
A Fast Method for Finding the Edge to be Added to Minimize
Betweenness Centrality of a Specified Vertex

Toshiyuki Namba, Tatsuki Kohno and Norikazu Takahashi

Graduate School of Natural Science and Technology, Okayama University
3–1–1 Tsushima-naka, Kita-ku, Okayama 700–8530, Japan

Email: {nanba,kono}@momo.cs.okayama-u.ac.jp, takahashi@cs.okayama-u.ac.jp

Abstract—Betweenness centrality is a measure that rep-
resents the importance of each vertex in a graph. From the
viewpoint of the robustness against attacks and failures, it is
desired that all vertices take similar values of the between-
ness centrality. In this paper, a fast algorithm for finding
the edge to be added to minimize the betweenness central-
ity of a specified vertex is developed. The efficiency of the
proposed algorithm is confirmed by some experiments on
random graphs and scale-free graphs. It is also shown ex-
perimentally that the proposed algorithm is useful for im-
proving the robustness of the graph by an edge addition.

1. Introduction

Since the seminal paper by Watts and Strogatz [1], com-
plex networks have attracted a great deal of attention from
researchers in physics, engineering, economics, sociology,
and so on. When analyzing a network, it is often impor-
tant to evaluate the importance of each node quantitatively.
Various measures of the importance have been proposed in
the literature. Among them, this paper focuses on the be-
tweenness centrality [2] which is well known and widely
used in the analysis of complex networks.

From the viewpoint of the robustness against attacks and
failures, it is desired that all vertices take similar values of
the betweenness centrality. A natural way to make a given
network more robust is to add a small number of edges to
decrease the largest betweenness centrality of the network
as much as possible. As an example, let us consider the
graph shown in Fig. 1 (a). If we add an edge to connect ver-
tices 2 and 5, the largest betweenness centrality decreases
from 8 to 4. However, finding edges to be added is compu-
tationally very expensive because, for each of the nonexist-
ing edges, we have to compute the betweenness centrality
for all vertices assuming that the edge is added.

In this paper, we consider the problem of finding the
edge to be added in order to minimize the betweenness cen-
trality of a specified vertex. This problem is closely related
to the improvement of the robustness of a network men-
tioned above. If the betweenness centrality of the vertex
with the largest betweenness centrality can be greatly de-
creased by an edge addition, it is expected that the largest
betweenness centrality of the graph also decreases. We
first provide a few theoretical results about the effect of an

8.0

4.0

0.0

0.0 4.0

0.0

1

2

3

4

6

5

4.0

4.0

0.0

0.0

3

4

6

5

4.0

4.0

1

2

(a) (b)

Figure 1: Effect of an edge addition on betweenness cen-
trality. The number beside each vertex represents the be-
tweenness centrality of the vertex.

edge addition on the number and length of shortest paths
between any pair of vertices. We next propose an algo-
rithm, which is based on these theoretical results, for solv-
ing the above-mentioned problem. We finally examine the
efficiency of the proposed algorithm by some experiments
on random graphs and scale-free graphs, and show that the
proposed algorithm is much faster than a simple method
based on Brandes’s algorithm [3].

2. Betweenness Centrality

2.1. Mathematical Expression of Networks

Throughout this paper, a network is expressed as a sim-
ple connected undirected graph G = (V, E), where V =
{1, 2, . . . ,N} is the vertex set and E = {e1, e2, . . . , eM} is the
edge set. Because G is simple and undirected, each mem-
ber of E is an unordered pair of distinct vertices.

The set of all shortest paths from vertex s to vertex t (, s)
in G is denoted by Gst = (Vst, Est) where Vst ⊆ V is the set
of all vertices that appear in the shortest paths, and Est is
the set of all directed edges that appear in the shortest paths.
Note that, unlike E, each member of Est is an ordered pair
of distinct vertices. The set of all shortest paths from vertex
s to all other vertices in G is denoted by Gs = (V, Es) where
Es is the set of all edges that appear in the shortest paths. It
is clear that Est is a subset of Es.

The number of shortest paths from vertex s to vertex t
and the length of these paths are denoted by σst and dst, re-
spectively. Because G is undirected, σst = σts and dst = dts

for all pairs of s and t (, s). In the following discussions,

- 614 -

2016 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2016, Yugawara, Japan, November 27th-30th, 2016

we assume for the sake of convenience that σss = 1 and
dss = 0 for all s ∈ V .

