

STUDY OF C PROGRAMMING

LEARNING ASSISTANT SYSTEM

(CPLAS)

Funabiki Laboratory

 Department of Electrical and Communication Engineering

 Okayama University

Basic C Programming Language (C_VTP1) file

Correspondence Between Each Topic and Related VTPs
 | 2

C Programming Learning Assistant System (CPLAS)

・ Data Type Usage ... 5

・ Hierarchy Of Operations .. 5

・ Simple Interest Rate Calculation .. 6

・ If Statement Usage ... 7

・ If_Else Usage ... 7

・ Nested If_Else Usage ... 8

・ Logical Operator Usage .. 9

・ Relational Operator Usage On Integers .. 10

・ While Loop With Postincrementation .. 11

・ While Loop Usage .. 11

・ For Loop Usage .. 12

・ Nested For Loop Usage .. 13

・ Do While Loop Usage .. 14

・ Switch-Case Usage Without Break .. 14

・ Arithmetic Expression Usage In Switch .. 15

・ Many Cases In Switch-Case Usage .. 16

・ Simple Function Usage .. 16

・ Function Usage With Call By Value ... 17

・ Function Usage With Call by Reference .. 18

Correspondence Between Each Topic and Related VTPs
 | 3

・ Simple Factorical Calculation ... 19

・ Factorical Calculation With Recursion ... 21

・ Auto Variable With Different Blocks ... 22

・ Various Macro Template Usage .. 22

・ Macro Arguments Usage .. 23

・ Simple Array Usage .. 23

・ Array With Various Function Call .. 24

・ Pointer Usage For Different Data Types .. 26

・ Various Accessing Methods In Array ... 27

・ Pointer In 2-D Array ... 27

・ String Length Calculation .. 28

・ String Copy Calculation ... 28

・ String Concatenation .. 29

・ Element Exchange In 2-D Array .. 29

・ Accessing Structure Element .. 30

・ Copying Structure Element .. 31

・ Nested Structure Element ... 31

. Passing Structure Element To Method ... 32

・ Pointer Usage With Structure Element ... 32

Correspondence Between Each Topic and Related VTPs
 | 4

Correspondence Between Each Topic and Related VTPs

※ Click the link to go reference pages directly.

C Program Concepts Related

VTPs

Version

Related Problem

Numbers

Data Type Usage C_VTP1 1

Hierarchy Of Operations C_VTP1 2

Simple Interest Rate Calculation C_VTP1 3

If Statement Usage C_VTP1 4

If_Else Usage C_VTP1 5

Nested If_Else Usage C_VTP1 6

Logical Operator Usage C_VTP1 7

Relational Operator Usage On Integers C_VTP1 8

While Loop With Postincrementation C_VTP1 9

While Loop Usage C_VTP1 10

For Loop Usage C_VTP1 11

Nested For Loop Usage C_VTP1 12

Do While Loop Usage C_VTP1 13

Switch-Case Usage Without Break C_VTP1 14

Arithmetic Expression Using In Switch C_VTP1 15

Many Cases In Switch-Case Usage C_VTP1 16

Simple Function Usage C_VTP1 17

Function Usage With Call By Value C_VTP1 18

Function Usage With Call By Reference C_VTP1 19

Simple Factorial Calculation C_VTP1 20

Factorial Calculation With Recursion C_VTP1 21

Auto Variable With Different Blocks C_VTP1 22

Various Macro Templates Usage C_VTP1 23

Macro Arguments Usage C_VTP1 24

Simple Array Usage C_VTP1 25

Array With Various Function Call C_VTP1 26

Pointer Usage For Different Data Types C_VTP1 27

Various Accessing Methods In Array C_VTP1 28

Pointer In 2-D Array C_VTP1 29

String Length Calculation C_VTP1 30

String Copy Calculation C_VTP1 31

String Concatenation C_VTP1 32

Element Exchange In 2-D Array C_VTP1 33

Accessing Structure Element C_VTP1 34

Copying Structure Elements C_VTP1 35

Nested Structure Element C_VTP1 36

Passing Structure Element To Method C_VTP1 37

Pointer Usage With Structure Element C_VTP1 38

Correspondence Between Each Topic and Related VTPs
 | 5

1. Data Types Usage

A data type defines a collection of data values and a set of predefined operations on those

values.

