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Abstract—The problem of finding graphs that locally
maximize the global clustering coefficient (GCC) is con-
sidered. We first prove that if a graph is composed of two
cliques sharing one vertex then it locally maximizes the
GCC. We next prove that if a graph is composed of two
cliques connected by a path with an arbitrary length then
it locally maximizes the GCC. The first result is the same
as the one given in the case of the average clustering coef-
ficient (ACC). On the other hand, the second one does not
hold in the case of the ACC.

1. Introduction

Clustering coefficient [1,2] is one of the most important
measures that characterize the structure of complex net-
works. Roughly speaking, the clustering coefficient of a
graph represents the probability that two vertices adjacent
to a given vertex are adjacent to each other. It is well known
that many networks in the real world have higher cluster-
ing coefficients than random graphs. Also, it has been re-
ported that the clustering coefficient is strongly related to
the performance of Hopfield neural networks [3], the syn-
chronization of oscillator networks [4], and so on.

There are two kinds of definitions for the clustering co-
efficient. One isthe average clustering coefficient intro-
duced by Watts and Strogatz [1], and the other isthe global
clustering coefficient [2]. In order to clarify the fundamen-
tal properties of the average clustering coefficient, Koizuka
and Takahashi [5] studied the problem of finding graphs
that maximize or locally maximize the clustering coeffi-
cient. They proved theoretically that if a graph is composed
of two or three cliques sharing one vertex then it locally
maximizes the clustering coefficient. This is not a surpris-
ing result because one can easily imagine that such a graph
has a high clustering coefficient. However, this is an impor-
tant step to deeper understanding of the average clustering
coefficient. In fact, their result was recently extended to a
more general form [6].

In this paper, we employ the global clustering coefficient
for the definition of the clustering coefficient, and study the
same problem as Koizuka and Takahashi [5]. The objective
of this paper is to see whether the definition of the cluster-
ing coefficient affects the result or not. We first prove that
if a graph is composed of two cliques sharing one vertex

then it locally maximizes the global clustering coefficient.
We next prove that if a graph is composed of two cliques
connected by a path with an arbitrary length then it locally
maximizes the global clustering coefficient. The second re-
sult is more important than the first one because not only
is it counter-intuitive but also the same statement does not
hold for the average clustering coefficient.

2. Two Definitions of Clustering Coefficient

In this paper, by a graph, we mean a simple connected
undirected graphG = (V(G),E(G)) whereV(G) is the set
of vertices (nodes) andE(G) is the set of edges (links). The
set of all graphs composed ofn vertices andm edges is
denoted byG(n,m).

Definition 1 (Average Clustering Coefficient [1]). For a
given graphG ∈ G(n,m), the clustering coefficient of the
vertexi ∈ V(G) is defined by

Ci(G) =


ti(G)

di(G)(di(G) − 1)/2
, if di(G) ≥ 2

0, if di(G) ≤ 1

wheredi(G) is the degree of the vertexi and ti(G) is the
number of triangles containing the vertexi, that is,

ti(G) = |{{ j, k} ∈ E(G) | {i, j}, {i, k} ∈ E(G)}| .

The average clustering coefficient (ACC) of the graphG =
(V(G),E(G)) is then defined by

CA(G) =
1
n

n∑
i=1

Ci(G) .

Definition 2 (Global Clustering Coefficient [2]). The
global clustering coefficient (GCC) of a graphG ∈ G(n,m)
is defined by

CG(G) =

∑n
i=1 ti(G)∑n

i=1 di(G)(di(G) − 1)/2
(1)

whereti(G) anddi(G) are defined as in Definition 1.

Suppose that we randomly select a vertexi with equal
probability, and then randomly select, with equal probabil-
ity, a pair (j, k) of vertices adjacent toi. Then the proba-
bility that j andk are adjacent to each other is equal to the
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Figure 1: A lollipop graph with 8 vertices and 10 edges.

ACC. Suppose next that we randomly select, with equal
probability, a triple (i, j, k) of vertices such thatj andk are
adjacent toi. Then the probability thatj andk are adjacent
to each other is equal to the GCC.

In order to see how different these two definitions are,
let us consider a lollipop graphG ∈ G(8,10) shown in
Fig. 1. The clustering coefficients of 8 vertices are given
by C1(G) = C2(G) = C3(G) = 1, C4(G) = 0.5 andC5(G) =
C6(G) = C7(G) = C8(G) = 0. Hence the ACC of this graph
is given byCA(G) = 3.5

8 =
7
16 = 0.4375. On the other

hand, the GCC is given byCG(G) = 3×4
3+3+3+6+1+1+1+0 =

2
3 ≈

0.6667 which is much greater than the ACC.

