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Abstract—The problem of finding graphs that locally then it locally maximizes the global clustering ¢&ent.
maximize the global clustering cfirient (GCC) is con- We next prove that if a graph is composed of two cliques
sidered. We first prove that if a graph is composed of twoonnected by a path with an arbitrary length then it locally
cligues sharing one vertex then it locally maximizes thenaximizes the global clustering déieient. The second re-
GCC. We next prove that if a graph is composed of twault is more important than the first one because not only
cliques connected by a path with an arbitrary length theis it counter-intuitive but also the same statement does not
it locally maximizes the GCC. The first result is the saméiold for the average clustering dtieient.
as the one given in the case of the average clustering coef-
ficient (ACC). On the other hand, the second one does ot Ty Definitions of Clustering Codficient
hold in the case of the ACC.

In this paper, by a graph, we mean a simple connected
1. Introduction undirected grapls = (V(G), E(G)) whereV(G) is the set
of vertices (nodes) and(G) is the set of edges (links). The

Clustering cofficient [1, 2] is one of the most important set of all graphs composed afvertices andn edges is

measures that characterize the structure of complex nefenoted byg(n, m).

works. Roughly speaking, the clustering fiagent of a - . .
graph represents the probability that two vertices adjacelr?te finition 1 (Average Clustering Cdgcient [1]). For a

. . . Iven graphG € G(n, m), the clustering cd#&cient of the
to a given vertex are adjacent to each other. Itis well know\aertexi € V(G) is defined by

that many networks in the real world have higher cluster-

ing codficients than random graphs. Also, it has been re- ti(G)

ported that the clustering cfiieient is strongly related to Gi(G) = { ai(G)(di(G) —1)/2°

the performance of Hopfield neural networks [3], the syn- 0,

chronization of osqllator netv_vqr_ks [4], and so on. . whered;(G) is the degree of the vertéxandt;(G) is the
There are two kinds of definitions for the clustering O umber of triangles containing the vertexhat is

efficient. One isthe average clustering cgicient intro- '

duced by Watts and Strogatz [1], and the othéhésglobal ti(G) = |{{j,k} € E(G) |{i, j}, {i,k} € E(G)}] .

clustering cogicient[2]. In order to clarify the fundamen- ) )

tal properties of the average clustering iméent, Koizuka 1Ne average clustering cieient (ACC) of the graple =

and Takahashi [5] studied the problem of finding graph€”(G). E(G)) is then defined by

that maximize or locally maximize the clustering €ioe 1

cient. They proved theoretically that if a graph is composed Ca(G) = = Z Ci(G).

of two or three cliques sharing one vertex then it locally n=

maximizes the clustering ciigient. This is not a surpris- pefinition 2 (Global Clustering Coicient [2]). The

ing result because one can easily imagine that such a gra@gbm clustering coiicient (GCC) of a grapts € G(n, m)
has a high clustering céicient. However, this is an impor- 5 gefined by

tant step to deeper understanding of the average clustering .
codficient. In fact, their result was recently extended to a Co(G) = 2z 1i(G) W
more general form [6]. L, 4i(G)(di(G)-1)/2

In this paper, we employ the global clustering fiméent ' . N
for the definition of the clustering c@icient, and study the wheret; (G) andd,(G) are defined as in Definition 1.
same problem as Koizuka and Takahashi [5]. The objective Suppose that we randomly select a veritexith equal
of this paper is to see whether the definition of the clusteprobability, and then randomly select, with equal probabil-
ing codficient dfects the result or not. We first prove thatity, a pair (j, k) of vertices adjacent ta Then the proba-
if a graph is composed of two cliques sharing one vertehility that j andk are adjacent to each other is equal to the

if 4(G)>2
if d(G)<1
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1. Mol =1,|Vil=ng > 1and|V, =np > 1.

(1)
94%@ e e o @ 2. The subgraph o induced byVy U V; and the sub-

9 graph ofG induced by, U V, are complete.
3. Ifi e Vyandj € V, thendi, j} ¢ E(G).