Data declare (variable)

In C programming, data types are declarations for variables. This determines the type and

size of data associated with variables. For example,

int a

a=1

Here, a is a variable of int (integer) type. The value of a is 1.

char is used for declaring character type variables. For example,

char test = ' h';

Here, h is a variable of char type.

char array, char c[8]

 “JOHn”

J O H n // // // //

c[0] = ‘J’; c [1] = ‘O’; c[2] = ‘H’; c[3] =’n’

%d is used for outputting a decimal integer.

%f is used for outputting a real number in decimal form when the input data is float.

%c is used for outputting a character.

printf means to produce output.

2. Hierarchy Of Operations

The hierarchy of operations instructs the compilers and interpreters on the order in which

the expression has to be executed. Operator precedence in C is also similar to that in most other

languages. Division and multiplication occur first, then addition and subtraction. The result of the

calculation 5+3*4 is 17, not 32, because the * operator has higher precedence than + in C. You can

use parentheses to change the normal precedence ordering:

Type name

C

0 1 2 3 4 5 6 7

https://www.chegg.com/learn/biology/introduction-to-biology/order

Correspondence Between Each Topic and Related VTPs
 | 6

(5+3)*4 is 32. The 5+3 is evaluated first because it is in parentheses.

Operators (binary operator)

Arithmetic for example, x=100, y= 50

Addition + z= x+y z=150

Subtraction - z= x-y z= 50

Multiplying * z= x*y z= 500

Division / z= x/y z= 2

Reminder % z= x%y z=0

%. 0f – to get the integer value.

\ n - new line

Example:

main ()

{

 int m, n, s, t, x, y, z, ans1, ans2;

 m =2, n =3, s =4, t =5;

 x =3, y =2, z =6;

 ans1 = 2* x* y+2;

 ans2 = (m + n) / (s + t);

 printf ("\n %d" , ans1);

 printf ("\n%.0f" , ans2) ;

}

 Output: ans1 = 24

 ans2= 0

3. Calculation Of Simple Interest

 Write a C program to input principle, time and rate (P, T, R) from user and find Simple

Interest. Simple interest formula is given by.

Correspondence Between Each Topic and Related VTPs
 | 7

Example:

Input

Enter principle: 1200

Enter time: 2

Enter rate: 5.4

Output

Simple Interest = 129.6

4. If Statement

➢ The statements inside the body of “if” only execute if the given condition returns true. If

the condition returns false then the statements inside “if” are skipped.

 Example:

#include < stdio.h >

int main ()

{

 int x = 25;

 int y = 30;

 if (x < y)

 {

 printf (“ x is less than y");

 }

 return 0;

}

 Output: x is less than y

5. If Else Statement

➢ If condition returns true then the statements inside the body of “if” are executed and the

statements inside body of “else” are skipped.

➢ If condition returns false then the statements inside the body of “if” are skipped and the

statements in “else” are executed.

Correspondence Between Each Topic and Related VTPs
 | 8

Example:

#include < stdio.h >

int main ()

{

 int age;

 printf(“Enter your age:”);

 scanf(“%d”,&age);

 if(age >=18)

 {

 printf (“You are eligible for voting”);

 }

 else

 {

 printf (“You are not eligible for voting”);

 }

 return 0;

}

 Output: Enter your age: 14

 You are not eligible for voting

6. Nested If Statement

➢ Nested If in C Programming is placing If Statement inside another IF Statement. Nested If

in C is helpful if you want to check the condition inside a condition.

➢ If the condition fails, we will check one more condition (Nested If), and if it succeeds, we

print something. When the nested If the condition fails, we print some other thing.

 Example:

int main ()

{

 int a, b;

 printf (“Input the value of a”);

 scanf (“%d”, &a);

 printf(“Input the value of b”);

 scanf(“%d”,&b);

 if (a != b)

 {

 printf(“a is not equal to b \n”); // Nested if else

 If (a > b)

 {

Correspondence Between Each Topic and Related VTPs
 | 9

 printf ("a is greater than b \n");

 }

 else

 {

 printf (“b is greater than a \n”);

 }

 }

 else

 {

 printf ("a is equal to b \n");

 }

 return 0;

 }

 Output: Input the value of a: 12

 Input the value of b: 21

 a is not equal to b

 b is greater than a

➢ return 0 used for returning a value when exiting the function

➢ & = call by reference

7. Working Of Logical Operators

 AND &&

 OR ||

 NOT ! (is not equal)

They are used to combine two or more conditions/constraints or to complement the evaluation

of the original condition under consideration.