3. Global Clustering Coefficient Locally Maximizing
Graphs

Clustering coefficient maximizing graphs and locally
maximizing graphs are defined as follows.

Definition 3 (Clustering Coefficient Maximizing Graph
[5]). If a graphG ∈ G(n,m) satisfiesCA(G) ≥ CA(G′)
(CG(G) ≥ CG(G′), resp.) for allG′ ∈ G(n,m) then it
is called an ACC (a GCC, resp.) maximizing graph in
G(n,m).

Definition 4 (Clustering Coefficient Locally Maximizing
Graph [5]). If a graphG ∈ G(n,m) satisfiesCA(G) ≥
CA(G′) (CG(G) ≥ CG(G′), resp.) for allG′ ∈ G(n,m) that
are obtained fromG by rewiring an edge then it is called an
ACC (a GCC, resp.) locally maximizing graph inG(n,m).

In the following, for anyG ∈ G(n,m), the numerator and
the denominator of the right-hand side of (1) are denoted
by T(G) andD(G), respectively. That is,

T(G) =

n∑
i=1

ti(G) ,

D(G) =

n∑
i=1

di(G)(di(G) − 1)/2 .

The first result of this paper is as follows.

Theorem 1. If G ∈ G(n,m) is composed of two cliques
sharing one vertex then it is a GCC locally maximizing
graph inG(n,m).

Proof Let G = (V(G),E(G)) be any graph composed of
two cliques sharing one vertex (see Fig.2). ThenV(G) has
a partition{V0,V1,V2} such that the following conditions
are satisfied.

1. |V0| = 1, |V1| = n1 ≥ 1 and|V2| = n2 ≥ 1.

2. The subgraph ofG induced byV0 ∪ V1 and the sub-
graph ofG induced byV0 ∪ V2 are complete.

3. If i ∈ V1 and j ∈ V2 then{i, j} < E(G).

Also, T(G) andD(G) are expressed in terms ofn1 andn2

as follows:

T(G) = (n1 + 1)

(
n1

2

)
+ (n2 + 1)

(
n2

2

)
= (n3

1 + n3
2 − n1 − n2)/2 ,

D(G) =

(
n− 1

2

)
+ n1

(
n1

2

)
+ n2

(
n2

2

)
= (n3

1 + n3
2 − n1 − n2 + 2n1n2)/2 .

In the following, we assume without loss of generality that
V0 = {1}, V1 = {2,3, . . . , n1 + 1} andV2 = {n1 + 2,n1 +

3, . . . ,n}. In order to prove thatG is a GCC locally max-
imizing graph, we have to show thatCG(G) ≥ CG(G′) for
any graphG′ ∈ G(n,m) obtained fromG by rewiring one
edge. There are a number of ways of rewiring one edge
in G, but it suffices for us to consider the following four
cases: (a){1,2} is removed and{2,n} is added, (b){1,2}
is removed and{3,n} is added under the assumption that
n1 ≥ 2, (c) {2,3} is removed and{2, n} is added under the
assumption thatn1 ≥ 2, and (d){2,3} is removed and{4,n}
is added under the assumption thatn1 ≥ 3. We consider
only Case (a) due to the space limitation. In this case,
sinceT(G′) andD(G′) are given byT(G) − 3(n1 − 1) and
D(G) − (n1 − 1), respectively, we have

CG(G) −CG(G′) =
T(G)
D(G)

− T(G) − 3(n1 − 1)
D(G) − (n1 − 1)

=
(n1 − 1)(3D(G) − T(G))
D(G){D(G) − (n1 − 1)} . (2)

The denominator is positive and the numerator is also pos-
itive because

3D(G) − T(G) = n3
1 + n3

2 − n1 − n2 + 3n1n2

= n1(n2
1 − 1)+ n2(n2

2 − 1)+ 3n1n2

> 0 .

Therefore, the right-hand side of (2) is positive. �

The second result of this paper is as follows.

Theorem 2. If the vertex setV(G) of a graphG ∈ G(n,m)
has a partition{V0,V1,V2} that satisfies the following con-
ditions thenG is a GCC locally maximizing graph in
G(n,m).

1. |V0| ≥ 2, |V1| ≥ 1 and|V2| ≥ 1.

