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Abstract—The second smallest eigenvalue of the Lapla-
cian matrix of a graph, also known as the algebraic connec-
tivity, is an important measure that represents how strongly
the graph is connected. The algebraic connectivity also
characterizes the performance of some dynamic processes
on networks such as consensus in multiagent networks and
synchronization of coupled oscillators. In this paper, we
study the problem of finding graphs that maximize the al-
gebraic connectivity among all graphs with the same num-
ber of vertices and edges, and extend a known result about
complete bipartite graphs to complete multipartite graphs.

1. Introduction

Algebraic connectivity [1] of a graph, which is defined
as the second smallest eigenvalue of the Laplacian matrix,
is an important measure that represents how strongly the
graph is connected. Not only it has been intensively stud-
ied in mathematics [2, 3, 4], but also it has attracted a great
deal of attention from researchers in engineering. For ex-
ample, the convergence rate of a well-known consensus al-
gorithm for multiagent networks is determined by the alge-
braic connectivity of the network [5]. Also, the algebraic
connectivity plays important roles in the design of com-
puter networks [6] and air transportation networks [7].

Recently, Ogiwara et al. [8] studied the problem of find-
ing graphs with a given number of vertices and edges that
maximize the algebraic connectivity. This problem is im-
portant from various perspectives such as the fast conver-
gence of the consensus algorithm, the robustness of net-
works against failures and attacks, and so on. They proved
that some well-known classes of graphs such as star graphs,
cycle graphs and complete bipartite graphs are algebraic
connectivity maximizers under certain conditions. This
problem was also considered by Kolokolnikov [9]. He pre-
sented a conjecture that the complete bipartite graph K2,n−2
maximizes the algebraic connectivity among all graphs
with n vertices and 2(n − 2) edges. He also showed by
exhaustive search that this conjecture holds true for all n
less than or equal to 13. Fujihara and Takahashi [10] stud-
ied a slightly different problem and proved that any com-
plete multipartite graph maximizes the algebraic connec-
tivity among all graphs with the same degree matrix.

In this paper, we prove that if a complete multipartite
graph satisfies a certain condition then it maximizes the al-
gebraic connectivity among all graphs with the same num-

ber of vertices and edges. This is an extension of a theorem
given by Ogiwara et al. [8], which states that any complete
bipartite graph Kn1,n2 with n1 ≈ n2 maximizes the algebraic
connectivity among all graphs with n1+n2 vertices and n1n2
edges. We further generalize this result to graphs obtained
from complete multipartite graphs by adding some edges.

2. Algebraic Connectivity Maximizing Graphs

2.1. Notations and Definitions

Throughout this paper, by a graph we mean a simple
undirected graph. Let G = (V(G), E(G)) be a graph with
the vertex set V(G) = {1, 2, . . . , n} and the edge set E(G).
The Laplacian matrix of G is defined by L(G) = D(G) −
A(G) [1] where D(G) = diag(d1(G), d2(G), . . . , dn(G)) is
the degree matrix and A(G) = (ai j(G)) ∈ {0, 1}n×n is the ad-
jacency matrix. Because L(G) is positive semi-definite, its
eigenvalues, which are denoted by λ1(G), λ2(G), . . . , λn(G),
are nonnegative real numbers. In the remainder of this pa-
per, we assume without loss of generality that 0 ≤ λ1(G) ≤
λ2(G) ≤ · · · ≤ λn(G). Because the Laplacian matrix satis-
fies L(G)1 = 0 = 0 ·1 where 1 is the vector of all ones and
0 is the zero vector, the smallest eigenvalue λ1(G) is 0 and 1
is an eigenvector associated with λ1(G). The second small-
est eigenvalue λ2(G) is called the algebraic connectivity [1]
of G. It represents how strongly the graph is connected. In
particular, λ2(G) is positive if and only if G is connected.

The algebraic connectivity maximizing graph is defined
as follows [8].

Definition 1 Let Gn,m be the set of all graphs with n ver-
tices and m edges. If a graph G ∈ Gn,m satisfies the condi-
tion that

∀G′ ∈ Gn,m, λ2(G) ≥ λ2(G′)

then G is called an algebraic connectivity maximizing
graph in Gn,m.

