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Abstract—A distributed algorithm for solving
Sandberg-Willson equations, which are well-known
nonlinear equations in the field of circuit theory, is pro-
posed in this paper. It is shown numerically that, by using
this algorithm, all agents in a network can find the unique
solution. It is also shown theoretically that the sequence of
solutions of every agent converges to the unique solution
under some assumptions on the nonlinear function and the
coefficient matrix in the equation.

1. Introduction

Distributed computations by multi-agent networks have
recently attracted a great deal of attention [1–5]. One of
the most well-known distributed computations is the av-
erage consensus [1]; the state value of each agent is up-
dated based on the state values of agents in its neighbor-
hood, and converges to the average of the initial values of
all agents. Other examples are the computation of the al-
gebraic connectivity of the network [4, 5], the constrained
consensus [2, 3], and the constrained optimization [2].

In this paper, we consider the distributed computation of
a class of nonlinear algebraic equations studied by Sand-
berg and Willson Jr. [6]. An important property of these
equations is that the existence and the uniqueness of the so-
lution is guaranteed. However, the problems are neither lin-
ear nor convex, conventional approach [2, 3] based on pro-
jection cannot be directly applied. We propose a new dis-
tributed algorithm for solving the above-mentioned equa-
tions. This algorithm is based on a consensus algorithm
and numerical techniques such as the Newton method [7]
for solving nonlinear equations. It is shown numerically
that, by using this algorithm, all agents in a network can
find the unique solution. It is also shown theoretically that
the sequence of solutions of every agent converges to the
unique solution under some assumptions on the nonlinear
function and the coefficient matrix in the equation.

2. Problem Statement

We consider nonlinear algebraic equations for x =

(x1, x2, . . . , xn)T ∈ Rn of the following form:

f (x) +Ax = b (1)

where A = (ai j) ∈ Rn×n is a given constant matrix,
b = (b1, b2, . . . , bn)T ∈ Rn is a given constant vector, and

f (x) = ( f1(x1), f2(x2), . . . , fn(xn))T is a given nonlinear
function from Rn to Rn. Throughout this paper, we assume
that (1) satisfies the following two assumptions.

Assumption 1 A is a P0 matrix.

Assumption 2 For all i ∈ {1, 2, . . . , n}, the function fi :
R → R is continuous, strictly monotone increasing, and
surjective.

Sandberg and Willson, Jr. [6] proved that (1) has a
unique solution if Assumptions 1 and 2 are valid. Hence
we hereafter call equations of the form (1) that satisfy As-
sumptions 1 and 2 Sandberg-Willson equations.

We want to let a network of n agents solve Sandberg-
Willson equations under the following situation: i) agent i
only knows the i-th equation, that is,

fi(xi) + aix = bi (2)

where ai is the i-th row of the matrix A, ii) each agent can
find a solution of its own equation, iii) each agent can send
its solution to some other agents and receive their solutions
through communication channels (see Fig. 1). The objec-
tive of this paper is to design a distributed algorithm for the
multi-agent network so that every agent can find the unique
solution of (1) under the above-mentioned situation.

The communication among agents can be represented
by a simple and undirected graph G = (V, E) where V =
{1, 2, . . . , n} is the vertex set and E is the edge set. Ver-
tex i corresponds to agent i. Each edge is an unordered
pair of distinct vertices. Edge {i, j} is contained in E if
and only if agents i and j can directly communicate with
each other. The neighborhood Ni of vertex i is defined as
Ni = { j | {i, j} ∈ E} ∪ {i}.