2. The subgraph ofG induced byV0 is a path graph with
its end verticesα andβ.
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Figure 2: A graph composed of two cliques sharing one
vertex.

Figure 3: A graph satisfying the conditions in Theorem 2.

3. The subgraph ofG induced byV1 ∪ {α} is a complete
graph. Also, ifi ∈ V1 and j < V1 ∪ {α} then the edge
{i, j} does not exist.

4. The subgraph ofG induced byV2 ∪ {β} is a complete
graph. Also, ifi ∈ V2 and j < V2 ∪ {β} then the edge
{i, j} does not exist.

Proof Let G = (V(G),E(G)) be any graph satisfying the
four conditions (see Fig.3). In the following, we focus
our attention on the case where|V0| = n0, |V1| = n1 and
|V2| = n2 are sufficiently large due to the space limitation.
In addition, we assume without loss of generality thatV0 =

{1(= α),2, . . . , n0(= β)}, V1 = {n0 + 1,n0 + 2, . . . ,n0 + n1},
andV2 = {n0 + n1 + 1,n0 + n1 + 2, . . . ,n}. ThenT(G) and
D(G) are expressed in terms ofn0, n1 andn2 as follows:

T(G) = (n1 + 1)

(
n1

2

)
+ (n2 + 1)

(
n2

2

)
= (n3

1 + n3
2 − n1 − n2)/2 , (3)

D(G) = (n1 + 1)

(
n1

2

)
+ (n2 + 1)

(
n2

2

)
+ (n0 − 2)+ n1 + n2

= {n3
1 + n3

2 + 2(n0 − 2)+ n1 + n2}/2 . (4)

LetG′ ∈ G(n,m) be any graph obtained fromG by rewiring
an edge. Let{i1, i2} be the edge removed fromG and{i3, i4}
be the edge added toG. Then there are five possible cases:
(a) i1, i2 ∈ V0, (b) i1, i2 ∈ V1, (c) i1 = 1 andi2 ∈ V1, (d)
i1, i2 ∈ V2, and (e)i1 = n0 and i2 ∈ V2. In the following,
we will show thatCG(G) ≥ CG(G′) holds for the first three
cases, because Cases (d) and (e) can be analyzed in the
same way as Cases (b) and (c), respectively.

(a) It is easily seen thatD(G) + 1 ≤ D(G′) andT(G) =
T(G′). ThereforeCG(G) > CG(G′) holds in this case.

(b) LetG′′ be the graph obtained fromG by removing the
edge{i1, i2}. Note thatG′′ ∈ G(n,m− 1) becausen1

is assumed to be sufficiently large. SinceT(G′′) and
D(G′′) are given byT(G)−3(n1−1) andD(G)−2(n1−
1), respectively, we have

CG(G) −CG(G′′) =
T(G)
D(G)

− T(G) − 3(n1 − 1)
D(G) − 2(n1 − 1)

=
(n1 − 1)(3D(G) − 2T(G))
D(G){D(G) − 2(n1 − 1)} .

Here, the denominator is positive and the numerator is
also positive because

3D(G)−2T(G) = {n3
1+n3

2+6(n0−2)+5n1+5n2}/2 > 0 .

Therefore, CG(G) − CG(G′′) is positive. Let us
next consider the quantityCG(G′′) − CG(G′). Since
G′ is obtained fromG′′ by adding the edge{i3, i4},
we immediately see thatD(G′) > D(G′′). So, if
T(G′) = T(G′′), that is, if the number of triangles is
not changed by the edge addition, we haveCG(G) −
CG(G′) = CG(G) − CG(G′′) + CG(G′′) − CG(G′) > 0.
From this fact, we can concentrate our attention on the
six cases: (i){i3, i4} = {i1,2}, (ii) i3 ∈ V1 \ {i1, i2} and
i4 = 2, (iii) {i3, i4} = {1,3}, (iv) i3 ∈ {2,3, . . . , n0 − 3}
and i4 = i3 + 2, (v) {i3, i4} = {n0 − 2,n0} and (vi)
i3 = n0 − 1 andi4 ∈ V2. In all of these cases, a new
triangle appears by the edge addition. Hence we have
T(G′) = T(G′′) + 3. On the other hand, the value of
D(G′) in Case (iv), which is given byD(G′′) + 4, is
smaller than any other case. Therefore, we have

CG(G) −CG(G′)

≥ T(G)
D(G)

− T(G′′) + 3
D(G′′) + 4

=
T(G)
D(G)

− T(G) − 3n1 + 6
D(G) − 2n1 + 6

=
n1(3D(G) − 2T(G)) − 6(D(G) − T(G))

D(G)(D(G) − 2n1 + 6)
.

