multiplicative updates for NMF [1], Shaet
al. [3] recently proposed a multiplicative update for solv-
ing the optimization problem (1). Letvk = [vk

1, v
k
2, . . . , v

k
n]T

be the solution afterk iterations. Then their update is ex-
pressed as follows:

vk+1
i =

−bi +

√
b2

i + 4ak
i c

k
i

2ak
i

vk
i (2)

whereak
i = (A+vk)i , ck

i = (A−vk)i , A+ = [A+i j ] is defined by

A+i j =

{
Ai j , if Ai j > 0
0, otherwise

andA+ = [A−i j ] is defined by

A−i j =

{
|Ai j |, if Ai j < 0
0, otherwise

It is easily seen that the right-hand side of (2) is positive
if vk

i > 0 and the following assumption is satisfied.

Assumption 1 The i-th row ofA has one or more negative
elements whenever bi ≥ 0.

Therefore, if the initial solutionv0 is positive and Assump-
tion 1 is valid then any sequence{vk}∞k=0 generated by (2)
satisfiesvk > 0 for all k.

Shaet al.studied in detail the convergence properties of
(2) under Assumption 1 and proved the following theorem
by using Zangwill’s global convergence theorem [6, 7].
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Theorem 1 ([3]) Suppose that the origin is not the opti-
mal solution of (1) and the initial vectorv0 is positive and
F(v0) < F(0) = 0. Then the sequence{vk}∞k=0 converges to
the optimal solution of (1).

Even if Assumption 1 is satisfied and the initial solution
v0 is positive, the limit of the sequence{vk}∞k=0 may not be
a positive vector. Therefore, the update must be defined
for all nonnegative vectorsvk in order to apply Zangwill’s
global convergence theorem. However, in the update (2), it
is not clear how the case whereak

i = 0 is dealt with. As a
possible solution, we consider the modified update:

vk+1
i =


−bi+
√

b2
i +4ak

i ck
i

2ak
i

vk
i , if vk

i > 0

0, if vk
i = 0

(3)

Let us suppose that off-diagonal elements in thei-th row
andi-th column ofA are all zero. ThenAii must be positive
becauseA is assumed to be positive definite. Let us further
suppose thatbi is negative. In this case, we have

−bi +

√
b2

i + 4ak
i c

k
i

2ak
i

vk
i =

−bi +

√
b2

i + 0

2Aii vk
i

vk
i

=
−bi

Aii
> 0

for all vk
i > 0 and hence the update (3) can be rewritten as

vk+1
i =

{
−bi/Aii , if vk

i > 0
0, if vk

i = 0

This means that the update (3) is not continuous in the re-
gion {v ∈ Rn | v ≥ 0, vi = 0}, and hence Zangwill’s global
convergence theorem cannot be applied to (3).

3. Modified Multiplicative Update and Its Global Con-
vergence

In order to avoid the problem described in the previous
section, we propose a modified multiplicative update:

vk+1
i = max

ϵ,
−bi +

√
b2

i + 4ak
i c

k
i

2ak
i

vk
i

 (4)

whereϵ is any positive constant. Note that the same idea is
used in Reference [4, 5] in which a modified multiplica-
tive update for NMF is proposed. It is apparent that if
vk > 0 then the right-hand side is well-defined and we have
vk+1 ≥ ϵ1 where1 ∈ Rn is the vector whose elements are
all one. Therefore, if we choose the initial solutionv0 such
thatv0 ≥ ϵ1 then the sequence of solutions{vk}∞k=0 gener-
ated by (4) satisfiesvk ≥ ϵ1 for all k. We thus consider in
the following the optimization problem

minimize F(v) = 1
2vTAv + bTv

subject to v ≥ ϵ1 (5)

instead of (1). Note that (5) has the unique optimal solution
for any positive constantϵ and it approaches the optimal
solution of (1) asϵ goes to zero. As is well known in opti-
mization theory,v ∈ [ϵ,∞)n is the optimal solution of (5) if
and only if the KKT conditions

Av + b ≥ 0 (6)

(Av + b)i(−vi + ϵ) = 0, i = 1,2, . . . , n (7)

are satisfied.
One of the main results of this paper is given by the fol-

lowing theorem.

Theorem 2 For any positive constantϵ and the initial so-
lution v0 ∈ [ϵ,∞)n, the sequence{vk}∞k=0 generated by the
modified multiplicative update (4) has at least one conver-
gent subsequence and they converge to the unique optimal
solution of (5).