➢ Logical AND operator: The ‘&&’ operator returns true when both the conditions under

consideration are satisfied. Otherwise it returns false. For example, a && b returns true when

both a and b are true (i.e. non-zero).

➢ Logical OR operator: The ‘||’ operator returns true even if one (or both) of the conditions

under consideration is satisfied. Otherwise it returns false. For example, a || b returns true if

one of a or b or both are true (i.e. non-zero). Of course, it returns true when both a and b are

true.

➢ Logical NOT operator: The ‘!’ operator returns true the condition in consideration is not

satisfied. Otherwise it returns false. For example, !a returns true if a is false, i.e. when a=0.

Example:

// Logical AND example

int main ()

Correspondence Between Each Topic and Related VTPs
 | 10

 {

 int a,b;

a= 20, b= 15, c= 10, d= 5;

if (a>b && c == d)

 printf("I am a programmer.\n");

else

 printf("I am not a programmer\n");

// Logical OR example

if (a>b | | c == d)

 printf("I am a programmer\n");

else

 printf("I am not a programmer\n");

// Logical NOT example

if (!b)

 printf (“ b is zero. \n");

else

 printf (“ b is not zero. \n");

}

 Output: I am not a programmer.

 I am a programmer.

 b is not zero.

8. Using Relational Operations On Integers

= = equal (for e.g), x == 10

!= not equal x! = 10

> greater than x>10

< less than x<10

>= greater than equal x>10 (or) x == 10

<= less than equal x<10 (or) x == 10

Example:

int main ()

{

 int i = 2;

 int j = 9;

 // The output will be printed like o or 1

printf(“ i > j: %d \n", i > j);

printf("i >= j %d \n", i >= j);

printf(“i <= j: %d \n", i <= j);

Correspondence Between Each Topic and Related VTPs
 | 11

printf(“ i < j: %d \n", i < j);

printf(“ i == j %d \n", i == j);

printf (“ i != j %d \n", i != j);

}

 Output: i > j: 0

 i >=j: 0

 i <=j: 1

 i < j: 1

 i ==j: 0

 i !=j: 1

9. While Loop With Post Incrementation

Post-increment operator: A post-increment operator is used to increment the value of

variable after executing expression completely in which post increment is used. In the Post-

Increment, value is first used in a expression and then incremented.

 Example:

main ()

{

int k = 1;

 while (k ++< 12)

 printf (“%d \t", k);

}

 Output: The values of k are: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

 Example:

main ()

{

 int j = 0;

while (j ++< 6)

 printf (“%d \t", j);

}

 Output: The values of j are 1, 2, 3, 4, 5, 6

 \t - tab

10. While Loop

In programming, a loop is used to repeat a block of code until the specified condition is

met. C programming has three types of loops:

Correspondence Between Each Topic and Related VTPs
 | 12

1. for loop

2. while loop

3. do...while loop

While Loop Works

➢ The while loop evaluates the test expression inside the parenthesis ().

➢ If the test expression is true, statements inside the body of while loop are executed. Then, the

test expression is evaluated again.

➢ The process goes on until the test expression is evaluated to false.

➢ If the test expression is false, the loop terminates (ends).

++ increment x++, ++x x+=1

- - decrement x- -, --x, x - = 1

➢ int x= 10; output x// 10

x++

Output x // 11

Example:

int main ()

{

 int i=0;

 while (i += 3, i <10)

 {

 printf ("%d ",i);

 }

 printf(“%d” , i);

}

 Output: 3, 6, 9, 12

11. For Loop Works

➢ The initialization statement is executed only once.

➢ Then, the test expression is evaluated. If the test expression is evaluated to false, the for loop

is terminated.

Correspondence Between Each Topic and Related VTPs
 | 13

➢ However, if the test expression is evaluated to true, statements inside the body of for loop are

executed, and the update expression is updated.

➢ Again the test expression is evaluated.

