

 Funabiki Laboraty

 Department of Electrical and Communication Engineering

Okayama University

STUDY OF JAVASCRIPT

PROGRAMMING LEARNING

ASSISTANT SYSTEM (JSPLAS)

JavaScript Basic Concepts

Correspondence Between Each Topic and Related VTPs

 | 1

JavaScript Programming Learning Assistant System (JSPLAS)

・ Correspondence Between Each Topic and Related VTPs .. 2

・ What is JavaScript .. 3

・ Why is JavaScript Important? ... 3

・ Special Features of the JavaScript .. 4

・ What are the differences and similarities between Java and JavaScript? 5

・ Differences between Java and JavaScript ... 5

・ Basic Syntax ... 7

・ JavaScript Data Types .. 8

・ JavaScript Operators .. 9

・ JavaScript operator precedence and associativity chart ... 13

・ JavaScript Objects .. 15

・ JavaScript RegExp Object Methods .. 16

・ JavaScript Functions .. 17

・ JavaScript Global Functions ... 20

・ JavaScript Strings ... 22

・ JavaScript Conditional Code (If/Else/Switch) ... 25

・ JavaScript Loops .. 27

・ JavaScript Arrays .. 29

・ JavaScript Dates .. 32

・ The difference of Var, Let and Const .. 36

・ Arrow function expressions .. 41

・ JavaScript Reversed Words ... 45

Correspondence Between Each Topic and Related VTPs

 | 2

・ Correspondence Between Each Topic and Related VTPs

※ Click the link to go reference pages directly.

JavaScript Concepts Related VTPs Version Related Problem Numbers

Basic Syntax VTP_P1 1 to 32

JavaScript Data Types VTP_P1 1

JavaScript Operators VTP_P1 2,3

JavaScript Objects VTP_P1 5

JavaScript Functions VTP_P1 4

JavaScript Strings VTP_P1 6,7,8,9,10,11,12,13,14,15

JavaScript Conditional

Code (If/Else/Switch)

VTP_P1 25,26,27,28

JavaScript Loops VTP_P1 29,30,31,32

JavaScript Arrays VTP_P1 16 to 32

JavaScript Concepts Related VTPs Version Related Problem Numbers

JavaScript Data Types VTP_P2 1,2,10

JavaScript Operators VTP_P1 3,4,5

JavaScript operator

precedence and

associativity chart

VTP_P2 6

JavaScript RegExp

Object Methods

VTP_P2 7

JavaScript Functions VTP_P2 9

JavaScript Global

Functions

VTP_P2 12,13,14,15,16,17

JavaScript Strings VTP_P2 8

JavaScript Conditional

Code (If/Else/Switch)

VTP_P2 25,26,27,28

JavaScript Loops VTP_P2 11

JavaScript Arrays VTP_P2 18

JavaScript Dates VTP_P2 19

The difference of Var,

Let and Const

VTP_P2 20,21,22,23,24

Arrow function

expressions

VTP_P2 25

Correspondence Between Each Topic and Related VTPs

 | 3

・ What is JavaScript

JavaScript often abbreviated as JS, is a high-level, interpreted programming

language that conforms to the ECMAScript specification. It is a programming language

that is characterized as dynamic, weakly typed, prototype-based, and multi-paradigm. It

is also a programming language used primarily by Web browsers to create a dynamic

and interactive experience for the user. Most of the functions and applications that make

the Internet indispensable to modern life are coded in some form of JavaScript. It is a

tool for developers to add interactivity to websites.

JavaScript is a simple and easy-to-learn programming language as compared to

other languages such as C++, Ruby, and Python. It is a high-level, interpreted language

that can easily be embedded with languages like HTML. It was developed by Netscape

Communications Corporation, Mozilla Foundation, and ECMA International. Brendan

Erich is known as the creator or designer of the JavaScript programming language

・ Why is JavaScript Important?

Since JavaScript is released, it has become the most popular programming language

for web development today. JavaScript is currently used by 94.5% of all websites and,

despite originally being designed as a client-side language, JavaScript has now made

its way to the server-side of websites, mobile devices, and desktop. Developers can also

create web pages which work well across various browsers, platforms, and devices by

combining JavaScript, HTML5, and CSS3.

 One of the good things about JavaScript is that it is supported by multiple web

browsers like Google Chrome, Internet Explorer, Firefox, Safari, and Opera etc. Hence

the users can access the web applications on any web browser of their choice easily.

They can just enable the JavaScript language if it is disabled and can enjoy all the

functionality of the site. JavaScript Frameworks and libraries make it easy for web

Correspondence Between Each Topic and Related VTPs

 | 4

developers to build large, JavaScript-based web applications. JavaScript also has lots of

libraries which can be used as per the requirements.

 JavaScript code can be written easily without using any program or tool. Even

a notepad, it can be used for creating JavaScript Programming. So, most of the coding

editors can be used for JavaScript for debugging. JavaScript is an interpreted

programming language still it simplifies development of complex web applications by

allowing the developers to simplify the application’s composition. The developers can

use JavaScript libraries to create DOM boundaries.

 The most popular Search Engine, Google has started the Accelerated Mobile

Pages (AMP) project to create websites which deliver a richer user experience across

various mobile devices by using JavaScript for optimizing websites for mobile devices

for AMP.

