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Abstract—Nonnegative Matrix Factorization (NMF) is
an operation that decomposes a given nonnegative matrix
into two nonnegative factor matrices. NMF is usually for-
mulated as a constrained optimization problem in which an
objective function has to be minimized under the constraint
that all variables are nonnegative, and the multiplicative up-
date rules are widely used for solving this problem. In this
paper, we give a unified method for deriving a multiplica-
tive update rule from a given objective function including
regularization terms. We then apply it to 22 objective func-
tions obtained by adding two types of regularization terms
to 11 error functions.

1. Introduction

Nonnegative Matrix Factorization (NMF) [1, 2, 3] is an
operation that decomposes a given nonnegative matrix X ∈
RM×N
+ (R+ denotes the set of nonnegative real numbers) into

two nonnegative matrices W ∈ RM×K
+ and H ∈ RK×N

+ such
that WH is approximately equal to X (see Fig. 1). NMF
is usually formulated as optimization problems of the form:

minimize D(W ,H)
subject to W ≥ 0, H ≥ 0,

(1)

where D(W ,H) represents an error between X and WH .
The Euclidean distance ∥X − WH∥2F is often used for
D(W ,H), but many other error functions can also be used
(see [4] for example).

Since D(W ,H) is not convex in general, it is difficult
to find an optimal solution of (1). The most well-known
approach to finding a local optimal solution is the multi-
plicative update rule [2, 3]. In this approach, W and H
are updated alternatively. When updating W (H , resp.),
H (W , resp.) is fixed and W (H , resp.) is updated to the
minimum point of an auxiliary function of D(W ,H). For
example, the multiplicative update rule for the Euclidean
distance is given by

Wnew
ik = Wik

(XHT)ik

(WHHT)ik
, Hnew

k j = Hk j
(W TX)k j

(W TWH)k j
.

The idea behind the multiplicative update rule can be ap-
plied to a wide class of error functions. In fact, Yang and

Figure 1: Nonnegative matrix factorization.

Oja [4] proposed a unified method for deriving multiplica-
tive update rules and obtained 11 update rules from 11 error
functions shown in Table 1.

In some applications of NMF, it is desired that W and
H are smooth or sparse. In order to control the smoothness
or sparseness of W and H , Cichocki et al. [5] proposed
to add regularization terms C1J1(W ) and C2J2(H) to the
Euclidean distance based error function 1

2 ∥X−WH∥2F and
derived a multiplicative update rule. However, the validity
of this update rule was not clearly shown.

In this paper, we consider the objective functions of the
form:

D(W ,H) +C1

∑
ik

Wb
ik +C2

∑
k j

Hb
k j, (2)

where b ∈ {1, 2}. We apply the unified method of Yang and
Oja to 22 objective functions obtained from the 11 error
functions shown in Table 1, and show that the multiplica-
tive update rule can be obtained for all cases except one.

2. Unified Method for Deriving Multiplicative Update
Rules

In this section, we review the unified method proposed
by Yang and Oja [4] for deriving multiplicative update rules
from various error functions. Let F = {(W ,H) |W ≥
0, H ≥ 0} = RM×K

+ ×RK×N
+ and let intF denote the interior

of F . That is, intF = RM×K
++ × RK×N

++ where R++ is the set
of positive real numbers.

We first give the definition of the auxiliary function.

Definition 1 (Auxiliary Function) For a given function
D(W ,H) : intF → R, any function D̄(W ,H , W̃ , H̃) :
intF × intF → R that satisfies the following two condi-
tions is called an auxiliary function of D(W ,H).

1. D̄(W ,H , W̃ , H̃) ≥ D(W ,H) for all (W ,H , W̃ ,
H̃) ∈ intF × intF .
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Table 1: Error functions considered by Yang and Oja [4]. As for the last three error functions, we have applied the
modification proposed by Seki and Takahashi [6].