Figure 1: A lollipop graph with 8 vertices and 10 edges. Also, T(G) andD(G) are expressed in terms of andn,

as follows:
ACC. Suppose next that we randomly select, with equal B ny n,
probability, a triple {, j, k) of vertices such that andk are TG) = (m+1) 2 +(n2+1) 2
adjacent ta. Then the probability that andk are adjacent _ (n'j' + ng — g -1)/2,
to each other is equal to the GCC.
In order to see how flierent these two definitions are, D(G) = (n R 1) + nl( 1) + nz(nz)
let us consider a lollipop grapé € G(8,10) shown in 2 2 2

Fig. 1. The clustering cdicients of 8 vertices are given
by C1(G) = Cx(G) = C3(G) = 1,Cy(G) = 0.5 andCs5(G) =
Ce(G) = C+(G) = Cg(G) = 0. Hence the ACC of this graph In the following, we assume without loss of generality that

is given byCa(G) = 32 = L = 04375. Onthe other Vo = {1}, V1 = {2,3,....m + L} andV, = {n; + 2,m +
8 16

(M3 + 13 —ng -y +2ny) /2.

hand, the GCC is given b§g(G) = W‘LHM = % ~ 3 T n}. In order to prove tha® is a GCC locally max-
0.6667 which is much greater than the ACC. imizing graph, we have to show th@(G) > Cg(G’) for

any graphG’ € G(n, m) obtained fromG by rewiring one
edge. There are a number of ways of rewiring one edge
in G, but it sufices for us to consider the following four
cases: (a]l,2} is removed and2,n} is added, (b)X1, 2}
Ciustering cofficient maximizing graphs and |oca||y is removed and3, n} is added under the aSSUmption that
maximizing graphs are defined as follows. N > 2, (c){2, 3} is removed and2, n} is added under the
o ) ] o assumption that; > 2, and (d}2, 3} is removed and4, n}
Definition 3 (Clustering Coﬁicu_ani Maximizing Graph is added under the assumption that> 3. We consider
[5]). If a graphG e G(n,m) satisfiesCa(G) > Ca(G’) iy case (a) due to the space limitation. In this case,
(Ce(G) = Co(@), resp.) for allG” e G(n,m) then it gih0a1(G/) and D(G') are given byT(G) — 3(n; — 1) and
is called an ACC (a GCC, resp.) maximizing graph IH(G) - (ny — 1), respectively, we have

3. Global Clustering Codficient Locally Maximizing
Graphs

G(n, m).

Definition 4 (Clustering Co#icient Locally Maximizing Cs(G) -Cs(G) = T(G) - T(G) -3 -1)
Graph [5]) If a graphG € G(n,m) satisfiesCa(G) > D@) D(G)-(m-1)
Ca(G’) (Cs(G) > Cs(G), resp.) for allG’ € G(n, m) that _ (m-1HEDE)-TE) @
are obtained fror® by rewiring an edge then itiis called an D(G)HD(G) - (. - 1)}

ACC (a GCC, resp.) locally maximizing graphgr(n, m). The denominator is positive and the numerator is also pos-

In the following, for anyG € G(n, m), the numerator and itive because
the denominator of the right-hand side of (1) are denoted

by T(G) andD(G), respectively. That is, 3DG)-T(G) = nd+n3—n —ny+3mn
n = my(n? - 1)+ ny(n3 — 1) + 3myny
TG) = ) t(0), > 0.
i1

D) Therefore, the right-hand side of (2) is positive. O

n
> d(G)(G) - 1)/2.
i=1 The second result of this paper is as follows.

The first result of this paper is as follows. Theorem 2. If the vertex seV/(G) of a graphG € G(n. m)

Theorem 1. If G € G(n,m) is composed of two cliques has a partition{Vo, V1, V»} that satisfies the following con-
sharing one vertex then it is a GCC locally maximizingditions thenG is a GCC locally maximizing graph in
graph ing(n, m). G(n, m).