 JavaScript is very useful for not only building a highly interactive web application,

but also for helping to enhance the speed, performance, functionality, usability, and

features of the application without any hassles. That’s why, most of the developers and

programmers are using JavaScript to make web applications deliver best and optimal

user experience across various devices, browsers, and operating systems. Developers

must learn about various JavaScript libraries, frameworks, and tools and combine

multiple libraries and frameworks to use the JavaScript as per the projects’ requirements.

・ Special Features of the JavaScript

JavaScript is one of the most popular languages which includes numerous features

when it comes to web development. JavaScript has so many special features as very

useful and popular web programming language, but the following will be the most popular

features.

- Light Weight Scripting Language

- Dynamic Typing

- Object-Oriented Programming Support

- Functional Style

- Platform Independent

- Prototype-based

- Interpreted Language

- Async Processing

- Client-Side Validation

- More control in the browser

Correspondence Between Each Topic and Related VTPs

 | 5

・ What are the differences and similarities between Java and JavaScript?

Java is an object-oriented programming language and have a virtual machine platform

that allows to be creating compiled programs that run on nearly every platform. Java

promised, “Write Once, Run Anywhere”.

JavaScript is a lightweight programming language (“scripting language”) and used to

make web pages interactive. It can insert dynamic text into HTML. JavaScript is also

known as browser’s language. JavaScript (JS) is not similar or related to Java. Both the

languages have a C like a syntax and are widely used in client-side Web applications,

but there are few similarities only.

Though the name of Java and JavaScript is very similar, the usage of both is obviously

different. Only some similarities will be between Java and JavaScript. Both Java and

JavaScript have many libraries and frameworks. These frameworks and libraries help

developers to reduce coding time significantly. Likewise, the developers also have the

option to reuse the code-shared by communities to avoid writing any additional code.

The libraries and frameworks further contribute to making web technologies popular and

current.

For example, Both JavaScript and Java:

use {and} as code block delimiters

use; to end statements

have a Math library e.g. Math. Pow

have if, do...while (pretty much same syntax)

have return statements

・ Differences between Java and JavaScript

1. OOPS

Java: Java is an object-oriented programming language. It uses objects to perform

actions based on relations between objects.

JavaScript: JavaScript is an object-oriented scripting language. It uses the objects

to perform actions similar in Java.

2. Platform

Java: Java applications and programs run in Java Virtual Machine (JVM) which

required installing JDK and JRE on a system.

JavaScript: JavaScript applications run on a web browser and no need of any

initial setup.

Correspondence Between Each Topic and Related VTPs

 | 6

3. Mobile Application

Java: Old Mobile applications are mostly written in Java and Smartphone platforms

like Symbian and Android also support Java.

JavaScript: Using JavaScript we can develop mobile applications but there are

few limitations as we need to use third-party tools like phone gap to convert it to

native code which mobile OS platform can execute.

4. Syntax

Java: The syntax of Java is similar to C/C++ programming language. It uses

classes and objects.

JavaScript: The syntax of JavaScript is similar to C language, but it uses the

naming conventions similar to Java.

5. Compilation

Java: Java programs are compiled and interpreted as it is a scripting language.

JavaScript: JavaScript is only interpreted as it is a scripting language or a plain

text code.

6. Learning Curve

Java: Java has various online forums, documentation and community support. You

can learn this language to build various applications.

JavaScript: JavaScript also has extensive documentation and online resources.

You can learn JavaScript to build web applications and websites.

7. Scope

Java: Java uses block-based scoping. In this, the variable goes out of scope once

the control comes out of a block.

JavaScript: JavaScript uses function-based scoping as the variable can be

accessed in the function.

8. Support

Java: Java is supported by almost all the operating systems.

JavaScript: JavaScript supported by almost all the web browsers that come with

different operating systems.

Correspondence Between Each Topic and Related VTPs

 | 7

・ Basic Syntax

1. A simple variable declaration

var greet = 'Hello world' ;

var n = 10 ;

Any data types can be declared by using with var. It can be automatically

recognized as assigned values.

2. Comments usage

/* How to assign variables

Data types can be automatically changed */

var greet = 'Hello world' ; //String variable assignment

var n = 10 ; //Number variable assignment

/ *…. */

When we need to describe comments with multiple line, this syntax can be used.

//…..

When we need to describe comments with single line or short message, this

syntax can be used.

3. Output

JavaScript can "display" data in different ways:

- Writing into an HTML element, using innerHTML.

- Writing into the HTML output using document.write().

- Writing into an alert box, using window.alert().

- Writing into the browser console, using console.log().

var greet = 'Hello world' ;

console.log(greet);

Remarks: We will use only console.log() in basic grammar part I and part II.

4. JavaScript Statements

var a, b, c; //Declare 3 variables

a = 5; // Assign the value 5 to a

Correspondence Between Each Topic and Related VTPs

 | 8

b = 6; // Assign the value 6 to b

c = a + b; // Assign the sum of a and b to c

JavaScript statements are composed of: Values, Operators, Expressions,

Keywords, and Comments. JavaScript programs (and JavaScript statements) are often

called JavaScript code.