2.2. Known Results

If the vertex set V(G) = {1, 2, . . . , n} of a graph G is
partitioned into k (≥ 2) subsets V1,V2, . . . ,Vk in such a way
that vertices i ∈ Va and j ∈ Vb are adjacent to each other
if and only if a , b, then G is called a complete k-partite
graph and denoted by Kn1,n2,...,nk where nl = |Vl| for l =
1, 2, . . . , k. An example of such a graph is shown in Fig. 1.
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Figure 1: Complete 4-partite graph K1,1,2,4.

In the following discussions, we assume without loss of
generality that

1 ≤ n1 ≤ n2 ≤ · · · ≤ nk . (1)

The complete n-partite graph K1,1,...,1 is called the complete
graph and denoted by Kn in this paper.

First, we present some fundamental results about the
eigenvalues of the Laplacian matrix and their multiplicities.

Lemma 1 ([2]) The eigenvalues of L(Kn) are 0, with mul-
tiplicity 1, and n, with multiplicity n − 1.

Theorem 1 ([2]) If λ is an eigenvalue of L(G) then 0 ≤
λ ≤ n. The multiplicity of 0 equals the number of con-
nected components of G. The multiplicity of n equals one
less than the number of connected components of Gc, the
complement of G.

Theorem 2 The eigenvalues of L(Kn1,n2,...,nk ) are 0, n −
nk, n−nk−1, . . . , n−n1 and n, with multiplicity 1, nk−1, nk−1−
1, . . . , n1 − 1 and k − 1, respectively.

Proof: Because Kn1,n2,...,nk is connected, it follows from
Theorem 1 that the smallest eigenvalue 0 of L(Kn1,n2,...,nk )
has multiplicity 1. Also, because the complement Kc

n1,n2,...,nk

of Kn1,n2,...,nk has k connected components which are iso-
morphic to Kn1 ,Kn2 , . . . ,Knk , it follows from Theorem 1
that L(Kn1,n2,...,nk ) has the largest eigenvalue n with multi-
plicity k − 1. Moreover, we see from Lemma 1 that the
eigenvalues of L(Kc

n1,n2,...,nk
) are 0, n1, n2, . . . , nk with mul-

tiplicity k, n1 − 1, n2 − 1, . . . , nk − 1, respectively. Hence,
in order to complete the proof, we only have to show that
if L(Kc

n1,n2,...,nk
) has an eigenvalue λ other than 0 and n with

multiplicity µ then L(Kn1,n2,...,nk ) has an eigenvalue n − λ
with the same multiplicity.

Note that Kn1,n2,...,nk and Kc
n1,n2,...,nk

satisfy

L(Kn1,n2,...,nk ) = L(Kn) −L(Kc
n1,n2,...,nk

) . (2)

Let v be an eigenvector of L(Kc
n1,n2,...,nk

) associated with λ.
Then v is orthogonal to 1. Multiplying both sides of (2) by
v from right, we have

(L(Kn) −L(Kc
n1,n2,...,nk

))v =
(
nI − 11T

)
v − λv

= nv − λv
= (n − λ)v (3)

where I is the identity matrix. From (2) and (3) we have

L(Kn1,n2,...,nk )v = (n − λ)v

which means that n − λ is an eigenvalue of L(Kn1,n2,...,nk )
and v is an eigenvector associated with n − λ. In addi-
tion, it is easy to see that the dimension of the eigenspace
of L(Kc

n1,n2,...,nk
) associated with λ is equal to that of

L(Kn1,n2,...,nk ) associated with n − λ. □

Theorem 2 may not be new. However, it is difficult to
find this result in the existing literature. We therefore have
provided a proof of it.

Next, we present two results given by Ogiwara et al. [8]
about the sufficient condition for a complete bipartite graph
to be an algebraic connectivity maximizing graph.

Theorem 3 ([8]) If k = 2 and two positive integers n1 and
n2 satisfy n1 + n2 ≥ 3 and

n1 −
2n2

1

n1 + n2
< 1

as well as (1) then the complete bipartite graph Kn1,n2 is an
algebraic connectivity maximizing graph in Gn1+n2,n1n2 .