Note that this theorem does not require any assumption
on A andb except thatA is positive definite. Proof of this
theorem will be given in the next section.

We next develop a multiplicative update algorithm which
always stops within a finite number of iterations. The stop-
ping criterion we employ for the algorithm is given by

Av + b ≥ −δ11 (8)

|(Av + b)i(−vi + ϵ)| < δ2, i = 1,2, . . . , n (9)

whereδ1 andδ2 are positive constants. As is easily seen,
this criterion is a relaxed version of the KKT conditions (6)
and (7). The proposed algorithm is described as follows.

Algorithm 1

Step 1: Setk = 0 and choose the initial solutionv0 such
thatv0 ≥ ϵ1.

Step 2: Find vk+1 by the modified update (4).

Step 3: If v = vk+1 satisfies the stopping criterion (8) and
(9) then stop. Otherwise, add 1 tok and go to Step 2.

From Theorem 1 and the continuity of the stopping cri-
terion, we have the following theorem.

Theorem 3 For any positive constantsϵ, δ1 andδ2, Algo-
rithm 1 stops within a finite number of iterations.

Proof: Let {vkl }∞l=0 be any convergent subsequence of the
sequence{vk}∞k=0 generated by the update (4). By Theo-
rem 1, it converges to the unique optimal solution of (5).
We therefore have

lim
l→∞

(
Avkl + b

)
≥ 0

lim
l→∞

{
(Avkl + b)i(−vkl

i + ϵ)
}
= 0, i = 1,2, . . . , n

In other words, for any positive constantsδ1 andδ2, there
exists an positive integerL such that

Avkl + b ≥ −δ11

|(Avkl + b)i(−vkl
i + ϵ)| ≤ δ2, i = 1, 2, . . . ,n

for all l ≥ L. This completes the proof. �
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4. Proof of Theorem 1

We will prove Theorem 1 by using the same approach as
Shaet al. [3], that is, we apply Zangwill’s global conver-
gence theorem [6, 7] to the update (4). We hereafter express
(4) asvk+1 = M(vk) for notational simplicity, whereM is
a mapping from [ϵ,∞)n into itself. In order to prove The-
orem 2 by using Zangwill’s global convergence theorem,
it suffices for us to show that the mappingM satisfies the
following conditions.

(i) For all k ≥ 0, vk belongs to a compact set.

(ii) The mappingM satisfies

(a) v , v∗ ⇒ F(M(v)) < F(v)

(b) v = v∗ ⇒ F(M(v)) ≤ F(v)

(iii) The mappingM is continuous for all vectorsv ∈
[ϵ,∞)n except the unique optimal solution of (5).

Lemma 1 The mappingM is continuous in [ϵ,∞)n.

Lemma 2 If v ∈ [ϵ,∞)n is not a fixed point of the mapping
M thenF(M(v)) < F(v).

Proof: For givenv ∈ [ϵ,∞)n, we consider the optimization
problem

minimize G(u, v)
subject to u ≥ ϵ1 (10)

where

G(u, v) =
1
2

n∑
i=1

(A+v)i

vi
u2

i

− 1
2

n∑
i=1

n∑
j=1

A−i j viv j

(
1+ log

uiu j

viv j

)
+

n∑
i=1

biui

which is well defined in [ϵ,∞)n and continuous everywhere
in [ϵ,∞)n. The functionG(u, v) is an auxiliary function of
F(v), that is, it satisfies

F(u) ≤ G(u, v), ∀u, v ≥ ϵ1 (11)

F(v) = G(v, v), ∀v ≥ ϵ1 (12)

(see Reference [3] for details). Also, sinceG(u, v) can be
rewritten as

G(u, v) =
n∑

i=1

Gi(ui) −
1
2

vTA−v

where

Gi(ui) =
1
2

(A+v)i

vi
u2

i − (A−v)ivi log
ui

vi
+ biui

the optimization problem (10) is decomposed inton inde-
pendent optimization problems of the form:

minimize Gi(ui)
subject to ui ≥ ϵ

(13)

The objective functionGi(ui) is strictly convex in [ϵ,∞)
because

G′′i (ui) =
(A+v)i

vi
+

(A−v)ivi

u2
i

> 0 .