5. Semicolons

var greet = 'Hello world' ; //String variable assignment

Semicolons separate JavaScript statements. Add a semicolon at the end of each

executable statement:

・ JavaScript Data Types

Data types basically specify what kind of data can be stored and manipulated

within a program.

There are six basic data types in JavaScript which can be divided into three

main categories: primitive (or primary), composite (or reference), and special data

types.

・ String, Number, and Boolean are primitive data types.

・ Object, Array, and Function (which are all types of objects) are composite data

types.

・ Undefined and Null are special data types.

Primitive data types can hold only one value at a time, whereas composite data types

can hold collections of values and more complex entities.

var length = 16; // Number

var lastName = "Johnson"; // String

var x = {firstName:"John", lastName:"Doe"}; // Object

var length = x; // Undefined

var inProgress = true; // Boolean

var obj = null; // Null

Correspondence Between Each Topic and Related VTPs

 | 9

・ JavaScript Operators

1. Arithmetic Operators

Arithmetic operators are used to perform arithmetic between variables and/or values.

2. Assignment Operators

Assignment operators are used to assign values to JavaScript variables.

3. String Operators

The + operator, and the += operator can also be used to concatenate (add) strings.

Correspondence Between Each Topic and Related VTPs

 | 10

4. Comparison Operators

Comparison operators are used in logical statements to determine equality or

difference between variables or values.

5. Conditional (Ternary) Operator

The conditional operator assigns a value to a variable based on a condition.

6. Logical Operators

Logical operators are used to determine the logic between variables or values.

7. Bitwise Operators

Bit operators work on 32 bits numbers. Any numeric operand in the operation is

Correspondence Between Each Topic and Related VTPs

 | 11

converted into a 32 bit number. The result is converted back to a JavaScript number.

8. The typeof Operator

typeof "John”; //Returns string

typeof 3.14; // Returns number

typeof NaN; // Returns number

typeof false; // Returns boolean

typeof [1, 2, 3, 4]; // Returns object

typeof {name:'John', age:34}; // Returns object

typeof new Date(); // Returns object

typeof function () {}; // Returns function

typeof myCar; // Returns undefined (if myCar is not declared)

typeof null; // Returns object

The typeof operator returns the type of a variable, object, function or expression:

Note: The data type of NaN is number

The data type of an array is object

The data type of a date is object

The data type of null is object

The data type of an undefined variable is undefined

9. The delete Operator

var person = {firstName:”John”, lastName:”Smith”, age:50, sex:”male”};

delete person.age; // or delete person[“age”];

The delete operator deletes both the value of the property and the property itself.

After deletion, the property cannot be used before it is added back again. The delete

operator is designed to be used on object properties. It has no effect on variables or

functions. [Note: The delete operator should not be used on predefined JavaScript object

properties. It can crash your application.]

10. The In Operator

// Arrays

var cars = ["Toyoya", "Mazda", "Suzuki”];

"Saab" in cars // Returns false (specify the index number instead of

value)

0 in cars // Returns true

Correspondence Between Each Topic and Related VTPs

 | 12

1 in cars // Returns true

4 in cars // Returns false (does not exist)

"length" in cars // Returns true (length is an Array property)

// Objects

var person = {firstName:"John", lastName:"Doe", age:50};

"firstName" in person // Returns true

"age" in person // Returns true

// Predefined objects

"PI" in Math // Returns true

"NaN" in Number // Returns true

"length" in String // Returns true

The in operator returns true if the specified property is in the specified object,

otherwise false:

11. The instanceof Operator

// Arrays

var cars = ["Toyoya", "Mazda", "Suzuki”];

cars instanceof Array; //Returns true

cars instanceof Object; //Returns true

cars instanceof String; //Returns false

cars instanceof Number; //Returns false

The instanceof operator returns true if the specified object is an instance of the

specified object:

Correspondence Between Each Topic and Related VTPs

 | 13

・ JavaScript operator precedence and associativity chart

Operator Precedence Associativity

• . (dot property reference)

• [] (bracket property reference)

• new

• ()

1 Left to right

• ++

• --

2 Right to left

• + (unary +, NOT the addition sign)

• - (unary negate -, NOT subtract sign)

• ~ (bitwise not)

• ! (not)

• delete

• typeof

• void

3 Right to left

• *

• /

• %

• + (addition)

• - (subtraction)

4 Left to right

• <<

• >>

• >>>

5 Left to right

• <

• <=

• >

• >=

• instanceof

• in

6 Left to right

• & 7 Left to right

• ^ 8 Left to right

• | 9 Left to right

• && 10 Left to right

Correspondence Between Each Topic and Related VTPs

 | 14

• || 11 Left to right

• ?: 12 Right to left

• = 13 Right to left

• *=

• /=

• %=

• +=

• -=

• <<==

• >>==

• >>>=

• &=

• ^=

• |=

14 Right to left

• , (comma) 15 Left to right

Correspondence Between Each Topic and Related VTPs

 | 15

・ JavaScript Objects

Object is a non-primitive data type in JavaScript. It is like any other variable, the only

difference is that an object holds multiple values in terms of properties and methods.

Properties can hold values of primitive data types and methods are functions.

Object properties and methods can be accessed using dot notation or [] bracket.

An object is passed by reference from one function to another.

An object can include another object as a property.

Creating Objects in JavaScript

There are 2 ways to create objects.

