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Abstract—A multiplicative update for solving convex show experimentally that our modificatioffiects neither
guadratic programming problems with nonnegativity conthe computation time nor the number of iterations.
straints, which was proposed by S#tal., has three advan-
tages: 1) nonnegativity of solutions is automatically satis, Multiplicative Update Proposed by Sha et al.
fied, 2) no parameter tuning is needed, and 3) implemen-
tation is easy because of simple update formula. However, We consider optimization problems of the form:
the global convergence of the update is not always guar-
anteed. In this paper, we propose a modified version of
the multiplicative update and prove its global convergence
without any assumption on_the.problem. We also show Xiherev = [Vi,V,...,va]T € R" is a variable vector,
perimentally that our modificationfiects neither the com- A = [A;] € R™" is a positive definite constant matrix, and

putation time nor the number of iterations b = [byby,...,b,]T € Ris a constant vector. Through-
out this paper, the inequality between two vectors means

1. Introduction componentwise inequality. Based on the idea behind the
development of multiplicative updates for NMF [1], Séta

Problems of minimizing an objective function underal. [3] recently proposed a multiplicative update for solv-

nonnegativity constraints arise in various fields. For exing the optimization problem (1). Let = [V, \§, ..., v]T

ample, Nonnegative Matrix Factorization (NMF) [1, 2],be the solution aftek iterations. Then their update is ex-

which is to approximate a given large nonnegative mapressed as follows:

trix by the product of two small nonnegative matrices and

minimize F(v) = 2vTAv + b'v
subjectto v>0

@)

has attracted remarkable attention in the fields of machine " —bi + /b7 + dal‘ck
learning, signal processing and so on, is formulated as an vt = 2al Ve (2)

optimization problem with nonnegativity constraints. In
this paper, as an important class of these problems, we C‘Wherea]!‘ = (A*v")i, Cik = (AVK), At = [Aﬁ] is defined by
sider convex quadratic programming (QP) problems with

nonnegativity constraints. + | Ay, IFA;>0

Shaet al. [3] recently proposed a multiplicative update Aj = { 0, otherwise
for convex QP problems with nonnegativity constraints, . .
which is based on multiplicative updates for NMF devel—andA+ - [Aij] is defined by
oped by Lee and Seung [1]. The algorithm of @hal. has Al if Ay <0
three main advantages: 1) nonnegativity of variables is au- A = { b !
tomatically satisfied, 2) no parameter tuning is needed, and
3) implementation is easy because of simple update for- It is easily seen that the right-hand side of (2) is positive
mula. Furthermore, under some assumptions on the Qthf( > 0 and the following assumption is satisfied.
problem and the initial solution, Ste al. proved that any . . .
sequence of solutions generated by their update converg%%?;%whtr:;ee";h (;OW OfA has one or more negative
to the unique optimal solution. rav.

In this paper, we propose a modified version of the mulFherefore, if the initial solution? is positive and Assump-
tiplicative update of Shat al. and prove its global conver- tion 1 is valid then any sequen¢e<};° ; generated by (2)
gence without any assumption on the QP problem and tisatisfies/* > 0 for all k.
initial solution. We also construct an multiplicative update Shaet al. studied in detail the convergence properties of
algorithm which always stops within a finite number of it-(2) under Assumption 1 and proved the following theorem
erations after finding an approximate solution. We finallyoy using Zangwill's global convergence theorem [6, 7].

0, otherwise
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Theorem 1 ([3]) Suppose that the origin is not the opti-instead of (1). Note that (5) has the unique optimal solution
mal solution of (1) and the initial vecta® is positive and for any positive constart and it approaches the optimal
F(v°) < F(0) = 0. Then the sequenc{e"}ﬁ‘;o converges to solution of (1) as goes to zero. As is well known in opti-
the optimal solution of (1). mization theoryy € [e, oo)" is the optimal solution of (5) if

and only if the KKT conditions
Even if Assumption 1 is satisfied and the initial solution y

V0 is positive, the limit of the sequeng¢e}>> ; may not be Av+b>0 (6)
a positive vector. Therefore, the update must be defined (Av +b)i(-vi+€)=0, i=12...,n @)
for all nonnegative vectors® in order to apply Zangwill’s
global convergence theorem. However, in the update (2),
is not clear how the case whw}é = 0 is dealt with. As a
possible solution, we consider the modified update:

are satisfied.
One of the main results of this paper is given by the fol-
lowing theorem.