2.2. Betweenness Centrality

The betweenness centrality of vertex i, which is denoted
by Bi, is defined by

Bi =
∑
s,i

∑
t,i,s

σst(i)
σst

(1)

where σst(i) is the number of shortest paths from vertex s
to vertex t that pass through vertex i. In other words, the
betweenness centrality of vertex i is the sum of the ratio of
the number of shortest paths from s to t passing through i
to the number of all shortest paths from s to t over all pairs
of s and t. Therefore, a vertex with a high betweenness
centrality is a key for many pairs of vertices because all or
many of the shortest paths between these two vertices pass
through the vertex.

2.3. Brandes’s Algorithm for Computing Betweenness
Centrality

A simple method for computing Bi for all i ∈ V is as
follows. First, for s = 1, 2, . . . ,N, one finds all shortest
paths from vertex s to all other vertices by using, for exam-
ple, the breadth-first search algorithm. During this process,
dst and σst can be found for all pairs of distinct vertices
s and t, and σst(i) can be found for all triples of distinct
vertices s, t and i. Next, one computes Bi by using (1)
for i = 1, 2, . . . ,N. The computational complexity of this
method is O(N3), which becomes very large as the number
of vertices increases.

The most widely used algorithm for computing the be-
tweenness centrality is the one proposed by Brandes [3]. It
is described as follows.

Algorithm 1 (Brandes’s Algorithm)
Input: A simple connected undirected graph G = (V, E)
Output: B1, B2, . . . , BN

1. Set s← 1 and Bi ← 0 for i = 1, 2, . . . ,N.

2. Find Gs = (V, Es) by using the breadth-first search. In
so doing, find also dsi and σsi for i = 1, 2, . . . ,N.

3. Set δs(i)← 0 for i = 1, 2, . . . ,N.

4. Update the value of δs(i) by

δs(i)←
∑

j:(i, j)∈Es

σsi

σs j
(1 + δs(j)),

i = 1, 2, . . . , s − 1, s + 1, s + 2, . . . ,N.

5. Update the value of Bi by

Bi ← Bi + δs(i), i = 1, 2, . . . ,N.

6. If s = N then return B1, B2, . . . , BN and stop. Other-
wise set s← s + 1 and go to Step 3.

Let us consider the computational complexity of this al-
gorithm. Step 2 can be done in O(M) time, where M is the
number of edges. Step 4 can be done in O(M) too, because
we can update the values of {δs(i)}Ni=1 while traversing the
vertices once in non-increasing order of their distance from
s [3]. Therefore, the total computational complexity of Al-
gorithm 1 is O(NM), which is in general lower than O(N3).
In particular, the former is much lower than the latter if
M ≪ N2, that is, the graph is sparse.

3. Theoretical Analysis of the Effect of One Edge Ad-
dition on Betweenness Centrality

Let G′ = (V, E′) be the graph obtained from a graph
G = (V, E) by adding an edge e = {α, β} < E. The set
of all shortest paths from vertex s to vertex t (, s) in G′ is
denoted by the directed graph G′st = (V ′st, E

′
st). The set of

all shortest paths from s to all other vertices in G′ is de-
noted by G′s = (V, E′s). The number of shortest paths from
s to t and the length of these paths are denoted by σ′st and
d′st, respectively. The number of shortest paths from s to t
that pass through i is denoted by σ′st(i).

In this section, we show that the values of σ′st, σ
′
st(i) and

d′st can be computed from {σpq}Np,q=1 and {dpq}Np,q=1. We
hereafter assume without loss of generality that

dsα ≤ dsβ. (2)

We also assume for convenience that Vss = V ′ss = {s}, Ess =

E′ss = ∅, σss = σ
′
ss = 1 and dss = d′ss = 0 for all s ∈ V .

Theorem 1 Under the assumption (2), the following state-
ments hold true.

1. If dsα < dsβ and dsα+dβt+1 < dst then i) G′st consists of
Gsα, the directed edge (α, β) and Gβt, ii) σ′st = σsασβt,
and iii) d′st = dsα + 1 + dβt.

2. If dsα < dsβ and dsα + dβt + 1 = dst then i) G′st consists
of Gst, Gsα, the directed edge (α, β), and Gβt, ii) σ′st =

σst + σsασβt, and iii) d′st = dst.

3. If dsα = dsβ and dsα + dβt + 1 > dst then i) G′st = Gst,
ii) σ′st = σst, and iii) d′st = dst.

Theorem 2 Under the assumption (2), the following state-
ments hold true.