➢ This process goes on until the test expression is false. When the test expression is false, the

loop terminates.

Example:

main ()

{

 For (int i = 0; i<= 4);

 {

 printf ("%d\n", i);

 i = i + 1;

 }

}

 Output: The values of i are: 0, 1, 2, 3, 4

12. Nested For Loop

➢ Using a for loop within another for loop is said to be nested for loop. In nested for loop one

or more statements can be included in the body of the loop. In nested for loop, the number of

iterations will be equal to the number of iterations in the outer loop multiplies by the number

of iterations in the inner loop.

Example:

main ()

{

 int a, b, sum;

 for (a = 0 ; a <= 1 ; r++) /* outer loop */

 {

 for (b=1 ; b <= 2; c++) /* inner loop */

 {

 sum = r + c;

 printf ("r = %d c = %d sum = %d\n", r, c, sum) ;

 }

 }

}

Correspondence Between Each Topic and Related VTPs
 | 14

 Output: a =0, b=1, sum= 1

 a =1, b=2, sum= 3

13. Do...while Loop Works

➢ The body of do...while loop is executed once. Only then, the test expression is evaluated.

➢ If the test expression is true, the body of the loop is executed again and the test expression is

evaluated.

➢ This process goes on until the test expression becomes false.

➢ If the test expression is false, the loop ends.

Example:

 int main ()

{

 int x = 3, y = 1;

 do

 {

 printf("\t %d %d \n", x,y);

 x-- ;

 y++ ;

 } while (x >= 0);

}

 Output: The values of x and y are: 3, 1, 2, 2, 1, 3, 0, 4

14. Using Switch-Case Control Structure Without Break

➢ Switch statement in C tests the value of a variable and compares it with multiple cases.

Once the case match is found, a block of statements associated with that particular case is

executed.

➢ Each case in a block of a switch has a different name/number which is referred to as an

identifier.

➢ The value provided by the user is compared with all the cases inside the switch block until

the match is found.

➢ If a case match is NOT found, then the default statement is executed, and the control goes

out of the switch block.

If there is no break statement then the cases matched other than default will get executed.

Correspondence Between Each Topic and Related VTPs
 | 15

Example:

main ()

{

 char a = 3 ;

 switch (a)

 {

 case 1 :

 printf ("\n Apple");

 case 2 :

 printf (“\n Banana ");

 case 3 :

 printf (“\n Orange ");

 default :

 printf ("\n Fruit") ;

 }

 printf ("\n I like fruits.") ;

}

 Output: Orange

 Fruit

 I like fruits.

15. Switch-Case Using Arithmetic Expression

main ()

{

 int t, k=1 ;

 switch (t = k+1) ;

 {

 case 0 :

 printf ("\n%d\t Demonstrator ",t) ;

 break;

 case 1 :

 printf ("\n%d\t Tutor", t) ;

 break;

 default :

 printf (“\n%d \t All are University Teachers!",t) ;

 }

}

Correspondence Between Each Topic and Related VTPs
 | 16

 Output: 2 All are University Teachers!

 16. Using Switch-Case With Multiple Cases

main ()

{

 int x = ‘ 1 ’+ ‘ 2 ’ ;

 char str [] = "Morning!";

 switch (x)

 {

 case 'a' :

 case 'b' :

 printf ("%s\t You entered b.",str) ;

 case ‘A’ :

 printf ("%s\tYou entered a.",str) ;

 case '2' + '1' :

 printf ("%s\tYou entered a and b.",str) ;

 }

}

 Output: Morning! You entered a and b. (%s is used for outputting a string.)

17. Why We Need Functions In C

Functions are used because of following reasons –

a) To improve the readability of code.

b) Improves the reusability of the code, same function can be used in any program rather than

writing the same code from scratch.

c) Debugging of the code would be easier if you use functions, as errors are easy to be traced.

d) Reduces the size of the code, duplicate set of statements are replaced by function calls.

Actual parameters: The parameters that appear in function calls.

Formal parameters: The parameters that appear in function declarations.

