
A Genetic Algorithm for Maximizing Algebraic Connectivity of Graphs by
Adding Multiple Edges

Hiroki Tajiri, Tsuyoshi Migita and Norikazu Takahashi

Graduate School of Natural Science and Technology, Okayama University
3-1-1 Tsushima-naka, Kita-ku, Okayama 700–8530, Japan

Email: tajiri@momo.cs.okayama-u.ac.jp, migita@cs.okayama-u.ac.jp, takahashi@cs.okayama-u.ac.jp

Abstract—The second smallest eigenvalue of the Lapla-
cian matrix, also known as the algebraic connectivity, of a
graph represents how well the graph is connected. This
paper considers the problem of maximizing the algebraic
connectivity of graphs by adding a prescribed number of
edges. We propose a genetic algorithm for this problem
and evaluate its performance through experiments.

1. Introduction

Distributed computation is an important technique for
network systems such as the Internet, sensor networks and
multirobot systems. Some distributed algorithms over net-
work systems are characterized by the algebraic connectiv-
ity [1, 2], the second smallest eigenvalue of the Laplacian
matrix. For example, the convergence speed of a consensus
algorithm is determined by the algebraic connectivity [3].
Thus, in order to achieve fast convergence, we need to de-
sign the network with a high algebraic connectivity [4].

Recently, Li et al. considered the problem of maximizing
the algebraic connectivity of undirected graphs by adding
one edge, and proposed a simple algorithm called the
Minimum Degree and Maximum Distance (MDMD) [5].
Roughly speaking, this algorithm first selects one vertex
i with the minimum degree, then selects another vertex j
having the maximum distance from i, and finally adds the
edge connecting i and j. The MDMD algorithm has a very
low computational cost because the computation of the al-
gebraic connectivity is not needed. Nevertheless, it can ob-
tain high algebraic connectivity values as reported in [5].

In this paper, we consider a more general form of the
above-mentioned problem, in which the number of edges to
add is not restricted to one, and propose a genetic algorithm
for finding an approximate solution. Genetic algorithms
have proved to be powerful tools for various combinatorial
optimization problems [6]. We show through experiments
using small graphs that the proposed algorithm can achieve
higher algebraic connectivity values than a simple exten-
sion of the MDMD algorithm.

2. Notations and Problem Statement

Let G = (V, E) be a simple undirected graph with the
vertex set V = {1, 2, . . . , n} and the edge set E. The undi-
rected edge connecting vertices i and j is denoted by {i, j}.

Let A = (ai j) ∈ {0, 1}n×n be the adjacency matrix of G.
Then ai j (= a ji) takes 1 if {i, j} ∈ E and 0 otherwise. Note
that aii = 0 for all i ∈ {1, 2, . . . , n} because G is simple.
Let D = diag(d1, d2, . . . , dn) be the degree matrix of G,
where di is the degree of vertex i and thus equal to

∑n
j=1 ai j.

The Laplacian matrix L = (ℓi j) ∈ Zn×n of G is defined by
L = D − A. Because L is positive-semi definite, all eigen-
values of L are nonnegative real numbers. In addition, be-
cause L1 = 0 where 1 is the vector of all ones, the smallest
eigenvalue of L is 0. The eigenvalues of L are denoted by
λ1 (= 0) ≤ λ2 ≤ λ3 ≤ · · · ≤ λn. The second smallest eigen-
value λ2 is called the algebraic connectivity of G [1, 2].

In what follows, by a graph, we always mean a simple
undirected graph. For a graph G = (V, E) and a positive
integer k, the set of all graphs obtained from G by adding k
edges is denoted by G(G, k). In other words,

G(G, k) ≜ {G′ = (V, E ∪ E+) | E ∩ E+ = ∅, |E+| = k}. (1)

The problem we consider in this paper is stated as follows.

Problem 1 Given a graph G = (V, E) and an integer k sat-
isfying 1 ≤ k ≤ |V |(|V |−1)/2−|E|, find a graph G∗ ∈ G(G, k)
that maximizes the algebraic connectivity among all graphs
in G(G, k).

Problem 1 is a generalization of the problem considered
in [5] because the latter corresponds to the special case of
the former where the value of k is restricted to 1. The
simplest approach to Problem 1 is the brute-force search,
but the time complexity of this algorithm is very high even
when k = 1 [5]. So we need to develop efficient approxi-
mation algorithms.

3. Sequential MDMD Algorithm

In this section, we first review the Min-Degree and Max-
Distance (MDMD) algorithm developed by Li et al. [5] for
solving the special case of Problem 1 where k = 1. We then
presents a simple method called the sequential MDMD al-
gorithm for solving Problem 1.