1. If dsα < dsβ and dsα + dβt + 1 < dst then

σ′st(i) =

σsiσiασβt, if i ∈ Vsα,
σsασβiσit, if i ∈ Vβt,
0, if i < Vsα ∪ Vβt.

- 615 -

2. If dsα < dsβ and dsα + dβt + 1 = dst then

σ′st(i) =

σst(i) + σsiσiασβt, if i ∈ Vsα,
σst(i) + σsασβiσit, if i ∈ Vβt,
σst(i), if i < Vsα ∪ Vβt.

3. If dsα = dsβ or dsα + dβt + 1 > dst then σ′st(i) = σst(i).

We omit the proofs of these theorems due to space con-
straints.

Note that we need to check the conditions i ∈ Vsα and
i ∈ Vβt in order to compute σ′st(i). However, this is easily
done because it is well known that i ∈ Vpq if and only if
dpq = dpi +diq. Note also that the value of σst(i) is required
for the computation of σ′st(i). However, σst(i) can be easily
obtained by

σst(i) =
{
σsiσit, if dsi + dit = dst,
0, if dsi + dit , dst.

Thus σ′st(i) can be computed from {σpq}Np,q=1 and {dpq}Np,q=1.

4. Proposed Algorithm

We consider in this section the problem of finding the
edge to be added to minimize the betweenness centrality
of a specified vertex. For this problem, the following al-
gorithm is easily derived from the theoretical results in the
previous section.

Algorithm 2
Input: G = (V, E) and i ∈ V .
Output: Edge {α, β} < E to be added.

1. Compute {σpq}Np,q=1 and {dpq}Np,q=1 for G by the
breadth-first search algorithm.

2. Set Bmin ← ∞ and α← 1.

3. Set β← α + 1.

4. If {α, β} ∈ E then go to Step 7. Otherwise go to Step 5.

5. Compute B′i by Algorithm 3 given below.

6. If B′i < Bmin then set Bmin ← B′i , αmin ← α and βmin ←
β.

7. If β = N then go to Step 8. Otherwise set β ← β + 1
and go to Step 4.

8. If α = N − 1 then return {αmin, βmin} and stop. Other-
wise set α← α + 1 and go to Step 3.

Algorithm 3
Input: G = (V, E), {σpq}Np,q=1, {dpq}Np,q=1, {α, β} < E and
i ∈ V
Output: B′i

1. Set s← 1 and B′i ← 0.

Table 1: Computation time for random graphs.
N M Proposed (sec) Simple (sec)
70 387 0.062 12.453

100 873 0.265 96.812
150 1867 1.281 986.25
200 3317 4.031 5910.172
250 5083 9.968 23525.422

Table 2: Computation time for scale-free graphs.
N M Proposed (sec) Simple (sec)
70 204 0.094 7.203

100 294 0.328 40.891
150 444 1.609 302.077
200 594 4.968 1197.421
250 744 11.890 3520.593

2. If s = i then go to Step 8. Otherwise go to Step 3.

3. Set t ← 1.

4. If t ∈ {i, s} then go to Step 7. Otherwise go to Step 5.

5. Compute σst and σst(i) by Theorem 1 and Theorem 2,
respectively.

6. B′i ← B′i + σst(i)/σst

7. If t = N then go to Step 8. Otherwise set t ← t+1 and
go to Step 4.

8. If s = N then return B′i and stop. Otherwise set s ←
s + 1 and go to Step 2.

Let us examine the computational complexity of Algo-
rithm 2. Step 1 can be done in O(NM) time. Step 5, that
is, Algorithm 3 can be accomplished in O(N2) time, and
there are N(N − 1)/2 − M candidates for the edge to be
added. Therefore, we can conclude that the computational
complexity of Algorithm 2 is O(N4).

In Step 5 of Algorithm 2, we can employ Algorithm 1
instead of Algorithm 3. In this case, Step 1 can be skipped.
Also, unnecessary computations in Steps 4 and 5 of Al-
gorithm 1 can be skipped too. Nevertheless, the compu-
tational complexity of this simple algorithm is O(N3M)
which is higher than O(N4).