1) Function – Call by value method – In the call by value method the actual arguments are copied

to the formal arguments, hence any operation performed by function on arguments doesn’t affect

actual parameters.

https://beginnersbook.com/2014/01/c-function-call-by-value-example/

Correspondence Between Each Topic and Related VTPs
 | 17

2) Function – Call by reference method – Unlike call by value, in this method, address of actual

arguments (or parameters) is passed to the formal parameters, which means any operation

performed on formal parameters affects the value of actual parameters.

Simple Usage Of Functions

 Example:

main ()

{

 printf ("\n I am a teacher ") ;

 Germany () ;

 italy ();

 England ();

}

 gremany();

 {

 printf (“ \n I am in Germany ");

 }

 italy ();

 {

 printf (“ \n I am in italy ");

 }

 England ();

 {

 printf ((“ \n I am in England ");

 }

 Output: I am a teacher

 I am in Germany

 I am in Italy

 I am in England

18. Call By Value In C

➢ A copy of the value is passed into the function

➢ Changes made inside the function is limited to the function only. The values of the actual

parameters do not change by changing the formal parameters.

➢ Actual and formal arguments are created at the different memory location

https://beginnersbook.com/2014/01/c-function-call-by-reference-example/

Correspondence Between Each Topic and Related VTPs
 | 18

Usage of Function with Call by Value

main ()

{

 int a = 5, b = 10 ;

 printf ("\n Before swap, a = %d b = %d", a, b) ;

 swap (a, b) ;

 printf ("\nAfter swap, a = %d b = %d", a, b) ;

 }

swap (int p, int q)

{

 int t ;

 t = p;

 printf (“\nThe value of t = %d “ , t);

 p= q;

 printf ("\nThe value of x = %d ", p) ;

 q= t;

 printf (“"\nThe value of y = %d ", q) ;

}

 Output: Before swap, a =5, b= 10

 The value of t= 5

The value of p = 10

The value of q = 5

After swap, a = 5, b = 10

19. Call By Reference In C
➢ An address of value is passed into the function

➢ Changes made inside the function validate outside of the function also. The values of the

actual parameters do change by changing the formal parameters.

➢ Actual and formal arguments are created at the same memory location

 & = call by reference

Function With Call By Reference Usage

 Example:

main ()

Correspondence Between Each Topic and Related VTPs
 | 19

{

 int a = 15, b = 20 ;

 printf ("\n Before swap, a = %d b = %d", a, b) ;

 swapr (&a, &b) ;

 printf ("\nAfter swap, a = %d b = %d", a, b) ;

}

swapr (int *p, int *q)

 {

 int t ;

 t = *p;

 printf (“\nThe value of t = %d “ , t);

 *p= *q;

 printf ("\nThe value of x = %d ", p) ;

 *q= t;

 printf (“"\nThe value of y = %d ", q) ;

 }

 Output: Before swap, a = 15, b = 20

 The value of t =15

 The value of *p =20

 The value of *q = 15

 After swap, a = 20, b = 15.

20. Finding Factorial Value

The factorial of a positive number n is given by:

Factorial of n (n!) = 1 * 2 * 3 * 4 *... * n

Factorial of a positive integer n, denoted by n!, is the product of all positive descending integers

less than or equal to n. For example:

1. 5! = 5*4*3*2*1 = 120

 2. 3! = 3*2*1 = 6

 Example: 1

main

{

 int a, fact ;

 a = 2

Correspondence Between Each Topic and Related VTPs
 | 20

 fact = factorial (a) ;

 printf ("\n Factorial value = %d", fact) ;

}

factorical (int x)

{

 int f = 1, i,c;

 c =1 ;

 for (i = x ; i >= 1, i--)

 {

 f = f * i ;

 printf ("\nThe value of f%d = %d", c, f) ;

 c++;

 }

 return (f);

}

Output: The value of f1 = 2

 The value of f2 = 2

 The value of f3 = 0

 Factorial value = 2

 Example: 2

main ()

{

 int x, fact ;

 x = 4 ;

 fact = factorial (x) ;

 printf ("\n Factorial value = %d", fact) ;

}

factorical (int a)

{

 int f = 1, i, c;

 c =1 ;

 for (i = a; i >= 0, i--)

 {

 f = f * i ;

 printf ("\nThe value of f%d = %d", c, f) ;

 c++;

 }

 return (f);

}

Correspondence Between Each Topic and Related VTPs
 | 21

Output:

The value of f1 =4

The value of f2 = 12

The value of f3 = 24

The value of f4 =24

Factorical value = 24

21. Recursion In C

Recursion is a process in which a function calls itself directly or indirectly.