1. Object literal

2. Object constructor

JavaScript Object by object literal

var person = {

 firstName: "John",

 lastName: "Smith",

 age: 25,

 getFullName: function () {

 return this.firstName + ' ' + this.lastName

 }

};

JavaScript Object by Object constructor

var person = new Object();

person.firstName = "John";

person["lastName"] = "Smith";

person.age = 25;

person.getFullName = function () {

 return this.firstName + ' ' + this.lastName;

};

Correspondence Between Each Topic and Related VTPs

 | 16

・ JavaScript RegExp Object Methods

(1) test() Method

The test() method tests for a match in a string.

This method returns true if it finds a match, otherwise it returns false.

Correspondence Between Each Topic and Related VTPs

 | 17

・ JavaScript Functions

JavaScript provides functions similar to most of the scripting and programming

languages. In JavaScript, a function allows you to define a block of code, give it a

name and then execute it as many times as you want.

A JavaScript function can be defined using function keyword.

JavaScript functions are used to perform operations. We can call JavaScript function

many times to reuse the code.

Advantage of JavaScript function

There are mainly two advantages of JavaScript functions.

1. Code reusability: We can call a function several times so it save coding.

2. Less coding: It makes our program compact. We don’t need to write many

lines of code each time to perform a common task.

JavaScript Function Syntax

JavaScript Functions can have 0 or more arguments.

//defining a function

function functionName([arg1, arg2, ...argN])

{

//code to be executed

}

//calling a function

<functionName >([arg1, arg2, ...argN]);

Function Parameters

A function can have one or more parameters, which will be supplied by the calling

code and can be used inside a function. JavaScript is a dynamic type scripting

language, so a function parameter can have value of any data type.

function ShowMessage(firstName, lastName) {

console.log("Hello " + firstName + " " + lastName);

}

ShowMessage("Steve", "Jobs");

ShowMessage("Bill", "Gates");

ShowMessage(100, 200);

Correspondence Between Each Topic and Related VTPs

 | 18

Argument Objects

All the functions in JavaScript can use arguments object by default. An arguments

object includes value of each parameter.

The arguments object is an array like object. You can access its values using index

similar to array. However, it does not support array methods.

function ShowMessage(firstName, lastName) {

 console.log("Hello " + arguments[0] + " " + arguments[1]);

}

ShowMessage("Steve", "Jobs");

ShowMessage("Bill", "Gates");

ShowMessage(100, 200);

Return Values

A function can return zero or one value using return keyword.

function Sum(val1, val2)

{

 return val1 + val2;

};

var result = Sum(10,20); // returns 30

function Multiply(val1, val2)

{

 console.log(val1 * val2);

};

result = Multiply(10,20); // undefined

Function Expressions

JavaScript allows us to assign a function to a variable and then use that variable as

a function. It is called function expression.

var add = function sum(val1, val2) {

 return val1 + val2;

};

var result1 = add(10,20);

var result2 = sum(10,20); // not valid

Correspondence Between Each Topic and Related VTPs

 | 19

Anonymous Function

JavaScript allows us to define a function without any name. This unnamed function

is called anonymous function. Anonymous function must be assigned to a variable.

var showMessage = function ()

{

 alert("Hello World!");

};

showMessage();

var sayHello = function (firstName) {

 alert("Hello " + firstName);

};

showMessage();

sayHello("Bill");

Nested Function

In JavaScript, a function can have one or more inner functions. These nested

functions are in the scope of outer function. Inner function can access variables and

parameters of outer function. However, outer function cannot access variables

defined inside inner functions.

function ShowMessage(firstName)

{

 function SayHello()

{

 alert("Hello " + firstName);

 }

 return SayHello();

}

ShowMessage("Steve");

Correspondence Between Each Topic and Related VTPs

 | 20

・ JavaScript Global Functions

The JavaScript global properties and functions can be used with all the built-in

JavaScript objects.

JavaScript Global Properties

(1) Infinity

A numeric value that represents positive/negative infinity

(2) NaN

"Not-a-Number" value

(3) undefined

Indicates that a variable has not been assigned a value

JavaScript Global Functions

(1) decodeURI()

Decodes a URI

(2) decodeURIComponent()

Decodes a URI component

(3) encodeURI()

Encodes a URI

(4) encodeURIComponent()

Encodes a URI component

(5) escape()

Deprecated in version 1.5.

Use encodeURI() or encodeURIComponent() instead

(6) eval()

Evaluates a string and executes it as if it was script code

(7) isFinite()

Determines whether a value is a finite, legal number

(8) isNaN()

Determines whether a value is an illegal number

(9) Number()

Converts an object's value to a number

(10) parseFloat()

Parses a string and returns a floating point number

(11) parseInt()

Parses a string and returns an integer

Correspondence Between Each Topic and Related VTPs

 | 21

(12) String()

Converts an object's value to a string

(13) unescape()

Deprecated in version 1.5.

Use decodeURI() or decodeURIComponent() instead

Correspondence Between Each Topic and Related VTPs

 | 22

・ JavaScript Strings

A JavaScript string stores a series of characters like "Hello World".

A string can be any text inside double or single quotes:

var greet = “Hello”;

var Greet = ‘Hello World’;

※ The javaScript is case-sensitive.

String indexes are zero-based: The first character is in position 0, the second in 1,

and so on.