Proof Let G = (V(G), E(G)) be any graph composed of 1 Vol = 2, V4| = 1 and|Vs| > 1.

two cliques sharing one vertex (see Fig.2). TNE) has

a partition{Vg, V1, V»} such that the following conditions 2. The subgraph d& induced by, is a path graph with
are satisfied. its end verticesr andg.
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Figure 2: A graph composed of two cliques sharing one

vertex.

Figure 3: A graph satisfying the conditions in Theorem 2.

3. The subgraph db induced by, U {a} is a complete

graph. Also, ifi € V1 andj ¢ V1 U {a} then the edge

{i, j} does not exist.

4. The subgraph d& induced byV, U {8} is a complete

graph. Also, ifi e Vo andj ¢ V, U {8} then the edge

{i, j} does not exist.

Proof Let G = (V(G), E(G)) be any graph satisfying the
four conditions (see Fig.3). In the following, we focus

our attention on the case whek&| = ng, |V41] = n; and

[V2| = n, are suficiently large due to the space limitation.

In addition, we assume without loss of generality gt
{1(2 a),2,...,no(:ﬁ)},V1 ={ng+1Lng+2...,Ng+ Ny},
andVo = {ng+ny + L,ng+ny + 2,...,n.. ThenT(G) and
D(G) are expressed in terms of, n; andn, as follows:

TG) = (m+ 1)(”21) + (M + 1)(”22)
(n} +n3 - —1p)/2, 3)
(ny + 1)(“21) + (N + 1)(”22) +(Ng—2)+ N + Ny

{ng + 13+ 2(no — 2) + Ny + Nz} /2. (4)

D(G)

LetG’ € G(n, m) be any graph obtained fro@ by rewiring
an edge. Letiy, io} be the edge removed froBand(is, i4}

be the edge added @. Then there are five possible cases:

(a) ij_,iz € Vo, (b) i]_,iz € V1, (C) ij_ =1 andiz € V]_, (d)
i1,i2 € Vo, and (e)iy = ng andiz € V,. In the following,

we will show thatCs(G) > Cg(G’) holds for the first three
cases, because Cases (d) and (e) can be analyzed in 6

same way as Cases (b) and (c), respectively.

(a) Itis easily seen thdd(G) + 1 < D(G’) andT(G) =
T(G'). ThereforeCg(G) > Cs(G’) holds in this case.

(b) LetG” be the graph obtained fro@ by removing the
edgeliy, iz}. Note thatG” € G(n,m - 1) becausa,
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is assumed to be fiiciently large. Sincd (G”) and
D(G”) are given byl (G)-3(nh;—1) andD(G)—-2(n; —
1), respectively, we have

T(G) T(G)-3(n-1)
D(G) D(G)-2(n-1)
(n, - 1)(3D(G) - 2T(G))
D(G){D(G) - 2(n; - 1)}

Ce(G) - Cs(G")

Here, the denominator is positive and the numerator is
also positive because

3D(G)-2T(G) = {n3+n3+6(no—2)+5n;+5n,}/2 > 0.

Therefore, Co(G) — Cg(G”) is positive. Let us
next consider the quantit@s(G”) — Cg(G’). Since

G’ is obtained fromG” by adding the edgéis,is},

we immediately see thab(G’) > D(G”). So, if
T(G) = T(G”), that is, if the number of triangles is
not changed by the edge addition, we h&&G) —
Cs(G') = Ca(G) - C(G”) + Ca(G”) — Cs(G') > 0.
From this fact, we can concentrate our attention on the
six cases: (ifis,is} = {i1,2}, (ii) i3 € V1 \ {i1,i2} and

is =2, (III) {is,ia) = {1, 3}, (IV) i3 €{2,3,...,ng— 3}
andig = i3+ 2, (V) {is,ia} = {ng — 2,ng} and (vi)

iz = ng — 1 andis € V5. In all of these cases, a new
triangle appears by the edge addition. Hence we have
T(G’) = T(G”) + 3. On the other hand, the value of
D(G’) in Case (iv), which is given bp(G”) + 4, is
smaller than any other case. Therefore, we have

Cs(G) - Ce(G)
. 1O _T@©)+3
= D(G) D(G")+4
TG) TG)-3m+6
D(G) D@G)-2m +6
n1(3D(G) - 2T(G)) - 6(D(G) - T(G))
D(G)(D(G) - 2n, + 6) :

The denominator is positive. Hence itfaes for us
to show that the numerator is also positive. By substi-
tuting (3) and (4) into the right-hand side, we have

N (3D(G) - 2T(G)) - 6(D(G) - T(G))
= m(nd +n3)/2+ (5ng — 12)(ng + np)/2
+3(no - 2)(n - 2),

which is positive becausa is suficiently large.