Corollary 1 ([8]) If k = 2 and two positive integers n1 and
n2 satisfy n1 + n2 ≥ 3 and⌊

n1 + n2 − 1
2

⌋
≤ n1 ≤

⌊n1 + n2

2

⌋
as well as (1) then the complete bipartite graph Kn1,n2 is an
algebraic connectivity maximizing graph in Gn1+n2,n1n2 .

We also provide two well-known results about the alge-
braic connectivity, that will be needed in later discussions.

Theorem 4 ([1]) If G is not a complete graph then λ2(G) ≤
δ(G) where δ(G) = min1≤i≤n{di(G)}.

Theorem 5 ([3]) Let G′ ∈ Gn,m+1 be a graph obtained by
adding an edge to G ∈ Gn,m. Then we have

λ1(G) ≤ λ1(G′) ≤ λ2(G) ≤ λ2(G′) ≤ · · · ≤ λn(G) ≤ λn(G′) .

3. Exhaustive Search of Algebraic Connectivity Maxi-
mizing Graphs

In order to see what kind of complete multipartite graphs
can be algebraic connectivity maximizing graphs, we de-
veloped an exhaustive search algorithm based on the graph
enumeration algorithm proposed by Sato and Nakano [11]
and applied it to Gn,m for various values of (n,m).

We first applied the algorithm to Gn,m with n ≤ 10 such
that it contains a complete bipartite graph. For n = 10, for
example, the algorithm was applied to G10,9, G10,16, G10,21,
G10,24 andG10,25. As a result, it was found that any bipartite
graph Kn1,n2 with n1 + n2 ≤ 10 is an algebraic connectivity
maximizing graph in Gn1+n2,n1n2 .
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Figure 2: An algebraic connectivity maximizing graph in
G7,14.

Figure 3: An algebraic connectivity maximizing graph
found by the exhaustive search algorithm for G8,17

Next we applied the algorithm to Gn,m such that a com-
plete tripartite graph is contained in it. First let us consider
G7,14 which contains K1,2,4. An algebraic connectivity max-
imizing graph found by the algorithm is shown in Fig. 2.
Note that it is not a complete multipartite graph. Moreover,
all other graphs found by the algorithm were isomorphic to
the graph in Fig. 2. This means that K1,2,4 is not an alge-
braic connectivity maximizing graph. On the other hand,
for G8,24 and G9,27, the algorithm found K2,2,2,2 and K3,3,3,3,
respectively, as algebraic connectivity maximizing graphs.
From these results and Corollary 1, it is conjectured that the
complete k-partite graph Kn1,n2,...,nk with n1 = n2 = · · · = nk

is an algebraic connectivity maximizing graph. It is proved
in the next section that the conjecture is in fact true.

We also applied the algorithm to Gn,m which does not
necessarily contain a complete multipartite graph. An al-
gebraic connectivity maximizing graph found for G8,17 is
shown in Fig. 3 and that for G9,28 is shown in Fig. 4. It is
easily seen that each of them is obtained from a complete
multipartite graph Kn1,n2,...,nk with n1 = n2 = · · · = nk by
adding one edge. It is proved in the next section that these
graphs are algebraic connectivity maximizing graphs.

4. Theoretical Analysis

We give two theorems that can be considered as exten-
sions of Theorem 3 and Corollary 1. Before doing so, we
present two lemmas.

Lemma 2 If k ≥ 2 and k positive integers n1, n2, . . . , nk

satisfy

nk ≥ 2 and nk

k−1∑
l=1

nl ≤
k−1∑
l=1

n2
l (4)

as well as (1) then the complete k-partite graph Kn1,n2,...,nk is

Figure 4: An algebraic connectivity maximizing graph
found by the exhaustive search algorithm for G9,28.

an algebraic connectivity maximizing graph in Gn,m where
n =

∑k
l=1 nl and m =

∑k
l=1 nl(n − nl)/2.

Proof: By Theorem 2, the algebraic connectivity of the
complete k-partite graph Kn1,n2,...,nk is equal to n − nk. We
therefore prove under the assumption (4) that λ2(G) ≤ n−nk

for all G ∈ Gn,m where n =
∑k

l=1 nl and m =
∑k

l=1 nl(n −
nl)/2. Furthermore, by Theorem 4, it suffices for us to show
under the assumption (4) that δ(G) ≤ n − nk for all G ∈
Gn,m (note that G is not a complete graph because of the
assumption nk ≥ 2). The sum of the degrees of all vertices
of G is given by

n∑
i=1

di(G) = 2m =
k∑

l=1

nl(n − nl) = n2 −
k∑

l=1

n2
l .