The MDMD algorithm chooses an edge to be added to G
based on the degrees of vertices, the distance between two
vertices, and the Extendibility Centralities (EC) defined by

ci ≜
n∑

k=1

aikdk, i = 1, 2, . . . , n. (2)

2019 International Symposium on Nonlinear Theory and Its Applications
NOLTA2019, Kuala Lumpur, Malaysia, December 2-6, 2019.

Algorithm 1 MDMD Algorithm [5]
Input: G = (V, E)
Output: Gout = (V, Eout)

1: Set I ← {i ∈ V | di ≤ di′ for all i′ ∈ V}.
2: Select one i∗ ∈ I such that ci∗ ≤ ci for all i ∈ I.
3: Set J ← { j | j has the maximum distance from i∗}.
4: Select one j∗ ∈ J such that c j∗ ≤ c j for all j ∈ J .
5: Set Eout ← E ∪ {{i∗, j∗}} and return Gout = (V, Eout).

Algorithm 2 SMDMD Algorithm
Input: G = (V, E), k ∈ N
Output: Gout = (V, Eout)

1: Set G0 ← G and m = 0.
2: Apply the MDMD algorithm (Algorithm 1) to Gm to

get a new graph Gm+1.
3: Set m← m + 1.
4: If m = k then return Gm and stop. Otherwise go back

to Step 2.

It first selects one vertex i∗ which has the minimum degree
and the minimum EC among all vertices with the same de-
gree. It then selects another vertex j∗ which has the maxi-
mum distance from i∗ and the minimum EC among all ver-
tices with the same distance from i∗. It finally returns the
edge {i∗, j∗}. The main advantage of the MDMD algorithm
is its low computational cost because the computation of
the algebraic connectivity is not needed. The MDMD al-
gorithm is formally described as Algorithm 1.

Although the MDMD algorithm was developed for the
special case of Problem 1 where k = 1, we can easily ex-
tend it to obtain a new algorithm that can be used for the
general case. The idea is to apply the MDMD algorithm se-
quentially. We thus call this new algorithm the sequential
MDMD (SMDMD) algorithm. The SMDMD algorithm is
formally described as Algorithm 2.

4. Proposed Genetic Algorithm

In this section, we propose a genetic algorithm for find-
ing an approximate solution of Problem 1.

4.1. Overview of Algorithm

In the proposed algorithm, each graph is encoded into
a binary sequence called a chromosome by concatenating
rows in the strict upper triangular part of the adjacency ma-
trix, as shown in Fig. 1. Also, the fitness value of each
chromosome is defined by the algebraic connectivity of the
corresponding graph.

Given a graph G = (V, E) and an integer k satisfying
1 ≤ k ≤ |V |(|V | − 1)/2 − |E|, the algorithm first gener-
ates a population of M chromosomes corresponding to M
graphs selected at random fromG(G, k). Each chromosome
can be easily generated by randomly selecting k bits with a
value of 0 in the chromosome sG corresponding to G and

Figure 1: Encoding a graph into a chromosome (upper:
graph, middle: adjacency matrix, lower: chromosome).

then flipping the selected bits to 1. Once the initial pop-
ulation of chromosomes is generated, the algorithm then
iteratively updates the population in the way explained in
the next subsection until some stopping condition is met. In
what follows, each iteration is called a generation, and the
population in the t-th generation is denoted by P(t) (P(1)
is the initial population). Finally the algorithm returns the
graph corresponding to the chromosome with the highest
fitness value in the final population.

4.2. How to Update Population

Given the population P(t) of M chromosomes, the pro-
posed algorithm performs the following three steps to ob-
tain P(t + 1) of M chromosomes: selection, crossover and
mutation. The algorithm also uses the elitist selection.

In the selection step, a new population P1(t) of M chro-
mosomes is generated from P(t). Suppose that P1(t) is ini-
tialized to ∅. First, one chromosome with the highest fitness
value is selected from P(t) and added to P1(t) . Next, M−1
chromosomes are selected (with repetition allowed) from
P(t) by a tournament selection rule and added to P1(t). The
tournament selection rule used in our algorithm is to se-
lect one chromosome with the highest fitness value among
ℓ chromosomes selected at random from P(t).