Theorem 2 For any positive constartand the initial so-

ol _ —bi+ \/Zbi+461kc|kvik’ it V>0 3 Iutior_w_vO € [e,_oo)“, the sequence/X} , generated by the
i = 0 4 i 0 () modified multiplicative update (4) has at least one conver-
’ v = gent subsequence and they converge to the unique optimal

Let us suppose thatfisdiagonal elements in thieth row  Solution of (5).

andi-th column ofA are all zero. Thery; must be positive Note that this theorem does not require any assumption
because\ is assumed to be positive definite. Let us furtheon A andb except thatA is positive definite. Proof of this

suppose that; is negative. In this case, we have theorem will be given in the next section.
We next develop a multiplicative update algorithm which
by + /bi2 + daltck —b + /bi2 +0 always stops within a finite number of iterations. The stop-
2qk VF = 2A.—vk i ping criterion we employ for the algorithm is given by
; Ay,
b AV +b>-61 8)
= a0 AV +b)i(~vi + &) <82 i=12....n  (9)

for all V€ > 0 and hence the update (3) can be rewritten advhered, ands, are positive constants. As is easily seen,
this criterion is a relaxed version of the KKT conditions (6)

{ —bi/A;, if V>0 and (7). The proposed algorithm is described as follows.
0, if V!( =0 Algorithm 1

This means that the update (3) is not continuous in the r&tep 1: Setk = 0 and choose the initial solutior? such
gion{v € R"|v > 0,v; = 0}, and hence Zangwill's global thatv® > el.

convergence theorem cannot be applied to (3). Step 2: Findv**! by the modified update (4).

V!<+l —

Step 3: If v = v&*1 satisfies the stopping criterion (8) and

3. Modified Multiplicative Update and Its Global Con- (9) then stop. Otherwise, add 1kand go to Step 2.

vergence

) ) ) ) From Theorem 1 and the continuity of the stopping cri-
In order to avoid the problem described in the previougsrion, we have the following theorem.

section, we propose a modified multiplicative update: N
Theorem 3 For any positive constants §; andés,, Algo-

b+ /biz + 4a1!<C=<Vk rithm 1 stops within a finite number of iterations.

7ok i (4)  Proof: Let {v¥}>, be any convergent subsequence of the
& sequence{v"};":0 generated by the update (4). By Theo-

. . . rem 1, it converges to the unique optimal solution of (5).
wheree is any positive constant. Note that the same idea /e therefore have

used in Reference [4, 5] in which a modified multiplica- _

tive update for NMF is proposed. It is apparent that if lim (AVk‘ + b) >0
vk > 0then the right-hand side is well-defined and we have
vk*l > €1 wherel € R" is the vector whose elements are
all one. Therefore, if we choose the initial solutidhsuch
thatv® > €1 then the sequence of solutioh&};> | gener-
ated by (4) satisfieg“ > €1 for all k. We thus consider in
the following the optimization problem AN +b > —611

. AVK + b); (—VK <6 i=12...,
minimize F(v) = 3vTAv + bTv . I(AVY + b)i (V' + €)l < 6, i n
subjectto v > €l ) forall | > L. This completes the proof. O

Vil = max|e,

fim {(W +o)(-v + o) =0, i=12....n

In other words, for any positive constadtsandd,, there
exists an positive integér such that
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4. Proof of Theorem 1 The objective functiorG;(u;) is strictly convex in §, co)