3. Proposed Algorithm

Let us define n functions g1, g2, . . . , gn by

gi(xi) ≜ fi(xi) + aiixi, i = 1, 2, . . . , n. (3)

Note that aii is nonnegative for all i because A is P0 ma-
trix. So gi(xi) is continuously differentiable, strictly mono-
tone increasing, surjective, and therefore has the inverse
function g−1

i : R → R which is also continuously differ-
entiable, strictly monotone increasing and surjective. Let
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Figure 1: A multi-agent network for solving (1).

xi(t) = (xi
1(t), xi

2(t), . . . , xi
n(t))T be the solution estimated

by agent i at discrete time t ∈ Z+ where Z+ is the set of
nonnegative integers. Then the distributed algorithm we
propose in this paper is described as follows.

In the first step, each agent i randomly chooses xi(0),
and then obtain xi(1) by

xi
j(1) =

g−1
i

(
bi −
∑n

j=1, j,i ai jxi
j(0)
)
, if j = i,

xi
j(0), if j , i.

(4)

Here we have assumed that each agent i can compute the
value of g−1

i (y) for any y ∈ R. Taking (3) into account, we
see that xi(1) is a solution of (2). In the t-th step (t ≥ 2),
each agent i computes the average of the solutions of agents
k ∈ Ni by

wi(t − 1) =
1
|Ni|
∑
k∈Ni

xk(t − 1) (5)

and then obtain xi(t) by

xi
j(t) =

g−1
i

(
bi −
∑n

j=1, j,i ai jwi
j(t − 1)

)
, if j = i,

wi
j(t − 1), if j , i.

(6)

We see that xi(t) is also a solution of (2).
It is impossible in general to express g−1

i explicitly.
So each agent i has to solve the equation gi(xi) = bi −∑n

j=1, j,i ai jwi
j(t − 1) for xi numerically. There are many

good algorithms for solving such equations. For example,
the inexact Newton method for solving systems of mono-
tone equations proposed by Solodov and Svaiter [7] has
an important property that the sequence generated by the
method always globally convergent to the unique solution.
We therefore use this method in the numerical experiments.

Figure 2: Communication graph G1.

4. Numerical Experiments

In order to check the validity of the proposed algorithm,
we conducted some numerical experiments. In the first ex-
periment, we set

A =



0.810 0.123 −0.139 −0.599
0.418 2.185 −0.304 −0.066
−0.081 −0.392 0.902 −0.414
−0.133 0.147 −0.057 1.038
−0.064 −0.236 0.031 −0.154

0.392 0.186 0.086 −0.587
−0.075 0.176 −0.073 0.204

0.158 0.167 0.115 −0.337

−0.005 0.426 −0.073 0.463
0.202 0.300 0.363 −0.285
0.261 0.047 0.121 0.164
−0.182 0.193 −0.028 −0.328

0.450 −0.173 0.133 0.105
0.138 1.131 −0.100 0.573
0.037 −0.014 0.802 −0.174
0.261 0.096 0.068 0.976


b = (1.902, 30.594, 31.889, 42.617,

22.120, 46.400, 609.255, 5.754)T,

and
fi(xi) = ixi + e0.1ixi , i = 1, 2, . . . , 8.

We also set the communication graph G of the multi-agent
network to G1 shown in Fig. 2.

We obtained A above in the following way. We first
generated a matrix B = (bi j) ∈ Rn×n such that b j j >∑n

i=1,i, j |bi j| for j = 1, 2, . . . , n. This is easily done by
choosing the values of off-diagonal entries randomly and
then setting the value of diagonal entries so that the above
inequalities hold. We next generated a matrix C = (ci j) ∈
Rn×n such that c j j ≥

∑n
i=1,i, j |ci j| for j = 1, 2, . . . , n in a sim-

ilar way as B. We finally set A = B−1C because it is guar-
anteed that any A constructed in this way is a P0 matrix. As
for the vector b, we chose the values of its entries so that
(1) has the unique solution x∗ = (2, 8, 5, 6, 3, 4, 9, 1)T.

Each agent i sets the initial solution xi(0) to 0, and then
updates the solution by using (4) and (6). Computation
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Figure 3: Behavior of the error ei(t) = ∥xi(t) − x∗∥ when
G = G1.