 Finding Factorial Value With Recursion

 Example:

main ()

{

 Int x , fact;

 x = 3 ;

 fact = rec (x) ;

 printf ("\n Factorial value = %d", fact) ;

}

Correspondence Between Each Topic and Related VTPs
 | 22

rec (int a)

{

 int f, c = 1

 if (a == 1)

 return (1) ;

else

 f = a * rec (a - 1) ;

 return (f) ;

}

 Output: Factorial value = 6

22. Initializing The Automatic Variables With Different Blocks

 In computer programming, an automatic variable is a local variable which is allocated

and deal located automatically when program flow enters and leaves the variable's scope.

 Example:

main ()

{

 auto int j =3;

 {

 auto int j = 2 ;

 {

 auto int j = 1 ;

 printf ("\n%d ", j) ;

 }

 printf ("\n%d ", j) ;

 }

 printf ("\n%d ", j) ;

}

 Output: 1, 2, 3

23. Different Macro Templates Usage

➢ Usually macros make the program run faster but increase the program size, whereas

functions make the program smaller and compact.

➢ This gets avoided with macros since they have already been expanded and placed in the

source code before compilation.

Example:

#define PI 3.142

#define AND &&

Correspondence Between Each Topic and Related VTPs
 | 23

#define OR ||

main()

{ float r = 4.2 ;

 float area ;

 int f = 1, x = 4, y = 80 ;

 area = PI * r * r ;

 printf ("\n Area of circle = %.2f", area) ;

 if ((f < 3) AND (x <= 10 OR y <= 65))

 printf ("\n You are University students ") ;

 else

 printf ("\n They are clever ") ;

}

 Output: Area of circle - 55.42

 another output - You are University students

24. Macro Usage With Arguments

 Example:

#define Area (a) (3.142 * a * a)

main()

{

 float r1 = 4.25 ; r2 = 3.0, A;

 A = area (r1) ;

 printf ("\n Area of circle1 = %f", A) ;

 A = area (r2) ;

 printf ("\n Area of circle2 = %f", A);

}

 Output: Area of circle1 (only two decimal place) = 56.75

 Area of circle2 (only two decimal place) = 28.27

25. Array

➢ An array is a variable that can store multiple values.

 For example,

if you want to store 100 integers, you can create an array for it.

int data[100];

Correspondence Between Each Topic and Related VTPs
 | 24

For example,

float mark[5];

Here, we declared an array, mark, of floating-point type. And its size is 5. Meaning, it can

hold 5 floating-point values. It is possible to initialize an array during declaration.

For example,

int mark[5] = {19, 10, 8, 17, 9};

mark[0] is equal to 19

mark[1] is equal to 10

mark[2] is equal to 8

mark[3] is equal to 17

mark[4] is equal to 9

Simple Program Using Array

 Example:

main ()

{

 int avg, sum = 0 ;

 int marks[] = { 19, 10, 8, 17, 9 }; /* array declaration*/

 for (int i = 0; i < 5 ; i++)

 sum = sum + marks[i] ; / * read data from array*/

 avg = sum / 5 ;

 printf (avg = sum “\n Average marks = %d", avg) ;

}

 Output: Average marks – 55.8

 26. Different Function Calls With By Value and By Reference

main ()

{

 int marks [] = { 3,5,7,9 };

 for (int i = 0 i < = 2 ; i++)

 {

 display1 (marks [i]) ; // call by value

Correspondence Between Each Topic and Related VTPs
 | 25

 display2 (&marks[i]) ; // call by reference

 }

 }

 display 1 (int m)

 {

 printf ("%d ", m) ;

 }

 display2 (int *n);

 {

 printf ("%d ", *n) ;

 }

 Output: The first function call = 3, 5, 7, 9

 The second function call = 3, 5, 7, 9

Pointer In C

The Pointer in C is a variable that stores address of another variable. A pointer can also be

used to refer to another pointer function. A pointer can be incremented/decremented, i.e., to point

to the next/ previous memory location. The purpose of pointer is to save memory space and achieve

faster execution time.