In the crossover step, a new population P2(t) of M chro-
mosomes is generated from P1(t). Suppose that P2(t) is
initialized to ∅. First, the chromosome first added to P1(t)
is selected and added to P2(t). Next, ⌊(M − 1)/2⌋ pairs
of chromosomes are randomly made from the remaining
M−1 chromosomes. For each pair, a single-point crossover
is performed with probability pc ∈ (0, 1). However, the
crossover point cannot be chosen freely because the re-
sulting two chromosomes must have the same number of
ones as their parents. So Algorithm 3 is used to perform a
single-point crossover and the obtained two chromosomes
are added to P2(t). If M is even then the chromosome in
P1(t) that was not used to make a pair is added to P2(t).

In the mutation step, a new population P3(t) = P(t +
1) of M chromosomes is generated from P2(t). Suppose
that P3(t) is initialized to ∅. Let sG be the chromosome

Algorithm 3 Single-Point Crossover
Input: si = (si1, . . . , siN) ∈ {0, 1}N (i = 1, 2), pc ∈ (0, 1)
Output: s′i = (s′i1, . . . , s

′
iN) ∈ {0, 1}N (i = 1, 2)

1: Pick a number r from a uniform distribution in [0, 1].
2: If r > pc then set s′i ← si for i = 1, 2 and go to Step 5.

Otherwise go to Step 3.
3: Select j∗ uniformly at random from {1, 2, . . . ,N}.
4: If

∑N
j= j∗ s1 j =

∑N
j= j∗ s2 j then go to Step 6. Otherwise

go to Step 5.
5: Set j∗ ← j∗ + 1 and go to Step 4.
6: Set

s′1 j ←
s1 j, if j ∈ {1, 2, . . . , j∗ − 1},

s2 j, if j ∈ { j∗, j∗ + 1, . . . ,N},

s′2 j ←
s2 j, if j ∈ {1, 2, . . . , j∗ − 1},

s1 j, if j ∈ { j∗, j∗ + 1, . . . ,N}.

7: Return s′1 and s′2 and stop.

Algorithm 4 Mutation
Input: s = (s1, . . . , sN) ∈ {0, 1}N , IG ⊂ {1, 2, . . . ,N}, pm ∈

(0, 1)
Output: s′ = (s′1, . . . , s

′
N) ∈ {0, 1}N

1: Set s′ ← s.
2: Set f ← 0 and i← 1.
3: If i ∈ IG then go to Step 7. Otherwise go to Step 4.
4: Pick a number r from a uniform distribution in [0, 1].
5: If r ≤ pm then set s′i ← 1 − s′i and f ← f + 1 and go to

Step 6. Otherwise go to Step 7.
6: Select j ∈ {1, 2, . . . ,N} \ (IG ∪ {i}) such that s′j = s′i at

random and then set s′j ← 1 − s′j.
7: Set i ← i + 1. If i = N + 1 or f = 2 then return s′ and

stop. Otherwise go to Step 3.

corresponding to G and let IG = {i ∈ {1, 2, . . . ,N} | sGi =

1}. Let pm ∈ (0, 1) be the mutation probability. First the
chromosome first added to P2(t) is added to P3(t). Next,
for each of the remaining M − 1 chromosomes s in P2(t), a
new chromosome s′ is obtained by Algorithm 4 and added
to P3(t). Note here that s′ not only satisfies s′i = 1 for all
i ∈ IG but also has the same number of ones as s.

5. Experiments

In order to evaluate the performance of the proposed
genetic algorithm in comparison with the SMDMD al-
gorithm, we conducted experiments using 20 synthetic
graphs: 10 Watts-Strogatz models [7] with 10 vertices and
20 edges and 10 Barabási-Albert models [8] with 10 ver-
tices and 12 edges. The parameters in the proposed algo-
rithm were set as M = 50, ℓ = 5, pc = 0.8 and pm = 0.05.
Also, the proposed algorithm stops when the number of
generation t reaches 200. Both algorithms were imple-

 0

 1

 2

 3

 4

 5

1 2 3 4 5 6 7 8 9 10

A
lg

e
b
ra

ic
 C

o
n
n
e
c
ti
v
it
y

Graph ID

original
SMDMD

GA

Figure 2: Algebraic connectivity obtained by the two algo-
rithms for Watts-Strogatz models with 10 vertices and 20
edges and k = 5. The plots show the average of 10 runs.

 0

 0.5

 1

 1.5

 2

1 2 3 4 5 6 7 8 9 10

A
lg

e
b
ra

ic
 C

o
n
n
e
c
ti
v
it
y

Graph ID

original
SMDMD

GA

Figure 3: Algebraic connectivity obtained by the two algo-
rithms for Barabási-Albert models with 10 vertices and 12
edges and k = 5. The plots show the average of 10 runs.

mented in Scilab 5.5.2 and executed on a PC with Intel
Core i5-4670 and 8GB RAM.