Figure 4: Communication graph G2.

of g−1
i is done by the inexact Newton method proposed by

Solodov and Svaiter [7] under the following setting: β =
0.5, λ = 0.01, Gk is a number randomly chosen from [0, 1],
µk = 0.01, ρk = 0.01, the initial solution is set to xi

i(t − 1),
and the stopping condition is set to dk ≤ 10−4. For more
details of the inexact Newton method, see [7].

Figure 3 shows how the error ei(t) = ∥xi(t)−x∗∥ between
the solution xi(t) of agent i at time t and the true solution x∗

varies with t for i = 1, 2, . . . , 8. It is clear from the figure
that ei(t) converges to zero for all i, which means that all
agents successfully find the true solution x∗.

In the second experiment, we used the same setting as in
the first experiment except the communication graph. We
set the communication graph G to G2 in Fig. 4, which is
a path graph obtained by removing three edges from G1.
Figure 5 shows how the error ei(t) = ∥xi(t) − x∗∥ between
the solution xi(t) of agent i at time t and the true solution
x∗ varies with t for i = 1, 2, . . . , 8. It is clear from the figure
that all agents successfully find the true solution x∗.

5. Convergence Analysis

In this section, we show theoretically that if the nonlin-
ear function f (x) and the matrix A satisfies a few addi-
tional assumptions then, by using the proposed algorithm,
all agents can find the unique solution of (1).
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Figure 5: Behavior of the error ei(t) = ∥xi(t) − x∗∥ when
G = G2.

Theorem 1 Suppose that fi(xi) is continuously differen-
tiable for i = 1, 2, . . . , n and there exists a positive constant
δ such that

f ′i (xi) ≥ δ > 0, i = 1, 2, . . . , n. (7)

If the communication graph G of the multi-agent network
is connected and the matrix A satisfies

δ + aii >

n∑
j=1, j,i

|ai j|, i = 1, 2, . . . , n, (8)

then we have

lim
t→∞

xi(t) = x∗, i = 1, 2, . . . , n (9)

where x∗ is the unique solution of (1).

Proof: Let ãi be the row vector obtained from ai by setting
the i-th entry aii to zero. It follows from (7) and (8) that∣∣∣xi

i(t + 1) − x∗i
∣∣∣ = ∣∣∣g−1

i (bi − ãiw
i(t)) − g−1

i (bi − ãix
∗)
∣∣∣

=

∣∣∣∣∣∣∣g−1
i

bi −
1
|Ni|

ãi

∑
k∈Ni

xk(t)

 − g−1
i (bi − ãix

∗)

∣∣∣∣∣∣∣
≤ 1
δ + aii

∣∣∣∣∣∣∣ 1
|Ni|

ãi

∑
k∈Ni

xk(t) − ãix
∗

∣∣∣∣∣∣∣
=

1
(δ + aii)|Ni|

∣∣∣∣∣∣∣ãi

∑
k∈Ni

(xk(t) − x∗)
∣∣∣∣∣∣∣

≤ 1
(δ + aii)|Ni|

∑
k∈Ni

n∑
j=1, j,i

|ai j|
∣∣∣xk

j(t) − x∗j
∣∣∣

≤
∑n

j=1, j,i |ai j|
δ + aii

max
k∈Ni, j∈{1,2,...,n}\{i}

∣∣∣xk
j(t) − x∗j

∣∣∣
≤ max

k∈Ni, j∈{1,2,...,n}\{i}

∣∣∣xk
j(t) − x∗j

∣∣∣ (10)
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holds for i = 1, 2, . . . , n. Also, for any pair of i and j such
that i , j, we have∣∣∣xi

j(t + 1) − x∗j
∣∣∣ = ∣∣∣wi

j(t) − x∗j
∣∣∣

=

∣∣∣∣∣∣∣ 1
|Ni|
∑
k∈Ni

xk
j(t) − x∗j

∣∣∣∣∣∣∣
≤ 1
|Ni|
∑
k∈Ni

∣∣∣xk
j(t) − x∗j

∣∣∣
≤ max

k∈Ni

∣∣∣xk
j(t) − x∗j

∣∣∣ . (11)

