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Abstract—Algebraic connectivity, the second smallest
eigenvalue of the Laplacian matrix, of a network is an im-
portant quantity that represents how well the network is
connected. In this paper, we propose a novel method for
each agent in a network to estimate the algebraic connec-
tivity of the network. The proposed method is truly decen-
tralized because each agent updates the state value by using
the information obtained from only agents in the neighbor-
hood. The validity of the proposed method is confirmed by
theoretical analysis and numerical experiments.

1. Introduction

One of the fundamental issues in mobile agent networks
is how to keep the connectivity [1]. A promising approach
to this problem is to make use of the algebraic connectiv-
ity, which is defined as the second smallest eigenvalue of
the Laplacian matrix [2]. The algebraic connectivity is an
important measure that represents how well the network is
connected. In particular, it takes a positive value if and
only if the network is connected. However, it is not so easy
for agents to compute or estimate the algebraic connectiv-
ity because each agent in general cannot communicate with
all agents in the network.

Recently, Yang et al. [3] proposed a continuous-time al-
gorithm for agents to estimate the algebraic connectivity of
the network. They also proved analytically that the value
of the algebraic connectivity estimated by each agent con-
verges to the true one for almost all initial conditions. A
few years later, Fukami and Takahashi [4] proposed a mod-
ified algorithm, which is more suitable for hardware imple-
mentation, and proved that the algebraic connectivity can
be estimated by their algorithm too. However, these two
algorithms are not decentralized in a strict sense, because
they are based on a strong assumption that each agent can
compute the average of the state values of all agents instan-
taneously. Yang et al. claim that the computation of the
average can be done quickly by using some average con-
sensus algorithm [5] with a very small time constant, but it
is not clear how to initialize the consensus algorithm.

In this paper, we propose a novel continuous-time algo-
rithm for the estimation of the algebraic connectivity, and
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show the validity from both theoretical and experimental
points of view. The proposed algorithm is a combination
of the one given by Yang et al. [3] and a dynamic average
consensus algorithm. Here, by dynamic average consen-
sus, we mean that the state value of each agent tracks the
average of multiple time-varying reference signals [6, 7].
Because each agent updates the state value by using the in-
formation obtained from only agents in the neighborhood,
the proposed algorithm is truly distributed.

2. Conventional Algorithm

Let us consider a network of n agents labeled from 1 to
n that communicate with each other. Throughout this pa-
per, we assume that the communication topology is static
and symmetric, that is, if agent i can communicate with
agent j then agent j can communicate with agent i. Un-
der these assumptions, the communication between agents
is expressed by an undirected graph G = (V, E) where
V = {1, 2, . . . , n} is the set of vertices representing agents
and E is the set of undirected edges such that {i, j} ∈ E
if and only if agents i and j can communicate with each
other. The set of all vertices adjacent to vertex i is called
the neighborhood of vertex i and denoted by Ni. The ad-
jacency matrix is denoted by A = (ai j) ∈ {1, 0}n×n where
ai j = 1 if and only if {i, j} ∈ E. The degree matrix is de-
noted by D = diag(d1, d2, . . . , dn) ∈ Zn×n

+ where Z+ is the
set of nonnegative integers and di = |Ni| for i = 1, 2, . . . , n.
The Laplacian matrix is defined by L = D − A. Let
λ1, λ2, . . . , λn be n eigenvalues of L. Because L is a real
symmetric matrix, its eigenvalues are real. Hence we as-
sume without loss of generality that λ1 ≤ λ2 ≤ · · · ≤ λn.
Also, it is well known that λ1 is always zero and λ2 is
nonzero if and only if G is connected. Let pi be a nor-
malized eigenvector associated with λi for i = 1, 2, . . . , n.
Because L1 = 0, where 1 and 0 are vectors of all 1 and all
0, respectively, p1 is either 1√

n1 or − 1√
n1.

The second smallest eigenvalue λ2 of L, which is called
the algebraic connectivity, reflects how well the graph is
connected. Yang et al. [3] proposed a continuous-time al-
gorithm for agents to estimate the algebraic connectivity of
the graph representing the communication between agents.
Their algorithm is expressed by the following system of

2015 International Symposium on Nonlinear Theory and its Applications
NOLTA2015, Kowloon, Hong Kong, China, December 1-4, 2015

- 277 -



differential equations:

ẋi = −k1

1
n

n∑
j=1

x j

−k2

∑
j∈Ni

(xi−x j)−k3

1
n

n∑
j=1

x2
j − 1

 xi,

i = 1, 2, . . . , n (1)

where xi(t) is the state value of agent i at time t and
ki (i = 1, 2, 3) are positive constants. By introducing x =
(x1, x2, . . . , xn)T, (1) can be rewritten in a vector form as
follows:

ẋ = −k1

(
1
n
1Tx

)
1 − k2Lx − k3

(
1
n
xTx − 1

)
x . (2)

Yang et al. analyzed the dynamical behavior of (2) and
derived the following theorem.

