
Basic Python Programming

Concepts to solve Exercise

Problems (P_VTP1)

11/7/2020

1

Contents

• Correspondence Index

• What is Python ?

• Different Syntax usage of Python from Java

– P_VTP1: 1

• Few Important Things to Remember

• Commenting in Python

• Variables and its Names

• Data Types

– P_VTP1: 1, 3, 4

2

• Value and Built-in Type

– P_VTP1: 10

• Type Conversion

– P_VTP1: 3, 4

• Difference between end and sep

– P_VTP1: 11

• Operators

– P_VTP1: 5, 6, 7, 8

• String

– P_VTP1: 2, 23, 24, 25, 26, 27, 28, 40, 41, 42

• Lists

– P_VTP1: 36, 37, 38, 39

3

• Tuples

– P_VTP1: 9, 29, 30, 31, 32, 33, 34, 35

• Dictionary

– P_VTP1: 43, 44, 45, 46, 47

• Selection Construct

– P_VTP1: 12, 13, 14

• Iteration Constructs

– P_VTP1: 15, 16, 17, 18, 19

• Break, Continue, Pass

– P_VTP1: 20, 21, 22

• Correspondence Between Each Topic and Related VTPs

• Conclusion

4

Correspondence Index

Python Basic Grammar Concept Topic Related Slide Number

What is Python? 7

Different Syntax usage of Python from Java 8

Few Important Things to Remember 9

Commenting in Python 10

Variables and its Names 11

Data Types 12

Value and Built-in Type 13

Type Conversion 14

Difference between end and sep 15

Operators 17

5

Basic Grammar Concept Topic Related Slide Number

String 28

Lists 33

Tuples 39

Dictionary 45

Selection Construct 49

Iteration Construct 54

Break Statement 58

Continue Statement 59

Pass Statement 60

Correspondence Between Each Topic and

Related VTPs

61

Conclusion 62

6

What is Python ?

• Python is a high-level programming language, with applications

in numerous areas, including web programming, scripting,

scientific computing, and artificial intelligence.

• It is very popular and used by organizations such as Google,

NASA, U tube, I-robot, Intel, Cisco, etc.

• Python is easy to use, powerful, and versatile, making it a great

choice for beginners and experts.

• Therefore, we need to take a lot of study for future learning.

7Index Page

Different Syntax usage of Python from Java

8Index Page

Few Important Things to Remember

• To represent a statement in Python, newline (enter) is used.

• Use of semicolon at the end of the statement is optional (unlike

languages like C/C++).

• In fact, it's recommended to omit semicolon at the end of the

statement in Python.

• Instead of curly braces { }, indentations(number of tab) are

used to represent a block.

9Index Page

Commenting in Python

• Python single line comment preceded by a hash symbol (#)

Example:

#This is a comment

print("Hello, World!")

• Three consecutive single quotation marks ‘’’ are used to give

multiple comments (or) paragraph comments.

Example:

""" This is a comment

written in

more than just one line """

print("Hello, World!")

10Index Page

Variables and its Names

• A variable allows to store a value by assigning it to a

name, which can be used to refer to the value later in the

program.

• Rules for Python variables:

- Must start with a letter or the underscore character

- Cannot start with a number

- Should be meaningful and short, case-sensitive(

age, Age are not the same)

11Index Page

Data Types

• Different types in python are:

(1) Numbers (int, float, etc >> 3, 4.5, etc)

(2) Lists >> [1, 2, 3, 4], ["Hello", "world!"], [1, 2, "Hello"]

(3) Tuples >> (1, 2), ("hi", "hello", "bye"), (2, "Lucy", 45)

(4) Strings >> "Hello world!", ‘K3WL’

(5) Sets >> {"apple", "banana", "cherry"}

(6) Dictionary >> {'StuName': 'Ajeet', 'StuAge': 30, 'StuCity':

'Agra'}

12Index Page

Value and Built-in Type

• To know type of any value in Python use in-build method
called type(value).

Example:

type(‘123’) return build-in type as <class 'int'>
type(‘123.33’) return build-in type as <class 'float'>

type(‘hello’) return build-in type as <class 'str'>

type(‘True’) return build-in type as <class 'bool'>

type(‘3+4j’) return build-in type as <class 'complex'>

13Index Page

Type Conversion

• It is possible to change one type of value/ variable to

another type. It is known as type conversion or type casting.