String Properties

1. constructor

Returns the string's constructor function

2. length

Returns the length of a string

3. prototype

Allows you to add properties and methods to an object

String Methods

1. charAt()

Returns the character at the specified index (position)

2. charCodeAt()

Returns the Unicode of the character at the specified index

3. concat()

Joins two or more strings, and returns a new joined strings

4. endsWith()

Checks whether a string ends with specified string/characters

5. fromCharCode()

Converts Unicode values to characters

6. includes()

Checks whether a string contains the specified string/characters

7. indexOf()

Returns the position of the first found occurrence of a specified value in a

string

8. lastIndexOf()

Returns the position of the last found occurrence of a specified value in a

string

Correspondence Between Each Topic and Related VTPs

 | 23

9. localeCompare()

Compares two strings in the current locale

10. match()

Searches a string for a match against a regular expression, and returns the

matches

11. repeat()

Returns a new string with a specified number of copies of an existing string

12. replace()

Searches a string for a specified value, or a regular expression, and returns

a new string where the specified values are replaced

13. search()

Searches a string for a specified value, or regular expression, and returns

the position of the match

14. slice()

Extracts a part of a string and returns a new string

15. split()

Splits a string into an array of substrings

16. startsWith()

Checks whether a string begins with specified characters

17. substr()

Extracts the characters from a string, beginning at a specified start position,

and through the specified number of character

18. substring()

Extracts the characters from a string, between two specified indices

19. toLocaleLowerCase()

Converts a string to lowercase letters, according to the host's locale

20. toLocaleUpperCase()

Converts a string to uppercase letters, according to the host's locale

21. toLowerCase()

Converts a string to lowercase letters

22. toString()

Returns the value of a String object

23. toUpperCase()

Converts a string to uppercase letters

24. trim()

Removes whitespace from both ends of a string

Correspondence Between Each Topic and Related VTPs

 | 24

25. valueOf() Returns the primitive value of a String object

Correspondence Between Each Topic and Related VTPs

 | 25

・ JavaScript Conditional Code (If/Else/Switch)

The if/else statement executes a block of code if a specified condition is true. If the

condition is false, another block of code can be executed.

The if/else statement is a part of JavaScript's "Conditional" Statements, which are

used to perform different actions based on different conditions.

In JavaScript we have the following conditional statements:

1. Use if to specify a block of code to be executed, if a specified condition is true

2. Use else to specify a block of code to be executed, if the same condition is false

3. Use else if to specify a new condition to test, if the first condition is false

4. Use switch to select one of many blocks of code to be executed

1. If …

The if statement specifies a block of code to be executed if a condition is true:

#Syntax

if (condition)

{

 // block of code to be executed if the condition is true

}

2. Else….

The else statement specifies a block of code to be executed if the condition is

false:

#Syntax

if (condition)

{

// block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false

}

3. Else if …

The else if statement specifies a new condition if the first condition is false:

#Syntax

if (condition1)

{

Correspondence Between Each Topic and Related VTPs

 | 26

// block of code to be executed if condition1 is true

} else if (condition2) {

// block of code to be executed if the condition1 is false and condition2

is true

} else {

// block of code to be executed if the condition1 is false and condition2

is false

}

4. Switch

Rather than using a series of if/else if/else blocks, sometimes it can be useful to

use a switch statement instead. [Definition: Switch statements look at the value

of a variable or expression and run different blocks of code depending on the

value.]

#Syntax

switch(expression) {

case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

}

Example for Switch Statement

var day;

switch (new Date().getDay()) {

case 0:

 day = "Sunday";

 break;

case 1:

 day = "Monday";

 break;

case 2:

Correspondence Between Each Topic and Related VTPs

 | 27

 day = "Tuesday";

 break;

case 3:

 day = "Wednesday";

 break;

case 4:

 day = "Thursday";

 break;

 case 5:

 day = "Friday";

 break;

 case 6:

 day = "Saturday";

}

console.log(day);

・ JavaScript Loops

Loops are used in JavaScript to perform repeated tasks based on a condition.

Conditions typically return true or false when analyzed. A loop will continue running until

the defined condition returns false.

The three most common types of loops are:

1. for

2. while

3. do while

1. for loop Syntax

for ([initialization]); [condition]; [final-expression])

{

 // statement

}

For in loop Syntax

Syntax

for (variable in object)

{

Correspondence Between Each Topic and Related VTPs

 | 28

 // statement

}

for...of loop Syntax

for (variable of object)

{

 // statement

}

2. while loop Syntax

while (condition)

{

 /* A statement that is executed as long as the condition evaluates to true. */

 //statement(s);

}

3. do while loop Syntax

do {

 /* A statement that is executed as long as the condition evaluates to true. */

 //statement(s);

} while (*condition*);

Correspondence Between Each Topic and Related VTPs

 | 29

・ JavaScript Arrays

The Array object is used to store multiple values in a single variable:

var cars = ["Toyota", "Mazda", "Suzuki"];

Array indexes are zero-based: The first element in the array is 0, the second is 1,

and so on.