Name D(W ,H)
Euclidean distance

∑
i j(Xi j − (WH)i j)2

I-divergence
∑

i j

(
Xi j ln

(
Xi j

(WH)i j

)
− Xi j + (WH)i j

)
Dual I-divergence

∑
i j

(
(WH)i j ln

(
(WH)i j

Xi j

)
− (WH)i j + Xi j

)
Itakura-Saito divergence

∑
i j

(
− ln

(
Xi j

(WH)i j

)
+

Xi j
(WH)i j

− 1
)

α-divergence 1
α(1−α)

∑
i j

(
αXi j + (1 − α)(WH)i j − Xαi j(WH)1−α

i j

)
(α , 0, 1)

β-divergence
∑

i j

(
Xi j

Xβi j−(WH)βi j
β

−
Xβ+1

i j −(WH)β+1
i j

β+1

)
(β , 0,−1)

Log-Quad cost
∑

i j

(
(Xi j − (WH)i j)2 + Xi j ln

(
Xi j

(WH)i j

)
− Xi j + (WH)i j

)
αβ-Bregman divergence

∑
i j

[
Xαi j − Xβi j − (WH)αi j + (WH)βi j

−
(
α(WH)α−1

i j − β(WH)β−1
i j

) (
Xi j − (WH)i j

)]
(α ≥ 1, 0 < β < 1)

Kullback-Leibler divergence
∑

i j
Xi j∑

pq Xpq
ln

(
Xi j/

∑
pq Xpq

(WH)i j/
∑

pq(WH)pq

)
+

C0
2

(∑
i j(WH)i j −

∑
i j Xi j

)2

γ-divergence 1
γ(1+γ)

(
ln

(∑
i j X1+γ

i j

)
+ γ ln

(∑
i j(WH)1+γ

i j

)
− (1 + γ) ln

(∑
i j Xi j(WH)γi j

))
+

C0
2

(∑
i j(WH)i j −

∑
i j Xi j

)2
(γ , 0,−1)

Renyi divergence 1
ρ−1 ln

(∑
i j

(
Xi j∑

pq Xpq

)ρ ( (WH)i j∑
pq(WH)pq

)1−ρ)
+

C0
2

(∑
i j(WH)i j −

∑
i j Xi j

)2
(ρ > 0, ρ , 1)

2. D̄(W ,H ,W ,H) = D(W ,H) for all (W ,H) ∈
intF .

Let D̄(W ,H , W̃ , H̃) be an auxiliary function of
D(W ,H). Let {(W (l),H (l))}∞l=0 be a sequence satisfying
the following three conditions.

1. (W (0),H (0)) belongs to intF .

2. For each l ≥ 0, W (l+1) is an optimal solution of the
optimization problem:

minimize D̄(W ,H (l),W (l),H (l))
subject to W > Om×r.

(3)

3. For each l ≥ 0, H (l+1) is an optimal solution of the
optimization problem:

minimize D̄(W (l+1),H ,W (l+1),H (l))
subject to H > Or×n.

(4)

Then {D(W (l),H (l))}∞l=0 is a nonincreasing sequence be-
cause we have D(W (l+1),H (l+1)) ≤ D̄(W (l+1),H (l+1),
W (l),H (l)) ≤ D̄(W (l+1),H (l),W (l),H (l)) ≤ D̄(W (l),H (l),
W (l),H (l)) = D(W (l),H (l)). Furthermore, if D(W ,H) is
bounded below on intF , the sequence D(W (l),H (l)) con-
verges to some constant as l goes to infinity.

The unified method of Yang and Oja [4] is described as
follows.

1. If the objective function contains a logarithm, replace
it with a generalized polynomial by using

ln x = lim
µ→0+

xµ − 1
µ
.

2. Obtain an auxiliary function of the objective function
by applying Theorems 1–3 1 given below. Then take
the limit µ→ 0+ if necessary. One may need to apply
L’Hôpital’s rule when taking the limit.

3. Find the optimal solutions of (3) and (4).

Theorem 1 (Yang and Oja [4]) Let

D(W ,H) = a

∑
i j

bi j(WH)c
i j

d

where a , 0, bi j > 0, c , 0 and d , 1. Then D̄(W ,
H , W̃ , H̃) defined as follows is an auxiliary function of
D(W ,H).