Let us now define Z(t) as Z(t) = maxi, j∈{1,2,...,n}

∣∣∣∣xi
j(t) − x∗j

∣∣∣∣.
Then we have

Z(t + 1) ≤ Z(t), t = 1, 2, . . . (12)

from (10) and (11).
Next we show that if Z(t) > 0 then Z(t + n) < Z(t). We

first see from (10) and (12) that

∣∣∣xi
i(t + n) − x∗i

∣∣∣ ≤ ∑n
j=1, j,i |ai j|
δ + aii

Z(t + n − 1)

< Z(t + n − 1)
≤ Z(t)

holds for i = 1, 2, . . . , n. Suppose that i , j. If there
exists a k ∈ Ni such that

∣∣∣∣xk
j(t) − x∗j

∣∣∣∣ < Z(t) then it

follows from (11) that
∣∣∣∣xi

j(t + 1) − x∗j
∣∣∣∣ < Z(t). For the

same reason, we have
∣∣∣∣xi

j(t + 2) − x∗j
∣∣∣∣ < Z(t). Repeating

this argument, we finally have
∣∣∣∣xi

j(t + n) − x∗j
∣∣∣∣ < Z(t). If∣∣∣∣xk

j(t) − x∗j
∣∣∣∣ = Z(t) holds for all k ∈ Ni then it follows

from (11) that
∣∣∣∣xi

j(t + 1) − x∗j
∣∣∣∣ = Z(t). However, because∣∣∣∣x j

j(t + 1) − x∗j
∣∣∣∣ < Z(t), for all vertices j1 adjacent to ver-

tex j,
∣∣∣∣x j1

j (t + 2) − x∗j
∣∣∣∣ < Z(t) holds. This implies that for all

vertices j2 such that the shortest path length from vertex j is
two,
∣∣∣∣x j2

j (t + 3) − x∗j
∣∣∣∣ < Z(t) holds. Repeating this argument

and making use of the assumption that G is connected, we
finally have

∣∣∣∣xi
j(t + n) − x∗j

∣∣∣∣ < Z(t).

Let Ẑ(t) ≜ Z(nt) for all t ∈ Z+. Then, we see from the
above discussion that the sequence {Ẑ(t)}∞t=1 is monotone
decreasing and Ẑ(t + 1) = Ẑ(t) if and only if Ẑ(t) = 0,
that is, xi(nt) = x∗ for i = 1, 2, . . . , n. Also, for all
i, j ∈ {1, 2, . . . , n} and all t ∈ Z+, we have |xi

j(nt) − x∗j | ≤
Z(1), which means that (x1(nt),x2(nt), . . . ,xn(nt)) is in-
cluded in a bounded and closed subset in (Rn)n. Further-
more, (x1((n + 1)t),x2((n + 1)t), . . . ,xn((n + 1)t)) depends
continuously on (x1(nt),x2(nt), . . . ,xn(nt)). Therefore, by
Zangwill’s global convergence theorem [8], we have

lim
t→∞

xi(nt) = x∗, i = 1, 2, . . . , n

which means that limt→∞ Ẑ(t) = 0. From this result and the
monotonicity of the sequence {Z(t)}∞t=1, we can conclude
that limt→∞ Z(t) = 0 which is equivalent to (9). □

6. Conclusion

We have proposed a distributed algorithm for solv-
ing Sandberg-Willson equations. The authors confirmed
through a large number of numerical experiments that the
unique solution is always found by the proposed algorithm.
However, we have only proved the validity of the algorithm
in a special case. Further theoretical analysis is needed to
understand the behavior of the proposed algorithm.
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