Theorem 1 (Yang et al. [3]) Suppose that the network is
connected and the initial value x(0) satisfies pT

2x(0) , 0.
Then any solution x(t) of (2) converges to either µp2 or
−µp2 where µ is a positive constant given by

µ =

√
n(k3 − k2λ2)

k3

if and only if k1 > λ2k2 and k3 > λ2k2.

From Theorem 1 we can easily see that

lim
t→∞

∑
j∈Ni

(xi(t) − x j(t))
xi(t)

= lim
t→∞

(Lx(t))i

xi(t)
=

(L(µp2))i

µp2i
= λ2

(3)
which means that the algebraic connectivity λ2 can be ob-
tained from the solution x(t) of (1). However, it is assumed
in (1) that the values of

∑n
j=1 x j(t) and

∑n
j=1 xi(t)2 can be

computed instantaneously. This assumption cannot be met
in general because each agent does not necessarily com-
municate with all other agents. Yang et al. claim that the
values of

∑n
j=1 x j(t) and

∑n
j=1 xi(t)2 can be computed almost

instantaneously by using some consensus algorithm, such
as the one proposed by Olfati-Saber and Murray [5], with
a much smaller time constant than the main algorithm (1).
However, there still remain some problems to be solved,
such as how to set the initial value of the consensus algo-
rithm.

3. Proposed Algorithm

3.1. Dynamic Average Consensus Algorithm

In order to develop a truly decentralized algorithm for
the estimation of the algebraic connectivity of the network,
a dynamic average consensus algorithm is needed. We pro-
pose to use the continuous-time algorithm given by

xi(t) = x̂i(t) + ri(t), i = 1, 2, . . . , n , (4)
˙̂xi = α

∑
j∈Ni

(x j − xi), i = 1, 2, . . . , n , (5)

x̂i(0) = 0, i = 1, 2, . . . , n , (6)

where ri(t) is the time-varying input signal given to agent
i, and (xi(t), x̂i(t)) is the state vector of agent i at time t.
This algorithm is based on the one proposed by Chen et
al. [6], but different from it because the signum function is
not used in (5).

Theorem 2 Suppose that the network is connected and
there exist positive constants C and b such that

∀t ≥ 0, ∥ṙ(t)∥ ≤ Ce−bt (7)

where r(t) = (r1(t), r2(t), . . . , rn(t))T. Then the algorithm
given by (4)–(6) satisfies

lim
t→∞

xi(t) −
1
n

n∑
j=1

r j(t)

 = 0, i = 1, 2, . . . , n . (8)

Proof: Eliminating x̂1(t), x̂2(t), . . . , x̂n(t) from (4)–(6), we
have

ẋ = −αLx + ṙ , (9)
x(0) = r(0) , (10)

where x(t) = (x1(t), x2(t), . . . , xn(t))T and L is the Lapla-
cian matrix of the graph. Note that L is decomposed
as L = PΛP T where P = (p1,p2, . . . ,pn) and
Λ = diag(λ1, λ2, . . . , λn) with λ1 = 0. Note also that
λ2, λ3, . . . , λn are positive because the network is assumed
to be connected. Multiplying P T from the left to both
sides of (9) and (10), and putting P Tx(t) = y(t) =
(y1(t), y2(t), . . . , yn(t))T, we have

ẏ = −αΛy + P Tṙ , (11)
y(0) = P Tr(0) . (12)

The solution of this differential equation is given by

y1(t) = pT
1r(t) (13)

and

yi(t) = e−αλit
∫ t

0
eαλi spT

i ṙ(s)ds+yi(0)e−αλit, i = 2, 3, . . . , n .

(14)
From (14), we have

|yi(t)| ≤ e−αλit
∫ t

0
eαλi s∥pi∥∥ṙ(s)∥ds + yi(0)e−αλit

≤ e−αλit
∫ t

0
eαλi sCe−bsds + yi(0)e−αλit

= Ce−αλit
∫ t

0
e(αλi−b)sds + yi(0)e−αλit

= yi(0)e−αλit +

Cte−αλit, if αλi = b ,
C
αλi−b (e−bt − e−αλit), if αλi , b .
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Because λ2, λ3, . . . , λn are positive, we have

lim
t→∞

yi(t) = 0, i = 2, 3, . . . , n . (15)

It follows from (13) and (15) that the solution of (11) and
(12) satisfies

lim
t→∞

(
y(t) − (pT

1r(t), 0, 0, . . . , 0)T
)
= 0 .