• Therefore, casting in python is done using constructor

functions.

Example:

a= 12.34

b= int(a)

print (b) >> The result is 12.

14Index Page

• Python automatically converts one data type to another data

type. This process doesn't need any user involvement. This is

called Implicit type conversion.

Example

num_int = 13

num_flo = 1.1

num_new = num_int + num_flo

print("datatype of num_int:",type(num_int)) >> <class 'int'>

print("datatype of num_flo:",type(num_flo)) >> <class 'float'>

print("Value of num_new:",num_new) >> 14.1

print("datatype of num_new:",type(num_new)) >> <class 'float'>

15Index Page

Difference between end and sep

• end and sep are optional parameters of Python.

• The end parameter basically prints after all the output objects present in

one output objects present in one output statement have been returned.

• The sep parameter differentiates between the objects.

EXAMPLE:

a=2

b='abc'

print(a,b,sep=',')

print(a,b,end=',')

OUTPUT:

2,abc

2 abc,

16Index Page

Operators

• Python divides the operators in the following groups:

- Arithmetic Operators

- Assignment Operators

- Comparison Operators

- Logical Operators

- Relational Operators

- Bitwise Operators

- Identity Operators

- Membership Operators

17Index Page

Arithmetic Operators

• Arithmetic operators are used with numeric values to perform

common mathematical operations.

18Index Page

• Example

x = 33

y = 2

Output for addition of x and y

print('x + y = {}'.format(x+y)) >> 35

Output for subtration of x and y

print('x - y = {}'.format(x-y)) >> 31

Output for multiplication of x and y

print('x * y = {}'.format(x*y)) >> 66

Output for division of x and y

print('x / y = {}'.format(x/y)) >> 16.5

Output for modulus of x and y

print('x // y = {}'.format(x//y)) >> 16

Output for exponent of x and y

print('x ** y = {}'.format(x**y)) >> 1089

19Index Page

Assignment Operators

• Assignment operators are used to assign values to variables:

20Index Page

Comparison Operators

• Comparison operators are used to compare two values:

21Index Page

• Example

Output: x > y is True or False

print('x > y is',x>y) >> False

Output: x == y is True or False

print('x == y is',x==y) >> False

Output: x != y is True or False

print('x != y is',x!=y) >> True

Output: x >= y is True or False

print('x >= y is',x>=y) >> False

Output: x <= y is True or False

print('x <= y is',x<=y) >> True

22Index Page

Logical Operators

• Logical operators are used to combine conditional statements.

23Index Page

• Example

x = False

y = True

print('x and y is',x and y) >> False

print('x or y is',x or y) >> True

print('not x is',not x) >> True

24Index Page

Identity Operators

• Identity operators are used to compare the objects.

25Index Page

• Example

x1 = 3

y1 = 3

x2 = 'Welcome'

y2 = 'Welcome'

x3 = [1,2,3,4]

y3 = [1,2,3]

print("x1 is not y1", x1 is not y1) >> False

print("x2 is y2", x2 is y2) >> True

print("x3 is y3", x3 is y3) >> False

26Index Page

Bitwise Operators

• Bitwise operators are used to compare (binary) numbers.

27Index Page

String

// Output is c.

// Output is thon.

28Index Page

String Operations

>> True

>> 14

29

Python is cool?

Index Page

• subscripting of strings

'Hello'[2] → 'l'

slice: 'Hello'[1:2] → 'el‘

'Hello'[:2] → ‘He‘

'Hello'[2:] → ‘llo‘

'Hello'[2:-1] → ‘llo'

word[-1] → last character ‘o’

len(word) → 4

‘Hello’* 3 → HelloHelloHello (String Replication)

30Index Page

Relational Operator on String

• The ASCII value of a is 97, b is 98 and so on.

• The ASCII value of A is 65, B is 66 and so on.

Example

str1 = 'A'

str2 = 'B'

str3 = 'a'

str4 = 'b'

print (“str1>str3”, str1>str3) ,The output is False.

print (“str2> str1”, str2>str1), The output is True.

31Index Page

String Format

• Strings and numbers can be combined by using the format()

method.

• The format() method takes the passed arguments, formats them,

and places them in the string where the placeholders {} are.

Example:

age = 36

txt = "My name is John, and I am {}"

print(txt.format(age))

Output: My name is John, and I am 36

32Index Page

Lists

• A list is created by placing all the items (elements) inside a

square bracket [], separated by commas.