5. Application of the Proposed Algorithm to Vertex
with the Maximum Betweenness Centrality

In order to evaluate the efficiency of the proposed algo-
rithm, the authors applied Algorithm 2 and the algorithm
mentioned in the last paragraph of the previous section,
which is hereafter called the simple algorithm, to random
graphs [4] and scale-free graphs [5]. By a random graph,
we mean a graph such that each pair of vertices is con-
nected with probability p. In the experiments, the value

- 616 -

Table 3: The largest betweenness centrality before and after
an edge addition to random graphs.

N M Before After Diff.
70 387 83.261 76.778 −6.483

100 873 110.542 107.266 −3.276
150 1867 132.943 130.914 −2.029
200 3317 183.125 181.772 −1.353
250 5083 243.350 241.127 −2.223

Table 4: The largest betweenness centrality before and after
an edge addition to scale-free graphs.

N M Before After Diff.
70 204 1327.625 1307.093 −20.532

100 294 3330.202 3303.231 −26.971
150 444 8228.860 8178.460 −50.400
200 594 15834.116 15776.048 −58.068
250 744 25438.355 25367.843 −70.512

of p was set to 0.1666. Scale-free graphs were generated
by the process proposed by Barabási and Albert [5]. To
be more specific, we start with the complete graph with m0
vertices, and then add new vertices one by one. When a
new vertex is added, it is connected to m (≤ m0) existing
vertices with a probability that is proportional to their de-
grees. In the experiments, the values of m0 and m were set
to 4 and 3, respectively. For each of the graphs mentioned
above, the vertex with the largest betweenness centrality
was chosen as the specified vertex. All algorithms were
implemented with C language, complied with gcc version
5.3.0 and executed on a PC with Intel Core i5 4590 proces-
sor and 8GB RAM.

Computation time of the two algorithms is shown in Ta-
bles 1 and 2. In the case of random graphs, the proposed
algorithm is faster than the simple one by a factor of 200 to
2360 as shown in Table 1. In the case of scale-free graphs,
the proposed algorithm is faster than the simple one by a
factor of 77 to 296 as shown in Table 2. These results sug-
gest the effectiveness of the proposed algorithm.

If the edge found by the proposed algorithm is added
to the graph, the betweenness centrality of the vertex hav-
ing the largest betweenness centrality among all vertices is
minimized. However, it is not guaranteed that the largest
betweenness centrality of the graph decreases. If the be-
tweenness centrality of some vertex other than i, which is
the vertex having the largest betweenness centrality before
the edge is added, becomes greater than Bi by the addition
of the edge, the largest betweenness centrality increases.
So let us examine whether or not the largest betweenness
centrality is decreased by the edge addition. Results are
shown in Tables 3 and 4, from which we see that the largest
betweenness centrality decreases for all graphs used in the
experiments. However, this is not always true. To see
this, let us consider the graph shown in Fig. 2. Among

1

2

3

4

5

6

7

89

10 11

Figure 2: A graph with 11 vertices and 16 edges.

11 vertices of the graph, vertex 3 has the largest between-
ness centrality, which is 11.50. If Algorithm 2 is applied to
vertex 3 of this graph, it returns edge {2, 10}. In fact, this
edge can decrease the betweenness centrality of vertex 3 to
2.95. However, it also increases the betweenness centrality
of vertex 2 from 10.75 to 14.50.

6. Conclusion

The problem of finding the edge to be added that mini-
mizes the betweenness centrality of a specified vertex of a
graph has been studied in this paper. We first analyzed the-
oretically the effect of an edge addition on the number and
length of the shortest paths between each pair of vertices.
We then developed an algorithm, which is based on the the-
oretical analysis, for solving the problem and demonstrated
the efficiency by experiments.

Acknowledgement

This work was partially supported by JSPS KAKENHI
Grant Number JP15K00035.

References

[1] D. J. Watts and S. H. Strogatz, “Collective dynamics
of ‘small-world’ networks,” Nature, vol.393, pp.440–
442, 1998.

[2] L. C. Freeman, “A set of measures of centrality based
on betweenness,” Sociometry, vol.40, no.1, pp.35–41,
1977.

[3] U. Brandes, “A faster algorithm for betweenness cen-
trality,” Journal of Mathematical Sociology, vol.25,
no.2, pp.163–177, 2001.

[4] E. N. Gilbert, “Random graphs,” The Annals of
Mathematical Statistics, vol.30, no.4, pp.1141–1144,
1959.

[5] A.-L. Barabási and R. Albert, “Emergence of scal-
ing in random networks,” Science, vol.286, no.5439,
pp.509–512, 1999.

- 617 -