Array Properties

1. constructor

 Returns the function that created the Array object's prototype

2. length

 Sets or returns the number of elements in an array

3. prototype

 Allows you to add properties and methods to an Array object

Array Methods

1. concat()

Joins two or more arrays, and returns a copy of the joined arrays

2. copyWithin()

Copies array elements within the array, to and from specified positions

3. entries()

Returns a key/value pair Array Iteration Object

4. every()

Checks if every element in an array pass a test

5. fill()

Fill the elements in an array with a static value

6. filter()

Creates a new array with every element in an array that pass a test

7. find()

Returns the value of the first element in an array that pass a test

8. findIndex()

Returns the index of the first element in an array that pass a test

9. forEach()

Calls a function for each array element

10. from()

Creates an array from an object

11. includes()

Check if an array contains the specified element

Correspondence Between Each Topic and Related VTPs

 | 30

12. indexOf()

Search the array for an element and returns its position

13. isArray()

Checks whether an object is an array

14. join()

Joins all elements of an array into a string

15. keys()

Returns a Array Iteration Object, containing the keys of the original array

16. lastIndexOf()

Search the array for an element, starting at the end, and returns its position

17. map()

Creates a new array with the result of calling a function for each array

element

18. pop()

Removes the last element of an array, and returns that element

19. push()

Adds new elements to the end of an array, and returns the new length

20. reduce()

Reduce the values of an array to a single value (going left-to-right)

21. reduceRight()

Reduce the values of an array to a single value (going right-to-left)

22. reverse()

Reverses the order of the elements in an array

23. shift()

Removes the first element of an array, and returns that element

24. slice()

Selects a part of an array, and returns the new array

25. some()

Checks if any of the elements in an array pass a test

26. sort()

Sorts the elements of an array

27. splice()

Adds/Removes elements from an array

28. toString()

Converts an array to a string, and returns the result

29. unshift()

Correspondence Between Each Topic and Related VTPs

 | 31

Adds new elements to the beginning of an array, and returns the new length

30. valueOf()

Returns the primitive value of an array

A simple array

var myArray = ['hello', 'world'];

Accessing array items by index

var myArray = ['hello', 'world', 'foo', 'bar'];

console.log(myArray[3]); // logs 'bar'

Testing the size of an array

var myArray = ['hello', 'world'];

console.log(myArray.length); // logs 2

Changing the value of an array item

var myArray = ['hello', 'world'];

myArray[1] = 'changed';

While it’s possible to change the value of an array item as shown in “Changing the value

of an array item”, it’s generally not advised.

Adding elements to an array

var myArray = ['hello', 'world'];

myArray.push('new');

Working with arrays

var myArray = ['h', 'e', 'l', 'l', 'o'];

Correspondence Between Each Topic and Related VTPs

 | 32

var myString = myArray.join(''); // 'hello'

var mySplit = myString.split(''); // ['h', 'e', 'l', 'l', 'o']

・ JavaScript Dates

Date Object

The Date object is used to work with dates and times.

Date objects are created with new Date().

There are four ways of instantiating a date:

var d = new Date();

var d = new Date(milliseconds);

var d = new Date(dateString);

var d = new Date(year, month, day, hours, minutes, seconds, milliseconds);

Date Object Properties

(1) Constructor

 Returns the function that created the Date object's prototype

(2) prototype

Allows you to add properties and methods to an object

Date Object Methods

(1) getDate()

Returns the day of the month (from 1-31)

(2) getDay()

Returns the day of the week (from 0-6)

(3) getFullYear()

Returns the year

(4) getHours()

Returns the hour (from 0-23)

(5) getMilliseconds()

Returns the milliseconds (from 0-999)

(6) getMinutes()

Returns the minutes (from 0-59)

(7) getMonth()

Correspondence Between Each Topic and Related VTPs

 | 33

Returns the month (from 0-11)

(8) getSeconds()

Returns the seconds (from 0-59)

(9) getTime()

Returns the number of milliseconds since midnight Jan 1 1970,

and a specified date

(10) getTimezoneOffset()

Returns the time difference between UTC time and local time, in minutes

(11) getUTCDate()

Returns the day of the month, according to universal time (from 1-31)

(12) getUTCDay()

Returns the day of the week, according to universal time (from 0-6)

(13) getUTCFullYear()

Returns the year, according to universal time

(14) getUTCHours()

Returns the hour, according to universal time (from 0-23)

(15) getUTCMilliseconds()

Returns the milliseconds, according to universal time (from 0-999)

(16) getUTCMinutes()

 Returns the minutes, according to universal time (from 0-59)

(17) getUTCMonth()

Returns the month, according to universal time (from 0-11)

(18) getUTCSeconds()

Returns the seconds, according to universal time (from 0-59)

(19) getYear()

Deprecated. Use the getFullYear() method instead

(20) now()

Returns the number of milliseconds since midnight Jan 1, 1970

(21) parse()

Parses a date string and returns the number of milliseconds

since January 1, 1970

(22) setDate()

Sets the day of the month of a date object

(23) setFullYear()

Sets the year of a date object

(24) setHours()

Correspondence Between Each Topic and Related VTPs

 | 34

Sets the hour of a date object

(25) setMilliseconds()

Sets the milliseconds of a date object

(26) setMinutes()

Set the minutes of a date object

(27) setMonth()

Sets the month of a date object

(28) setSeconds()

Sets the seconds of a date object

(29) setTime()