• It can have any number of items, and they may be of

different types (integer, float, string, etc.)

• Lists are mutable, meaning, their elements can be changed.

33Index Page

Creating List

Example

#empty list >> my_list = []

#list of integers >> my_list = [1,2,3]

#list with mixed data types>> my_list = [1, “Hello”, 3.4]

#nested list >> my_list = [“Welcome”, [8,4,6]]

34Index Page

Accessing Items from a list

• Use the index operator []

Example

list = [‘p’,’r’,’o’,’b’,’e’]

positive indexing

Print (list[2]) >> o

negative indexing and negative index -1 refers to the last item

Print (list[-2]) >> b

Slicing operation on list

Print(list[1:3]) >> r,o

nested list

list = [“welcome”, [8,4,6]]

Print(list[1][0]) >> 8

35Index Page

Change or Add Elements to a list

#Change Elements

marks=[90,60,80,66,76,45,60]

marks[1]=100

marks[3:6] = [11, 22, 33]
print(marks) >>>[90, 100, 80, 11, 22, 33, 60]

#Add Elements

-add one item to a list using append() method

-add several items using extend()

-insert one item at a desired location by insert() method

marks.append(50)

print(marks) >>>[90, 100, 80, 50]

marks.extend([60,80,70])

print(marks) >>>[90, 100, 80, 50, 60, 80, 70]

marks.insert(3,40)

print(marks) >>>[90, 100, 80, 40, 50, 60, 80, 70]

36Index Page

Delete or Remove Elements from a List

• del keyword to delete one or more items from a list.

marks = [90, 100, 80, 40, 50, 60, 80, 70]

del marks[6]

print(marks) >>> [90, 100, 80, 40, 50, 60, 70]

del marks[2:4] >>> [90,100,50,60,70]

• clear() method to empty a list.

marks.clear()

print(marks) >>> []

• remove() method to remove the given item

marks.remove(50)

print(marks) >>> [90, 100, 60, 70]

37Index Page

• pop() method to remove an item at the given index.

marks=[100,20,30]

marks.pop() >>> 30

print(marks) >>> [100, 20]

marks.pop(0) >>> 100

print(marks) >>>[20]

38Index Page

Tuples

• Tuples are very similar to lists, except that they are

immutable (they cannot be changed).

• They are created using parentheses, rather than square

brackets.

39Index Page

Creating a Tuple

40Index Page

Accessing Elements in a Tuple

• Can access the values with their index.

• Nested tuple are accessed using nested indexing.

• A range of items can be accessed by using slicing operator.

marks = (23,45,32,44,30,80,70)

print (marks[0]) >>> 23

print (marks[-2]) >>> 80

print (marks[1:5]) >>> 45,32,44,30

nested tuple

n_tuple = ("Skin", [8,4,6], (1,2,3))

print (n_tuple[0]) >>> Skin

print(n_tuple[1]) >>> [8,4,6]

print (n_tuple[0][0]) >>> S

print(n_tuple[1][0]) >>> 8

41Index Page

• Iteration on Tuple

Example

tuple of names

my_tuple = (“John", “Smitt", “Roy San", “Carlk")

iterating over tuple elements

for name in my_tuple:

print(name)

Then, the output is John, Smitt, Roy San, Carlk.

42Index Page

Changing a Tuple

• If the element is itself a mutable data type like list, its nested items can be changed.

Example

n_tuple = ("Skin", [8,4,6], (1,2,3))

n_tuple[1][1] = 23

print (n_tuple) >>> ('Skin', [8,23,6], (1,2,3))

• + operator can be used to combine two tuples.

• * operator can be used to repeat the elements in the tuples for a given number of

times.

Example

Concatenation

print ((1,2,3)+(4,5,6)) >>> (1,2,3,4,5,6)

Repeat

print (("Repeat")*2) >>> ('Repeat', 'Repeat')

43Index Page

Tuple Membership Test

• in keyword is used to test if an item exists in a tuple or not.

Example

my_tuple = ('a','p','p','l','e')

print('a' in my_tuple) >>> True

print('b' in my_tuple) >>> False

print('g' not in my_tuple) >>> True

Iterating Through a Tuple

names = ("John", "Kate", "Shan")

for name in names:

print('Hello', name)

Output >>> Hello John

Hello Kate

Hello Shan
44Index Page

Dictionary

• A dictionary is mutable and is another container type that

can store any number of Python objects.

