
Storing Data in a Database on
Flutter to Solve Practice Problems

(F_CMP2)
24/01/2024

1/18

Contents

■ Overview about database
■ What is SQL?
■ What is SQLite?
■ Overview basic SQLite statements
■ About Sqflite
■ Advantages and disadvantages of Sqflite
■ Data type requirements of the Map object
■ How Sqflite works
■ Installation of Sqflite in Flutter
■ Flutter SQLite CRUD operations : Setting up
■ Flutter SQLite CRUD operations : Writing queries

2/18

Overview about database

● Database definition : A database is a collection of data that is connected
to each other, making it easy to see the relationship between
information.

● Purpose of database : To ensure the data is stored correctly and easily
searchable.

● Database components : Database components consist of data, tables,
relationships, and database management system (DBMS).

● Types of databases : There are different types of databases, including
relational databases, NoSQL databases, and object-oriented
databases.

3/18

What is SQL?

● SQL is a programming language used to manage data in a relational
database.

● A relational database is a database that uses tables to store data.

4/18

What is SQLite?

● SQLite is an in-process library that implements a self-contained,

serverless, zero-configuration, transactional SQL database.

● SQLite is an in-memory database, which means that data is stored in

the device's main memory.

● SQLite makes it ideal for applications that require quick access to

data, such as mobile applications.

5/18

SQLite

Self-contained
Minimal support from external libraries

Serverless
Reads and writes directly from the

database files on disk

Zero-configuration
No installation, no setup

Transactional
All changes in a transaction occur

completely or not at all

6/18

Overview basic SQLite statements

● CREATE TABLE : Creates a new table.

● INSERT INTO : Adds new data to a table.

● SELECT : Retrieves data from a table.

● UPDATE : Changes the data in the table.

● DELETE : Deletes data from a table.

SQLite also provides some additional features, such as :

● TRIGGER : Events that occur when certain operations are performed on a table.

● VIEW : The virtual table represented by the query.

● INDEX : A data structure that improves query performance.

7/18

About Sqflite

● A Flutter plugin to access and manage SQLite databases in Flutter apps,
both on Android and iOS devices.

● Sqflite allows you to perform various database operations, such as
creating tables, adding data, updating data, and deleting data.

● Include it’s dependency in pubspec.yaml
● Sqflite consists of two main components, which are :

○ Database: A database is a collection of data stored in a relational
format.

○ Tables: Tables are data structures used to store data in the database.

8/18

Advantages and disadvantages of Sqflite

Advantages Disadvantages

● Lightweight and portable

● Simple and easy to use

● Efficient and scalable

● Secure

● Can be complex

● Only supports SQLite

9/18

Data type requirements of the Map object

● The Map object is a simple key/value pair.
● To declare Map object have to enclose the key-value pairs within a pair of

curly brackets "{ }".
● Example :

void main() {
 var detail = {'Usrname':'enzy','Password':'pass@456'};
 detail['key'] = 'value';
 String? name = detail['Usrname'];
 print(name); //output: enzy
 print(detail);
 //output: {Usrname: enzy, Password: pass@456, key: value}
}

10/18

How Sqflite works

SQLite
Database

Sqflite plugins saves map objects
to your SQLite database

Sqflite plugins retrieves map
objects from your SQLite database

■ In short, before saving data to database, you need to
convert data into MAP object.

■ In short, when you retrieve data from database, you
get a MAP object. You need to convert it to simple
object before using it.

11/18

Installation of Sqflite in Flutter

Adding Package : Add the sqflite package in your pubspec.yaml file under
dependencies :

Installing Package : Open the terminal in your IDE or command prompt and
navigate to your project directory, where pubspec.yaml is located. Run the
command flutter pub get to retrieve the packages.

dependencies:
 sqflite: any

$ flutter pub get

12/18

Flutter SQLite CRUD operations : Setting up

1. Importing Package : Import the sqflite package inside your Flutter
Dart file.

import 'package:sqflite/sqflite.dart';

13/18

2. Opening Database : Use the openDatabase method to open a connection to
the database.

● After calling openDatabase() in Sqflite, it will immediately create a folder on
device :
○ Android : in the directory data/data/<your_package_name>/notedb
○ iOS : in the directory

/var/mobile/Containers/Data/Application/<ID>/Documents/notedb

void createTable() async {
 final db = await openDatabase('notedb');
}

Flutter SQLite CRUD operations : Setting up

14/18

3. Creating Table : To create a table in your SQLite database, use the
execute method after opening the database.

void createTable() async{
 final db = await openDatabase(
 join(await getDatabasesPath(), 'notedb'),
 onCreate: (db, version) {
 return db.execute('CREATE TABLE notes(id INTEGER
PRIMARY KEY, note TEXT)');
 },
 version: 1,
);
}

Flutter SQLite CRUD operations : Setting up

15/18

Flutter SQLite CRUD operations : Writing queries

Using Raw SQL Using Helper Functions and just
pass parameter

16/18

Flutter SQLite CRUD operations : Writing queries

db.rawQuery(“SELECT * FROM notedb”) //Writing raw SQL
db.query(“notes”); //Helper function

db.rawInsert(“YOUR SQL STATEMENT”); //Writing raw SQL
db.insert(param1, param2, param3); //Helper function

db.rawDelete(“YOUR SQL STATEMENT”); //Writing raw SQL
db.delete(param1, param2, param3); //Helper function

db.rawUpdate(“YOUR SQL STATEMENT”); //Writing raw SQL
db.update(param1, param2, param3); //Helper function

Difference between using raw SQL and using helper function :

17/18

db.query(“notes”);

db.insert(“notes”, Map data, sqflite conflictAlgorithm);

db.delete(“notes”, where: “id=?”, whereArgs: [1]);

db.update(“notes”, Map data require, where: “id=?”,
whereArgs: [1]);

Each parameter in helper function :

Flutter SQLite CRUD operations : Writing queries

18/18