In the first experiment, we applied the two algorithms
to the problem of maximizing the algebraic connectivity of
Watts-Strogatz models with 10 vertices and 20 edges by
adding five edges. The results are summarized in Fig. 2. It
is easy to see that both algorithms increased the algebraic
connectivity by about two times and that the proposed al-
gorithm achieved a higher algebraic connectivity than the
SMDMD algorithm for all graphs.

In the second experiment, we applied the two algorithms
to the problem of maximizing the algebraic connectivity of
Barabási-Albert models with 10 vertices and 12 edges by
adding five edges. The results are summarized in Fig. 3.
The proposed algorithm achieved a higher algebraic con-
nectivity than the SMDMD algorithm for all graphs. In par-
ticular, the algebraic connectivity obtained by the former is
nearly two times higher than the latter for some graphs. An
example is shown in Fig. 4.

In the third and fourth experiments, we applied the two
algorithms to the problem of maximizing the algebraic con-
nectivity of Watts-Strogatz models with 10 vertices and 20
edges by adding 15 edges, and the problem of maximizing
the algebraic connectivity of Barabási-Albert models with

9

4

3

8

5

6

2

1

10

7

8

9

5

10

1

6

7

2

3

4

5

6

28

7

10

9

3

1

4

(a) (b) (c)

Figure 4: Comparison of the graphs obtained by the two algorithms. (a) Input (λ2 = 0.2881471). (b) Graph obtained by
the SMDMD algorithm (λ2 = 0.887342). (c) Graph obtained by the proposed algorithm (λ2 = 1.592531).

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10

A
lg

e
b
ra

ic
 C

o
n
n
e
c
ti
v
it
y

Graph ID

original
SMDMD

GA

Figure 5: Algebraic connectivity obtained by the two algo-
rithms for Watts-Strogatz models with 10 vertices and 20
edges and k = 15. The plots show the average of 10 runs.

10 vertices and 12 edges by adding 15 edges, respectively.
The results are summarized in Figs. 5 and 6. Both algo-
rithms increased the algebraic connectivity by more than
three times for all graphs. Also, the proposed algorithm
achieved a higher algebraic connectivity than the SMDMD
algorithm for all graphs.

6. Conclusions

We proposed a genetic algorithm for solving the prob-
lem of maximizing the algebraic connectivity of a given
graph by adding a prescribed number of edges. We then
showed experimentally that the proposed algorithm is su-
perior to the SMDMD algorithm in terms of the algebraic
connectivity value. However, because only a small number
of graphs was used in the experiments, we need to evaluate
the performance of the proposed algorithm through further
experiments using graphs of various types and sizes. Also,
we need to decrease the computational cost of the proposed
algorithm so that it can be applied to large graphs.

References

[1] M. Fiedler, “Algebraic connectivity of graphs,”
Czechoslovak Mathematical Journal, vol.23, no.98,
pp.298–305, 1973.

 0

 1

 2

 3

 4

 5

1 2 3 4 5 6 7 8 9 10

A
lg

e
b
ra

ic
 C

o
n
n
e
c
ti
v
it
y

Graph ID

original
SMDMD

GA

Figure 6: Algebraic connectivity obtained by the two algo-
rithms for Barabási-Albert models with 10 vertices and 12
edges and k = 15. The plots show the average of 10 runs.

[2] C. Godsil and G. Royle, Algebraic Graph Theory,
Springer New York, 2001.

[3] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Con-
sensus and cooperation in networked multi-agent sys-
tems,” Proceedings of the IEEE, vol.95, no.1, pp.215–
233, January 2007.

[4] K. Ogiwara, T. Fukami and N. Takahashi, “Maximiz-
ing algebraic connectivity in the space of graphs with a
fixed number of vertices and edges, IEEE Transactions
on Control of Network Systems, vol.4, no.2, pp.359–
368, June 2017.

[5] G. Li, Z. F. Hao, H. Huang and H. Wei, “Maximizing
algebraic connectivity via minimum degree and maxi-
mum distance,” IEEE Access, vol.6, pp.41249–41255,
2018.

[6] D. E. Goldberg, Genetic Algorithms, Pearson Educa-
tional India, 2006.

[7] D. J. Watts and S. H. Strogatz, “Collective dynamics
of ‘small-world‘ networks,” Nature, vol.393, no.6684,
pp.440–442, 1998.

[8] A. L. Barabási and R. Albert, “Emergence of scaling in
random networks,” Science, vol.286, no.5439, pp.509–
512, 1999.