Pointer Syntax

 pointer = &variable;

A simple program for pointer illustration is given below:

Example:

include <stdio.h>

int main ()

{

 int a = 10;

 int *p;

 p = &a;

 printf (“ Address stored in a variable p is: %xn\n”, p); // accessing the address

 printf (“Value stored in a variable p is: %d \n , *p); // accessing the value

 return0;

}

 Output: Address stored in a variable p is:60ff08

 Value stored in a variable p is:10

Correspondence Between Each Topic and Related VTPs
 | 26

27. Pointer Usage In Memory Allocation For Different Data Types

If origin address is increasing new address, int and float types will be increased four bytes

and char type will be increased one bytes.

Operator

* - Declaration of a pointer

 - Returns the value of the referenced variable

& - Returns the address of a variable

%x is used for outputting integer in hexadecimal

 Example:

int main ()

{

 int i = 2, *x ;

 float j = 3.5, *y;

 char k = 'c', *z ;

 printf ("\nValue of i = %d", i);

 printf ("\nValue of j = %f", j);

 printf ("\nValue of k = %c",k);

 x = &i ; // Suppose the address of i is 65524

 y = &j ; // Suppose the address of j is 65520

 z = &k ; // Suppose the address of k is 65519

 printf ("\nOriginal address in x = %u", x) ;

 printf ("\nOriginal address in x = %u", y) ;

 printf ("\nOriginal address in x = %u", z) ;

 x++ ;

 y++ ;

 z++ ;

 printf ("\nNew address in x = %u", x) ;

 printf ("\nNew address in y = %u", y) ;

 printf ("\nNew address in z = %u", z) ;

}

Output: Value of i = 2

 Value of j (two decimal place) = 3.50

 Value of k = c

 Original address in x = 65524

 Original address in y = 65520

 Original address in z = 65519

Correspondence Between Each Topic and Related VTPs
 | 27

 New address in x = 6228

 New address in y = 65524

 New address in z = 65520

28. Array Elements In Different Ways

main ()

{

 int num[] = { 14, 44} ;

 for (int i= 0 ; i <= 1; i++)

 {

 printf ("\naddress = %u ", &num[i]) ;

 printf ("element = %d %d ", num[i], *(num + i)) ;//suppose the address starts 65535

 printf ("%d %d", *(i + num), i[num]) ;

 }

}

 Output: Address - 65535 element - 14

 Address - 65539 element - 44

29. Pointer Notation To Access 2-D Array Elements

 Example:

main ()

{

 int s[3][2] = {

 { 1234 , 65 },

 { 4567 , 34 },

 { 9875 , 90 },

 } ;

 for (int i = 0 ; i <= 3 ; i++)

 {

 printf ("\n") ;

 for (int j = 0 ; j <= 1 ; j++)

 printf ("%d ", *(*(s + i) + j)) ;

 }

 }

 Output: 1234, 65

 4567, 34

 9875, 90

30. To Declare A String

char s[5];

Correspondence Between Each Topic and Related VTPs
 | 28

A string is a sequence of characters terminated with a null

character \0.

C program to find length of a string, for example, the length of the string "C programming"

is 13 (space character is counted). The null character isn't counted when calculating it.

Finding String Length

main ()

{

 char arr[] = "Myanmar" ;

 int len1, len2 ;

 len1 = strlen (arr) ;

 len2 = strlen (" Warmly Welcome ") ;

 printf ("\nstring = %s Length = %d", arr, len1) ;

 printf ("\nstring = %s Length %d", "Humpty Dumpty", len2);

}

 Output: Myanmar - 7

 Warmly Welcome - 14

31. Copying String From Source To Destination

main ()

{

 char source[] = "Magalarba" ;

 char target[10] ;

 strcpy (target, source) ;

Correspondence Between Each Topic and Related VTPs
 | 29

 printf ("\ n source string = %s", source) ;

 printf ("\ n target string = %s", target);

}

 Output: source string = Magalarba

 target string = Magalarba

32. String Concatenation In C

The concatenation of strings is a process of combining two strings to form a single string.

If there are two strings, then the second string is added at the end of the first string.