The denominator is positive. Hence it suffices for us
to show that the numerator is also positive. By substi-
tuting (3) and (4) into the right-hand side, we have

n1(3D(G) − 2T(G)) − 6(D(G) − T(G))

= n1(n3
1 + n3

2)/2+ (5n1 − 12)(n1 + n2)/2

+ 3(n0 − 2)(n1 − 2) ,

which is positive becausen1 is sufficiently large.

(c) LetG′′ be the graph obtained fromG by removing the
edge{i1, i2}. Note thatG′′ ∈ G(n,m− 1) becausen1

is assumed to be sufficiently large. SinceT(G′′) and
D(G′′) are given by

T(G′′) = T(G) − 3(n1 − 1) ,

D(G′′) = D(G) − 2n1 + 1 ,
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we have

CG(G) −CG(G′′)

=
T(G)
D(G)

− T(G) − 3(n1 − 1)
D(G) − 2n1 + 1

=
3(n1 − 1)D(G) − (2n1 − 1)T(G)

D(G){D(G) − 2n1 + 1} .

Here, the denominator is positive and the numerator
can be transformed as

3(n1 − 1)D(G) − (2n1 − 1)T(G)

= (n1 − 2)(n3
1 + n3

2)/2+ 3(n0 − 2)(n1 − 1)

+ (5n1 − 4)(n1 + n2)/2 .

Therefore,CG(G) − CG(G′′) is positive. Let us next
consider the quantityCG(G′′)−CG(G′). As in the pre-
vious case, we can concentrate our attention on the
five cases: (i)i3 ∈ V1 \ {i2} and i4 = 2, (ii) {i3, i4} =
{1,3}, (iii) i3 ∈ {2,3, . . . , n0 − 3} and i4 = i3 + 2, (iv)
{i3, i4} = {n0−2,n0} and (v)i3 = n0−1 andi4 ∈ V2. In
all of these cases, a new triangle appears by the edge
addition. Hence we haveT(G′) = T(G′′) + 3. On the
other hand, the value ofD(G′) in Case (iii), which is
given by D(G′′) + 4, is smaller than any other case.
Therefore, we have

CG(G) −CG(G′)

≥ T(G)
D(G)

− T(G′′) + 3
D(G′′) + 4

=
T(G)
D(G)

− T(G) − 3n1 + 6
D(G) − 2n1 + 5

=
n1(3D(G) − 2T(G)) − 6D(G) + 5T(G)

D(G)(D(G) − 2n1 + 5)
.

The denominator is positive. Hence it suffices for us
to show that the numerator is also positive. By substi-
tuting (3) and (4) into the right-hand side, we have

n1(3D(G) − 2T(G)) − 6D(G) + 5T(G)

= (n1 − 1)(n3
1 + n3

2)/2+ 3(n0 − 2)(n1 − 2)

+ (5n1 − 11)(n1 + n2)/2 ,

which is positive becausen1 is sufficiently large. �

By letting |V2| = 1 in Theorem 2, we have the following
result.

Corollary 1. If G ∈ G(n,m) is a lollipop graph then it is a
GCC locally maximizing graph.

Finally, we will show that the statement of Theorem 2
does not hold if we replace “GCC” with “ACC”. As a coun-
terexample, let us consider the graphG ∈ G(6,8) shown
in Fig.4. It is a GCC locally maximizing graph because
the conditions of Theorem 2 are satisfied byV0 = {1,2},
V1 = {3,4, 5} andV2 = {6}. However, it is not an ACC

Figure 4: Example of a GCC locally maximizing graph but
not an ACC locally maximizing graph.

locally maximizing graph. The ACC ofG is calculated
asCA(G) = 1

6

(
1
2 + 0+ 1+ 1+ 1+ 0

)
= 7

12 = 0.583· · ·
while the ACC ofG′, which is obtained fromG by re-
moving the edge{1,3} and adding the edge{1,6}, is given
by CA(G′) = 1

6

(
1
3 + 1+ 1+ 2

3 +
2
3 + 1

)
= 7

9 = 0.777· · ·
which is greater thanCA(G).

4. Conclusion

In this paper, we have presented two theoretical results
concerning the global clustering coefficient. The second re-
sult shows that two definitions of the clustering coefficient
differ considerably from the viewpoint of the clustering co-
efficient locally maximizing graph.
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