Sets a date to a specified number of milliseconds after/before January 1, 1970

(30) setUTCDate()

Sets the day of the month of a date object, according to universal time

(31) setUTCFullYear()

Sets the year of a date object, according to universal time

(32) setUTCHours()

Sets the hour of a date object, according to universal time

(33) setUTCMilliseconds()

Sets the milliseconds of a date object, according to universal time

(34) setUTCMinutes()

Set the minutes of a date object, according to universal time

(35) setUTCMonth()

Sets the month of a date object, according to universal time

(36) setUTCSeconds()

Set the seconds of a date object, according to universal time

(37) setYear()

Deprecated. Use the setFullYear() method instead

(38) toDateString()

Converts the date portion of a Date object into a readable string

(39) toGMTString()

Deprecated. Use the toUTCString() method instead

(40) toISOString()

Returns the date as a string, using the ISO standard

(41) toJSON()

Returns the date as a string, formatted as a JSON date

Correspondence Between Each Topic and Related VTPs

 | 35

(42) toLocaleDateString()

Returns the date portion of a Date object as a string, using locale conventions

(43) toLocaleTimeString()

Returns the time portion of a Date object as a string, using locale conventions

(44) toLocaleString()

Converts a Date object to a string, using locale conventions

(45) toString()

Converts a Date object to a string

(46) toTimeString()

Converts the time portion of a Date object to a string

(47) toUTCString()

Converts a Date object to a string, according to universal time

(48) UTC()

Returns the number of milliseconds in a date since midnight of January 1,

1970, according to UTC time

(49) valueOf()

Returns the primitive value of a Date object

Correspondence Between Each Topic and Related VTPs

 | 36

・ The difference of Var, Let and Const

In Javascript variables can be defined using the keywords var, let or const.

var a = 10;

let b = 20;

const PI = 3.14;

var

The scope of a variable defined with the keyword “var” is limited to the “function”

within which it is defined. If it is defined outside any function, the scope of the variable

is global. var is “function scoped”.

Let

The scope of a variable defined with the keyword “let” or “const” is limited to the

“block” defined by curly braces i.e. {}. “let” and “const” are “block scoped”.

Const

The scope of a variable defined with the keyword “const” is limited to the block

defined by curly braces. However, if a variable is defined with keyword const, it

cannot be reassigned. “const” cannot be re-assigned to a new value. However, it can

be mutated.

Block scoped VS Function scoped

Block Scope

In JavaScript, a code block can be defined by using curly braces i.e {}.

Consider the following code that has 2 code blocks each delimited by {}.

{

 var a = 10;

 console.log(a);

} //block 1

{

 a++;

 console.log(a);

} //block 2

/* Since we are using "var a=10", scope of "a" is limited to the function within which

Correspondence Between Each Topic and Related VTPs

 | 37

it is defined. In this case it is within the global function scope */

In the above example, since we are using the keyword var to define the variable

a, the scope of a is limited to the function within which it is defined. Since a is not

defined within any function, the scope of the variable a is global, which means that

a is recognized within block 2.

In effect if a variable is defined with keyword var, JavaScript does not recognize

the {} as the scope delimiter. Instead the variable must be enclosed within a “function”

to limit it’s scope to that function. Let us re-write the code above using the keyword

let. The let keyword was introduced as part of ES6 syntax, as an alternative to var

to define variables in JavaScript.

{

 let a = 10;

 console.log(a);

} //block 1

{

 a++;

 console.log(a);

} //block 2

/* Since we are using "let a=10", scope of "a" is limited to block 1 and "a" is not

recognized in block 2 */

Note that now when you run the code above you will get an error, variable a not

recognized in block2. This is because we have defined the variable a using the

keyword let, which limits the scope of variable a to the code block within which it was

defined.

Function Scope

In JavaScript you limit the scope of a variable by defining it within a function. This is

known as function scope.

The keyword var is function scoped i.e. it does not recognize curly brackets i.e. {},

as delimiters. Instead it recognizes the function body as the delimiter.

If we want to define a variable using var and prevent it from being defined in the

global namespace you can re-write it by enclosing the code blocks within functions.

Correspondence Between Each Topic and Related VTPs

 | 38

function block1() {

 var a=10;

 console.log(a);

} //function scope of block 1

function block2(){

 a++;

 console.log(a);

} //function scope of block 2

/* Since we have enclosed block1 and block2, within separate functions, the scope

of "var a=10", is limited to block 1 and "a" is not recognized in block 2 */

The above code is in effect the same as if we were using let a=10 instead

of var a=10. The scope of the variable a is limited to the function within which it is

defined, and a is no longer in the global namespace.

Why would you chose “let” over “var”?

While programming in Javascript it is a good practice not to define variables as

global variables. This is because it is possible to inadvertently modify the global variable

from anywhere within the Javascript code. To prevent this one needs to ensure that the

scope of the variables are limited to the code block within which they need to be

executed.

In the past before keyword let was introduced as part of ES6, to circumvent the

issue of variable scoping using var, programmers used the IIFE pattern to prevent the

pollution of the global name space. However since the introduction of let, the IIFE

pattern is no longer required, and the scope of the variable defined using let is limited to

the code block within which it is defined.