1. If g(x) = axd is convex for x > 0, let

D̄(W ,H , W̃ , H̃) = a

∑
i j

bi j(W̃ H̃)c
i j

d−1

×
∑

i j

bi j(W̃ H̃)c
i j

 (WH)i j

(W̃ H̃)i j

cd

.

2. If g(x) = axd is concave for x > 0, let

D̄(W ,H , W̃ , H̃)

= a

∑
i j

bi j(W̃ H̃)c
i j

d

+ ad

∑
i j

bi j(W̃ H̃)c
i j

d−1

×
bi j

∑
i j

(WH)c
i j − bi j

∑
i j

(W̃ H̃)c
i j

 .
1Proof of these theorems are given by Takahashi et al. [7]
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Theorem 2 (Yang and Oja [4]) Let

D(W ,H) =
∑

i j

ai j(WH)b
i j

where ai j , 0. We define D̄i j(W ,H , W̃ , H̃) as follows.

1. If gi j(x) = ai jxb is convex for x > 0, let

D̄i j(W ,H , W̃ , H̃)

= ai j(W̃ H̃)b−1
i j

∑
k

(W̃ikH̃k j)1−b(WikHk j)b.

2. If gi j(x) = ai jxb is concave for x > 0, let

D̄i j(W ,H , W̃ , H̃) = ai j(W̃ H̃)b
i j

+ ai jb(W̃ H̃)b−1
i j

(
(WH)i j − (W̃ H̃)i j

)
.

Then
∑

i j D̄i j(W ,H , W̃ , H̃) is an auxiliary function of
D(W ,H).

Theorem 3 (Yang and Oja [4]) Let

D(W ,H) =
∑

t

∑
i jk

ati jk(WikHk j)bt

where ati jk , 0. We also assume that Dti jk(W ,H) =
ati jk(WikHk j)bt is convex on intF for all i, j, k, t and that
{bt} contains at least two distinct nonzero numbers. Let
bmax = max{bt | bt , 0} and bmin = min{bt | bt , 0}. We
define D̄ti jk(W ,H , W̃ , H̃) as follows.

1. If bt ∈ {bmin, bmax, 0}, let

D̄ti jk(W ,H , W̃ , H̃) = ati jk(WikHk j)bt .

2. If bt < {bmin, bmax, 0} and

(a) if (bt > 1) ∨ ((bt = 1) ∧ (ati jk > 0)), let

D̄ti jk(W ,H , W̃ , H̃)

=
ati jkbt

bmax
(W̃ikH̃k j)bt−bmax (WikHk j)bmax

+ ati jk(W̃ikH̃k j)bt

(
1 − bt

bmax

)
,

(b) if (bt < 1) ∨ ((bt = 1) ∧ (ati jk < 0)), let

D̄ti jk(W ,H , W̃ , H̃)

=
ati jkbt

bmin
(W̃ikH̃k j)bt−bmin (WikHk j)bmin

+ ati jk(W̃ikH̃k j)bt

(
1 − bt

bmin

)
.

Then
∑

ti jk D̄ti jk(W ,H , W̃ , H̃) is an auxiliary function of
D(W ,H) and strictly convex in intF .

3. Derivation of Multiplicative Update Rules for NMF
with Regularization

We now consider objective functions given by (2), and
derive multiplicative update rules by using the unified
method of Yang and Oja. We assume that C1 and C2 are
positive constants and b is either 1 or 2. Because each of
the regularization terms contains only W or H , we cannot
apply Theorems 1–3 directly. We thus provide a new tool
for deriving auxiliary functions.

Corollary 1 Let

D(W ,H) =
∑

t

∑
i jk

ati jk(WikHk j)bt+C1

∑
ik

Wb
ik+C2

∑
k j

Hb
k j

where ati jk , 0, C1 > 0, C2 > 0 and b ∈ {1, 2}. We also
assume that Dti jk(W ,H) = ati jk(WikHk j)bt is convex on
intF for all i, j, k, t and that {bt} contains at least two dis-
tinct nonzero numbers. Let bmax = max{b,max{bt | bt ,
0}} and bmin = min{b,min{bt | bt , 0}}. We define
D̄ti jk(W ,H , W̃ , H̃) as described in Theorem 3. We also
define E(W ,H , W̃ , H̃) as follows.