Multiplying P from the left to both sides of this equation,
we have

lim
t→∞

(x(t) − p1p
T
1r(t)) = 0

which is equivalent to (8). □

3.2. Algebraic Connectivity Estimation Algorithm

We now propose a new continuous-time algorithm which
is obtained from (1) by replacing the computations of
1
n
∑n

j=1 x j(t) and 1
n
∑n

j=1 x j(t)2 with the dynamic average
consensus algorithm given by (4)–(6). It is expressed by
the following system of differential equations:

ẋi(t) = −k1yi(t) − k2

∑
j∈Ni

(x j(t) − xi(t))

−k3(zi(t) − 1)xi(t), i = 1, 2, . . . , n (16)
yi(t) = ŷi(t) + xi(t), i = 1, 2, . . . , n (17)
˙̂yi(t) = α

∑
j∈Ni

(y j(t) − yi(t)), i = 1, 2, . . . , n (18)

ŷi(0) = 0, i = 1, 2, . . . , n (19)
zi(t) = ẑi(t) + x2

i (t), i = 1, 2, . . . , n (20)
˙̂zi(t) = α

∑
j∈Ni

(z j(t) − zi(t)), i = 1, 2, . . . , n (21)

ẑi(0) = 0, i = 1, 2, . . . , n (22)

where (xi(t), yi(t), ŷi(t), zi(t), ẑi(t))T is the state vector of
agent i at time t. The first element xi(t) represents the es-
timated value of the algebraic connectivity. The second el-
ement yi(t) and the fourth element zi(t) represent the esti-
mated values of 1

n
∑n

j=1 x j(t) and 1
n
∑n

j=1 x j(t)2, respectively.
Because each agent only needs information of itself and its
neighbors in order to update the state vector, the proposed
algorithm is truly decentralized.

If the network is connected and x(t) satisfies

∀t ≥ 0, ∥ẋ(t)∥ ≤ Ce−bt (23)

for some positive constants C and b, then it follows from
Theorem 2 that yi(t) − 1

n
∑n

j=1 x j(t) converges to 0 for all
i and zi(t) − 1

n
∑n

j=1 x j(t)2 converges to 0 for all i. In this
case, it is expected that x(t) converges to an eigenvector
of L associated with λ2 and that the algebraic connectivity
can be estimated by (3). However, it is not clear whether
(23) is true or false because the behavior of x(t) depends
on y1(t), y2(t), . . . , yn(t) and z1(t), z2(t), . . . , zn(t). Theoret-
ical analysis of the convergence property of the proposed
algorithm is a future problem.
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Figure 1: Networks used in numerical experiments. Alge-
braic connectivities are: (a) 0.5188057, (b) 0.1794688, and
(c) 0.4165522.

4. Numerical Experiments

In order to examine the validity of the proposed method,
we conducted some numerical experiments. To be more
specific, for each of the three networks shown in Fig.1, we
found the solution x(t) of the system of differential equa-
tions described by (16)–(22) numerically by using Euler’s
method with a step size of 0.005, and then checked whether
x(t) converged to an eigenvector of L associated with λ2
and whether λ2 was correctly estimated by (3). The values
of positive constants k1, k2, k3 and α were set to 1, and the
initial value x(0) was determined randomly.

Results are shown in Figs.2–5. Fig.2 shows the wave-
forms of | cos θ(t)| = |x(t)Tp2|/∥x(t)∥ and ∥x(t)∥ for the
network shown in Fig.1(a). Because | cos θ(t)| converges to
1 and ∥x(t)∥ converges to a positive constant, we can con-
clude that x(t) converges to an eigenvector of L associated
with λ2. Fig.3 shows the waveforms of the values of the
algebraic connectivity estimated by the five agents in the
same network. We see there that all of the five estimated
values converge to the true value. From these observations,
we can conclude that the proposed algorithm works prop-
erly for the network shown in Fig.1(a). We also see from
Figs.4 and 5 that the proposed algorithm works for other
two networks in Fig.1.

5. Conclusion

We have proposed a new continuous-time algorithm for
the estimation of the algebraic connectivity of multi-agent
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Figure 2: Waveforms of | cos θ(t)| = |x(t)Tp2|/∥x(t)∥ and
∥x(t)∥ for the network shown in Fig.1(a).
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Figure 3: Waveforms of
∑

j∈Ni
(xi(t) − x j(t))/xi(t) (i =

1, 2, 3, 4, 5) for the network shown in Fig.1(a).

networks. The validity of the the proposed algorithm has
been confirmed by numerical experiments with three net-
works consisting of 5, 12 and 20 agents. However, it re-
mains an open question whether the solution of the sys-
tem of differential equations described by (16)–(22) always
converges to an eigenvector of the Laplacian matrix associ-
ated with the algebraic connectivity. This question will be
answered in future studies.
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