Here it follows from assumption (4) that

−
k∑

l=1

n2
l = −

k−1∑
l=1

n2
l − n2

k ≤ −nk

k−1∑
l=1

nl − n2
k = −nnk

from which we have
n∑

i=1

di(G) ≤ n2 − nnk = n(n − nk).

Therefore, we finally have

δ(G) ≤ 1
n

n∑
i=1

di(G) = n − nk

which completes the proof. □

Lemma 3 Let k be any integer greater than or equal to 2.
Positive integers n1, n2, . . . , nk satisfy (1) and (4) if and only
if n1 = n2 = · · · = nk ≥ 2.

Proof: It follows from (1) that nknl ≥ n2
l for l = 1, 2,

. . . , k − 1. Hence (4) holds if and only if 2nl ≤ nknl = n2
l

for l = 1, 2, . . . , k − 1, that is, n1 = n2 = · · · = nk ≥ 2. □

From Lemmas 2 and 3, we immediately obtain the fol-
lowing theorem.

Theorem 6 If k ≥ 2, the positive integers n1, n2, . . . , nk are
equal to each other, and n1 ≥ 2 then the complete k-partite
graph Kn1,n2,...,nk is an algebraic connectivity maximizing
graph in Gn,m where n = kn1 and m = kn1(n − n1)/2.
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This theorem can be further extended as follows.

Theorem 7 If k ≥ 2, the positive integers n1, n2, . . . , nk are
equal to each other, n1 ≥ 2, and p is a positive integer
less than kn1/2 then any graph obtained from the complete
k-partite graph Kn1,n2,...,nk by adding p edges has the same
algebraic connectivity as Kn1,n2,...,nk and is an algebraic con-
nectivity maximizing graph in Gn,m+p where n = kn1 and
m = n(n − n1)/2.

Proof: Suppose that k, n1, n2, . . . , nk and p satisfy the as-
sumptions of the statement. We first show that

p ≤ k(n1 − 1) − 1. (5)

If kn1 is even then we have

k(n1 − 1) − 1 − p ≥ k(n1 − 1) − 1 −
(

kn1

2
− 1

)
=

k
2

(n1 − 2)

which is nonnegative. If kn1 is odd then we have

k(n1 − 1) − 1 − p ≥ k(n1 − 1) − 1 − kn1 − 1
2

=
k(n1 − 2) − 1

2

which is positive because k ≥ 3 and n1 ≥ 3. Therefore, p
always satisfies (5). Let G∗ be any graph obtained from the
complete k-partite graph Kn1,n1,...,n1 by adding p edges. The
eigenvalues of L(Kn1,n1,...,n1 ) are 0 with multiplicity 1, n−n1
with multiplicity k(n1−1), and n with multiplicity k−1 due
to Theorem 2. By this fact, together with Theorem 5 and
(5), we have λ2(G∗) = n − n1 = λ2(Kn1,n2,...,nk ). In order to
prove the second part, it suffices to show that λ2(G) ≤ n−n1
for any G ∈ Gn,m+p. By Theorem 4, we have

λ2(G) ≤ δ(G) ≤ 1
n

n∑
i=1

di(G) =
2(m + p)

n
(6)

where

2(m + p)
n

=
n(n − n1) + 2p

n
= n − n1 +

2p
n

and 2p/n is less than 1 from the assumption. Therefore, the
inequality (6) implies that λ2(G) ≤ n − n1. □

5. Conclusion

In this paper, we first proved that any complete multi-
partite graph Kn1,n2,...,nk with n1 = n2 = · · · = nk is an al-
gebraic connectivity maximizing graph. We then extended
this result to graphs obtained from such complete multipar-
tite graphs by adding some edges. However, we have to say
that these results are rather severe, because Theorems 6 or
7 apply to the set of graphs with n vertices and m edges for
relatively few choices of n and m. A future problem is to
obtain milder sufficient conditions.
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