Thus the optimal solutionu∗i of (13) is uniquely determined
by considering the solution of the equationG′i (ui) = 0, and
is given by

u∗i = max

ϵ,
−bi +

√
b2

i + 4(A+v)i(A−v)i

2(A+v)i
vi

 .
This implies that the optimal solution of (10) is given by
M(v). Therefore, we haveG(M(v), v) < G(v, v) if M(v) ,
v. From this inequality and the properties (11) and (12), we
have

F(M(v)) ≤ G(M(v), v) < G(v, v) = F(v)

which completes the proof. �

Lemma 3 v ∈ [ϵ,∞)n is a fixed point of the mappingM if
and only if it is the unique optimal solution of (5).

Proof: A vector v ∈ [ϵ,∞)n is a fixed point ofM if and
only if

−bi +

√
b2

i + 4(A+v)i(A−v)i

2(A+v)i
vi

{
≤ vi , if vi = ϵ
= vi , if vi > ϵ

,

i = 1,2, . . . ,n

which can be rewritten as

(A+v)i + bi − (A−v)i

{
≥ 0, if vi = ϵ
= 0, if vi > ϵ

, i = 1,2, . . . ,n

Noting that (A+v)i+bi−(A−v)i = (Av+b)i , we see that this
is equivalent to (6) and (7). Sincev ∈ [ϵ,∞)n is the optimal
solution of (5) if and only if (6) and (7) are satisfied, we
can conclude thatv ∈ [ϵ,∞)n is a fixed point ofM if and
only if v is the unique optimal solution of (5). �

From Lemmas 2 and 3, we have the following lemma.

Lemma 4 If v ∈ [ϵ,∞)n is the optimal solution of (5) then
F(M(v)) = F(v) holds becausev is the fixed point ofM.
Otherwise,F(M(v)) < F(v) holds.

Lemma 5 For any initial solutionv0 ∈ [ϵ,∞)n, the se-
quence{vk}∞k=0 generated by (4) belongs to the compact set
S = {v ∈ Rn | v ≥ ϵ1, F(v) ≤ F(v0)}.

Proof: It follows from Lemma 4 thatF(vk) ≤ F(v0) holds
for all k, that is,vk ∈ S for all k. SinceF(v) is continuous
and strongly convex, the level set{v ∈ Rn | F(v) ≤ F(v0)} is
compact. ThereforeS is also compact. �

Lemmas 1, 4 and 5 mean that all of the three condi-
tions in Zangwill’s global convergence theorem are satis-
fied. This completes the proof of Theorem 1.
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Figure 1: Comparison of computation time between the
original (green) and modified (red) updates.

5. Numerical Experiments

In order to examine the effect of the modifications of the
multiplicative update and the optimization problem on the
computational cost, we conducted numerical experiments.
We implemented both the original update (2) and the mod-
ified one (4) with Scilab 5.3.3 and applied them to con-
vex QP problems with nonnegativity constraints with size
n from 50 to 500 on a Windows PC with Intel Core i5
2.53GHz CPU and 2GB RAM. The effect is evaluated by
the computation time and the number of iterations which
are obtained by computing the averages over 30 randomly
generated problems. In all experiments, the positive con-
stantϵ was set to 10−4, and the positive constantsδ1 andδ2
are set to 10−5.

Figure 1 shows the computation time of the original and
modified updates for QP problems with various sizes. Al-
though the modified update requires an additional opera-
tion, i.e., the max operation, no significant difference can
be seen from the results. Moreover, whenn is between 350
and 450, the modified update is a little bit faster than the
original. Unfortunately, the reason for this is not clear to
the authors. But anyway, we can say that our modification
has little effect on the computation time. Figure 2 shows
the number of iterations of the original and modified up-
dates. For all values ofn, there is little difference between
these two updates. We can say from the results that our
modification has no effect on the number of iterations.

6. Conclusion

Global convergence of the multiplicative update pro-
posed by Shaet al. [3] for solving strictly convex QP prob-
lems with nonnegativity constraints was studied. We have
first pointed out an error in their global convergence proof.
We have next proposed a modified version of the multi-
plicative update and proved its global convergence. We
have finally shown that the modification has little effect on
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Figure 2: Comparison of the number of iterations between
the original (green) and modified (red) updates.

the computation time and the number of iterations. A fu-
ture problem is to extend the proposed update to the case
where the objective function is not strictly convex.
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