LetG” be the graph obtained fro@ by removing the
edge{i, i»}. Note thatG” € G(n,m - 1) becausen

is assumed to be fiiciently large. Sincd (G”) and
D(G”) are given by

TG") = T(G)-3(m-1),
DG”) = D(G)-2n +1,



we have

Cs(G) - Cs(G")
TG) TG)-3Mm-1)
D(G) DG)-2m+1
3(n. — 1)D(G) - (2n, - 1)T(G)
D(G){D(G) — 2ny + 1}

©.
94‘?0

Figure 4: Example of a GCC locally maximizing graph but
Here, the denominator is positive and the numeratdrot an ACC locally maximizing graph.

can be transformed as
3(n - 1)D(G) - (2m - 1)T(G)

(N = 2)(M +nd)/2 + 3(no — 2)(n1 — 1)
+ (5n1 - 4)(”1 + n2)/2.

Therefore,Cs(G) — Cs(G”) is positive. Let us next
consider the quantit€g(G”) — Cs(G’). As in the pre-
vious case, we can concentrate our attention on the
five cases: (i3 € Vi \ {i2} andiy = 2, (ii) {is, 4} 4.
{1,3}, (iii) i3 € {2,3,...,ng — 3} andig = iz + 2, (iv)
{iz,i4} = {ng—2, g} and (v)iz = ng—1 andig € V5. In
all of these cases, a new triangle appears by the ed
addition. Hence we havg(G’) = T(G”) + 3. On the
other hand, the value @(G’) in Case (iii), which is

locally maximizing graph. The ACC o6 is calculated
asCa(G) =
while the ACC of G/, which is obtained fronG by re-
moving the edg¢l, 3} and adding the edgd, 6}, is given
by Ca(G) =
which is greater tha@a (G).

$(3+0+1+1+1+0) = 5 = 0583

1(1

6(3+1+1+g

2 _ 7 _
2+2+1) =1 = 0777

Conclusion

In this paper, we have presented two theoretical results
ancerning the global clustering déieient. The second re-
ult shows that two definitions of the clustering fimgent

differ considerably from the viewpoint of the clustering co-

given by D(G”) + 4, is smaller than any other case &fficientlocally maximizing graph.

Therefore, we have

Acknowledgments

Cs(G) - Cs(G)

S TG T@")+3

~ D(G) DG)+4
_ T(G) T@G)-3m+6
" DG) D(G)-2m+5

n(3D(G) - 2T(G)) - 6D(G) + 5T(G)

5 [1]
(G)(D(G) - 2n, +5)

The denominator is positive. Hence itfBces for us
to show that the numerator is also positive. By substi[z]
tuting (3) and (4) into the right-hand side, we have

n(3D(G) - 2T(G)) - 6D(G) + 5T(G)

(M = 1)(n3 + n)/2 + 3(no — 2)(ny - 2)
+ (5N — 11)(ny + np)/2,

(3]

which is positive becauss is suficiently large. O

By letting V| = 1 in Theorem 2, we have the following [4]
result.

Corollary 1. If G € G(n,m) is a lollipop graph thenitis a

GCC locally maximizing graph. (5]

Finally, we will show that the statement of Theorem 2
does not hold if we replace “GCC” with “ACC". As a coun-
terexample, let us consider the gra@he G(6,8) shown
in Fig.4. Itis a GCC locally maximizing graph becausd
the conditions of Theorem 2 are satisfied oy = {1, 2},

V: = {3,4,5} andV, = {6}. However, it is not an ACC
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