Correspondence Between Each Topic and Related VTPs

 | 39

Const

If a variable is defined using the const keyword, its scope is limited to the block

scope. In addition the variable cannot be reassigned to a different value.

{

 const PI=3.14;

 console.log(PI);

} //block 1

{

 console.log(PI);

} //block 2

/* Since we are using "const PI=3.14", scope of "PI" is limited to block 1 and "PI"

is not recognized in block 2 */

Note that it is important to understand that const does NOT mean that the value

is fixed and immutable. This is a common misunderstanding amongst many JavaScript

developers, and they incorrectly mentioned that a value defined by the const keyword is

immutable (i.e. it cannot be changed).

In the following example we can show that the value of the variable defined within the

const keyword is mutable, i.e. it can be changed.

{

 const a = [1,2,3];

 const b = {name: "hello"};

 a.push(4,5); //mutating the value of constant "a"

 b.name="World"; //mutating the value of constant "b"

 console.log(a); //this will show [1,2,3,4,5]

 console.log(b); //this will show {name: "World"}

 }

/* This code will run without any errors, and shows that we CAN mutate the values

that are defined by "const" */

Correspondence Between Each Topic and Related VTPs

 | 40

However, note that these variables defined by const cannot be re-assigned.

{

 const name = "Mike";

 const PI = 3.14;

 const a = [1,2,3];

 const b = {name: "hello"};

 name="Joe";

 /*this will throw an error, since we are attempting to re-assign

"name" to a different value. */

 PI = PI + 1;

 /*this will throw an error, since we are attempting to re-assign PI to a

different value.*/

 a = [1,2,3,4,5];

 /*this will throw an error, since we are attempting to re-assign "a" to a

different value.*/

 b = {name: "hello"};

 /*this will throw an error, since we are attempting to re-assign "b" to a

different value. */

}

Correspondence Between Each Topic and Related VTPs

 | 41

・ Arrow function expressions

An arrow function expression is a compact alternative to a traditional function

expression but is limited and can't be used in all situations.

Differences & Limitations:

・ Does not have its own bindings to this or super and should not be used as

methods.

・ Does not have arguments, or new.target keywords.

・ Not suitable for call, apply and bind methods, which generally rely on establishing

a scope.

・ Can’t be used as constructors.

・ Can’t use yield, within its body.

const materials = [

 'Hydrogen',

 'Helium',

 'Lithium',

 'Beryllium'

];

console.log(materials.map(material => material.length));

// expected output: Array [8, 6, 7, 9]

Comparing traditional functions to arrow functions

// Traditional Function

function (a) {

 return a + 100;

}

// Arrow Function Break Down

// 1. Remove the word "function" and place arrow between the argument and

opening body bracket

(a) => {

Correspondence Between Each Topic and Related VTPs

 | 42

 return a + 100;

}

// 2. Remove the body brackets and word "return" -- the return is implied.

(a) => a + 100;

// 3. Remove the argument parentheses

a => a + 100;

For example, if you have multiple arguments or no arguments, you'll need to re-

introduce parentheses around the arguments:

// Traditional Function

function (a, b) {

 return a + b + 100;

}

// Arrow Function

(a, b) => a + b + 100;

// Traditional Function (no arguments)

let a = 4;

let b = 2;

function () {

 return a + b + 100;

}

// Arrow Function (no arguments)

let a = 4;

let b = 2;

() => a + b + 100;

Likewise, if the body requires additional lines of processing, you'll need to re-

introduce brackets PLUS the "return" (arrow functions do not magically guess what

Correspondence Between Each Topic and Related VTPs

 | 43

or when you want to "return"):

// Traditional Function

function (a, b){

 let chuck = 42;

 return a + b + chuck;

}

// Arrow Function

(a, b) => {

 let chuck = 42;

 return a + b + chuck;

}

And finally, for named functions we treat arrow expressions like variables

// Traditional Function

function bob (a) {

 return a + 100;

}

// Arrow Function

let bob = a => a + 100;

Basic Syntax

One param. With simple expression return is not needed:

param => expression

Multiple params require parentheses. With simple expression return is not needed:

(param1, paramN) => expression

Multiline statements require body brackets and return:

param => {
 let a = 1;
 return a + param;

Correspondence Between Each Topic and Related VTPs

 | 44

}

Multiple params require parentheses. Multiline statements require body brackets
and return:

(param1, paramN) => {
 let a = 1;
 return a + param1 + paramN;
}

Advanced Syntax

To return an object literal expression requires parentheses around expression:

params => ({foo: "a"}) // returning the object {foo: "a"}

Rest parameters are supported:

(a, b, ...r) => expression

Default parameters are supported:

(a=400, b=20, c) => expression

Destructuring within params supported:

([a, b] = [10, 20]) => a + b; // result is 30

({ a, b } = { a: 10, b: 20 }) => a + b; // result is 30

Correspondence Between Each Topic and Related VTPs

 | 45

・ JavaScript Reversed Words

JavaScript has a number of “reserved words,” or words that have special meaning in

the language. You should avoid using these words in your code except when using

them with their intended meaning.

abstract boolean break byte

case catch char class

const continue debugger default

delete do double else

enum export extends final

finally float for function

goto if implements import

in instanceof int interface

long native new package

private protected public return

short static super switch

synchronized this throw throws

transient try typeof var

void volatile while with

long native new package