For example, Hello + javaTpoint = HellojavaTpoint

 Concatenation String from Source to Destination

main ()

{

 char source[] = "Konichiwa" ;

 char target[10] = “ Hello!” ;

 strcat (target, source) ;

 printf ("\ n source string = %s", source) ;

 printf ("\ n target string = %s", target);

}

 Output: source string = Konichiwa

 target string = Hello!Konichiwa

33. Exchange Names Using 2-D Array Of Characters

 Example:

main()

{

 char names [][10] = {

 "Myanmar",

 “English”

 "Math",

 "Physics",

Correspondence Between Each Topic and Related VTPs
 | 30

 "Chemist"

 } ;

 char t ;

 printf ("\nOriginal: %s %s", &names[4][0], &names[3][0]) ;

 for (int i = 0 ; i <= 9 ; i++)

 {

 t = names[4][i] ;

 names[4][i] = names [3] [i] ;

 names [3] [i] = t ;

 }

 printf ("\nNew: %s %s", &names[2][0], &names[3][0]) ;

}

 Output: Original: Chemist, Physics

 New: Physics, Chemist

34. Structure

➢ User defined data types

➢ Using function we can define a data type which holds more than one element of different

data types.

 Accessing Structure Elements

 main ()

{

 struct b

 {

 char name ;

 float number ;

 int notes;

 } ;

 struct book1 = { 'A', 123.00, 500 } ;

 printf ("\nAddress of name = %c", book1.name) ;

 printf ("\nAddress of number = %f", book1. number) ;

 printf "\nAddress of notes = %d", book1. notes);

}

 Output: Address of name = A

 Address of number = 123.00

 Address of notes = 50

Correspondence Between Each Topic and Related VTPs
 | 31

35. Copying Structure Elements

main ()

{

 struct book

 {

 char name [8]

 int yr ;

 float value;

 };

struct book b1 = { "English", 20, 1500.50 } ;

struct book b2, b3 ;

strcpy (b2.name, b1.name) ; /* piece-meal copying */

b2.yr = b1.yr ;

b2.value = b1. value ;

b3 = b2 ; /* copying all elements at one go */

printf ("\nbook1 = %s %d %f", b1.name, b1.yr, b1.value) ;

printf ("\nbook2 = %s %d %f", b2.name, b2.yr, b2.value) ;

printf ("\nbook3 = %s %d %f", b3.name, b3.yr, b3.value) ;

}

 Output: book1 - English, 20, 1500.50

 book2 - English, 20, 1500.50

 book3 - English, 20, 1500.50

36. Nested Structures Usage

main ()

{

 struct address

 {

 char phone[10] ;

 char city[20] ;

 int Number ;

 } ;

struct temp

 {

 char name[25] ;

 struct address b ;

 } ;

struct temp x = { "Khangyi ", "202130", "romagyi ", 10 };

printf ("\ nname = %s phone = %s", x.name, x.b.phone) ;

printf ("\ncity = %s Number = %d", x.a.city, x.b.Number) ;

Correspondence Between Each Topic and Related VTPs
 | 32

}

 Output : name - Khangyi, phone -202130

 city - romagyi , Number -10

37. Passing The Entire Structure Variable To The Method

struct main

{

 char type [15] ;

 char author[15] ;

 int number ;

 } ;

main ()

 {

 struct book b1 = = { "C program ", "YZA", 306 } ;

 display (b1) ;

 }

display (struct book b)

 {

 printf ("\nThe output is : %s %s %d", b.type, b.author, b.number) ;

 }

 Output: C program , YZA, 306

38. Usage Of A Structure Pointer

A pointer is a variable which points to the address of another variable of any data type like

int, char, float etc. Similarly, we can have a pointer to structures, where a pointer variable can point

to the address of a structure variable.

Example:

main ()

{

 struct note

 {

 char name[25] ;

 char author[25] ;

 int callno ;

 };

 struct note N1 = { "Let us C", "AYD", 103 } ;

 struct note *ptr ;

 ptr = & N1;

Correspondence Between Each Topic and Related VTPs
 | 33

 printf ("\nThe output without using pointer is:%s %s %d", N1.name, N1.author,

N1.callno) ;

 printf ("\nThe output with pointer is%s %s %d", ptr->name, ptr->author, ptr->callno) ;

}

 Output: The output without using pointer is Let us C, AYD, 103

 The output with pointer is Let us C, AYD, 103