) ) because
We will prove Theorem 1 by using the same approach as A+ A-
Shaet al. [3], that is, we apply Zangwill's global conver- G/'(u) = (A™V): ( \;)'V' >0.
gence theorem [6, 7] to the update (4). We hereafter express Vi Ui

k+1 _ k
(4) asve"™ = M(v") for notational simplicity, whereM is 1, the optimal solution’ of (13) is uniquely determined

a mapping from¢, co)" into itself. In order to prove The- . considering the solution of the equatiéf(u) = 0, and
orem 2 by using Zangwill's global convergence theoremg given by

it suffices for us to show that the mapping satisfies the
following conditions. b+ \/b?+4(A+v)i(A—v)i
I

(i) Forallk > 0, VX belongs to a compact set. Ui = max e, 2B, Vi

ii) The mappingM satisfies
(i) PpingM This implies that the optimal solution of (10) is given by

@) v#v = FM(®V)) <F(v) M(V). Therefore, we hav&(M(v), V) < G(v, V) if M(v) #
(b) v =Vv* = F(M(V)) < F(v) v. From this inequality and the properties (11) and (12), we
have
(iii) The mapping M is continuous for all vectors <
[€, )" except the unique optimal solution of (5). FIM(V)) < GIM(v), V) < G(v,V) = F(v)
Lemma 1 The mappingM is continuous in§, oo)". which completes the proof. o

Lemma 3 ve [¢,o0)"is a fixed point of the mapping if

Lemma 2 If v € [e, co)" is not afixed point of the mapping and only if it is the unique optimal solution of (5).

MthenF(M(V)) < F(v).

Proof: A vectorv € [¢, )" is a fixed point of M if and
Proof: For givenv € [¢, )", we consider the optimization only if

problem
minimize G(u, v) _ 2 T
subjectto u > el (10) b+ \/bi +AATVIIAV v-{ <v, if i=e
] H s
where 2(A*v); =v, If vi>e
i=12...,n
110 (AY), T
Gu.v) = § v; which can be rewritten as
1 n n . >0, if =€ -
52 (1100 ) S BB of 20 fuse. i1z
i=1 j=1 i=1

Noting that A*v); + b — (A~v); = (Av +b);, we see that this
which is well defined ing, o0)" and continuous everywhere js equivalent to (6) and (7). Sinees [€, 0)" is the optimal
in [€, 00)". The functionG(u, v) is an auxiliary function of = solution of (5) if and only if (6) and (7) are satisfied, we

F(v), that is, it satisfies can conclude that € [e, )" is a fixed point ofM if and
only if v is the unique optimal solution of (5).
F(U) <GU,V), Yu,v> el ay " que op ©®) o
F(vV) = G(V,v), Yv3> el (12) From Lemmas 2 and 3, we have the following lemma.

Lemma 4 If v € [¢, 0)" is the optimal solution of (5) then
F(M(v)) = F(v) holds because is the fixed point ofM.
Otherwise F(M(v)) < F(v) holds.

(see Reference [3] for details). Also, sinGéu,v) can be
rewritten as

n
G(u,v) = ZGi(ui) iy Lemma5 For any initial solutionv® € [, o0)", the se-
i 2 quence{v"}ﬁ":0 generated by (4) belongs to the compact set
S={veR"|v> el F(v) < F(VO)}.

where
1(A V)i 2 Proof: It follows from Lemma 4 thaf (vk) < F(v°) holds
Gi(u) = 5 ” - (A"V)iv |09 + by for all k, that is,v € S for all k. SinceF(v) is continuous
' and strongly convex, the level sete R" | F(v) < F(V9)} is
the optimization problem (10) is decomposed intmde- compact. Therefor8 is also compact. O

pendent optimization problems of the form: Lemmas 1, 4 and 5 mean that all of the three condi-

minimize G;i(u) tions in Zangwill's global convergence theorem are satis-
subjectto uj > € (13) fied. This completes the proof of Theorem 1.
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Figure 1: Comparison of computation time between th&igure 2: Comparison of the number of iterations between
original (green) and modified (red) updates. the original (green) and modified (red) updates.

5. Numerical Experiments the computation time and the number of iterations. A fu-
ture problem is to extend the proposed update to the case

In order to examine theffect of the modifications of the where the objective function is not strictly convex.

multiplicative update and the optimization problem on the
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