1. If b ∈ {bmin, bmax, 0}, let

E(W ,H , W̃ , H̃) = C1

∑
ik

Wb
ik +C2

∑
k j

Hb
k j.

2. If b < {bmin, bmax, 0}, let

E(W ,H , W̃ , H̃)

=
C1b
bmax

∑
ik

W̃b−bmax
ik Wbmax

ik +C1

(
1 − b

bmax

)∑
ik

W̃b
ik

+
C2b
bmax

∑
k j

H̃b−bmax
k j Hbmax

k j +C2

(
1 − b

bmax

)∑
k j

H̃b
k j.

Then
∑

ti jk D̄ti jk(W ,H , W̃ , H̃) + E(W ,H , W̃ , H̃) is an
auxiliary function of D(W ,H) and strictly convex in
intF .

For each of the 22 objective functions obtained from the
11 error functions shown in Table 1, we apply Theorems 1
and 2 to the first term of (2) and then apply Corollary 1
to all terms to obtain a multiplicative update rule. Ob-
tained update rules for some popular error functions are
shown in Tables 2 and 3. The only objective function we
could not obtain the multiplicative update rule is the dual
I-divergence combined with the regularization terms with
b = 2. In this case, the auxiliary function could not be
obtained because the limit is not well-defined.

4. Conclusion

We have derived various multiplicative update rules for
NMF with regularization by applying the unified method of
Yang and Oja. Future problems are to study global conver-
gence of these update rules and to derive a multiplicative
update rule for the objective function based on the dual I-
divergence and the regularization terms with b = 2.
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Table 2: Some examples of multiplicative update rules for b = 1.

Error Update rule for Wik

Euclidean distance Wnew
ik = Wik

∑
j Xi jHk j−C1/2∑
j(WH)i jHk j

I-divergence Wnew
ik = Wik

∑
j Xi j(WH)−1

i j Hk j∑
j Hk j+C1

Itakura-Saito divergence Wnew
ik = Wik

( ∑
j Xi j(WH)−2

i j Hk j∑
j(WH)−1

i j Hk j+C1

) 1
2

α-divergence Wnew
ik = Wik

(∑
j Xαi j(WH)−αi j Hk j∑

j Hk j+αC1

) 1
α

Kullback-Leibler divergence Wnew
ik = Wik

(
(
∑

pq Xpq)−1 ∑
j Xi j(WH)−1

i j Hk j+C0(
∑

pq Xpq)
∑

j Hk j

(
∑

pq(WH)pq)−1 ∑
j Hk j+C0(

∑
pq(WH)pq)

∑
j Hk j+C1

) 1
2

Table 3: Some examples of multiplicative update rules for b = 2.

Error Update rule for Wik

Euclidean distance Wnew
ik = Wik

∑
j Xi jHk j∑

j(WH)i jHk j+C1Wik

I-divergence Wik

∑
j Xi j(WH)−1

i j Hk j∑
j Hk j+2C1Wik

Itakura-Saito divergence Wnew
ik = Wik

( ∑
j Xi j(WH)−2

i j Hk j∑
j(WH)−1

i j Hk j+2C1Wik

) 1
3

α-divergence

1) α > 0, α , 1 Wnew
ik = Wik

(∑
j Xαi j(WH)−αi j Hk j∑

j Hk j+2αC1Wik

) 1
α+1

2) −1 ≤ α < 0 Wnew
ik = Wik

( ∑
j Hk j∑

j Xαi j(WH)−αi j Hk j−2αC1Wik

)
3) α < −1 Wnew

ik = Wik

(∑
j Xαi j(WH)−αi j Hk j−2αC1Wik∑

j Hk j

) 1
α

Kullback-Leibler divergence Wnew
ik = Wik

(
(
∑

pq Xpq)−1 ∑
j Xi j(WH)−1

i j Hk j+C0(
∑

pq Xpq)
∑

j Hk j

(
∑

pq(WH)pq)−1 ∑
j Hk j+C0(

∑
pq(WH)pq)

∑
j Hk j+2C1Wik

) 1
2
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