• It consists of pairs (called items) of keys (unique) and their

corresponding values.

• The values can be of any type, but the keys must be of an

immutable data type such as strings, numbers, or tuples.

• The general syntax of a dictionary is as follows:

dict = {'A': '2341', 'B': '9102', 'C': '3258'}

45Index Page

Accessing Values in Dictionary

• To access dictionary elements, the familiar square brackets
along with the key can be used to obtain its value.

Example

dict = {‘Name’: ‘Zara’, ‘Age’: 7, ‘Class’: ‘First’};

print (dict[‘Name’]) >>> Zara

loop through dictionary

for e in mydict:

print("Key:",e,"Value:",dict[e])

Then, the output is Key: Name Value: Zara

Key: Age Value: 7

Key: Class Value: First

46Index Page

Updating Dictionary

• A dictionary can be updated by adding a new entry or item

(i.e., a key-value pair), modifying an existing entry or deleting

an existing entry.

Example

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

dict['Age'] = 8; # update existing entry

dict['School'] = "DPS School"; # Add new entry

print("dict['Age']:", dict['Age']); >>> 8

print("dict[School']:", dict['School']); >>> DPS School

47Index Page

Delete Dictionary Elements

• Individual dictionary elements can either be removed or the

entire contents of a dictionary can be cleared.

Example

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

del dict['Name']; # remove entry with key 'Name'

dict.clear(); # remove all entries in dict

del dict; # delete entire dictionary

48Index Page

Selection Construct

• It is also known as conditional construct. This structure helps

the programmer to take appropriate decision.

• There are five kinds of selection constructs

1. Simple – if

2. if – else

3. elif

4. Nested – if

5. Multiple Selection

49Index Page

1. Simple-if

• The general form of simple – if statement is:

if x > 0:

Statement 1

Statement 2

• Here, if the result of the test condition is TRUE then the

Statement 1 is executed. Otherwise, Statement 2 is executed

50Index Page

2. if-else Statement

• This structure helps to decide whether a set of statements

should be executed or another set of statements should be

executed. This statement is also called as two-way branch.

• The general form of if – else statement is:

if (Test Condition A):

Statement B

else:

Statement C

• Here, If the test-condition is TRUE, statement-B is executed.

Otherwise, Statement C is execute

51Index Page

3. elif Statement

• This structure helps the programmer to decide the execution of a

statement from multiple statements based on a condition.

• There will be more than one condition to test. This statement is

also called as multiple-way branch.

• The general form of if – else – if statement is:

if (Test Condition 1):

Statement 1;

elif (Test Condition 2):

Statement 2

………

elif(test Condition N):

Statement N

52Index Page

4. Nested if statement

• The statement within the if statement is another if statement is

called Nested– if statement.

• The general form of Nested – if statement is:

• if (Test Condition 1):

if (Test Condition 2):

Statement 1

else:

Statement 2;

else:

if (Test Condition 3):

Statement 3;

else:

Statement 4;
53Index Page

Iteration Constructs

• Python provides two types of looping constructs:

(1) While statement

(2) For statement

• While: The set of statements are executed repeatedly until

the condition is true. When it becomes false, control is

transferred out of the structure.

54Index Page

• The general form of while structure is:

While (Test Condition):

Statement 1

Statement 2

……..

Statement N

[else: # optional part of while

STATEMENTs BLOCK 2]

55Index Page

• Nested loops

Block of statement belonging to while can have another while

statement, i.e. a while can contain another while.

Example

i=1

while i<=3:

j=1

while j<=i:

print j, # inner while loop

j=j+1

print i=i+1

The output is printed as:

>>>1

1 2

1 2 3

56Index Page

For Loop

• This structure is usually used when we know in advance exactly

how many times asset of statements is to be repeatedly executed

repeatedly.

• It can be used as increment looping or decrement looping structure.

• The general form of for structure is as follows:

• for i in range (initial value, limit, step):

STATEMENT BLOCK 1

[else: # optional block

STATEMENT BLOCK 2]

Example

loop to print value 1 to 10

for i in range (1, 11, 1):

print (i) # the output is 1,2,3,4,5,6,7,8,9,10

57Index Page

Break Statement

• Break can be used to unconditionally jump out of the loop.

• It terminates the execution of the loop.

• Example

for letter in ‘’Python’’:

if letter = = ‘’h’’:

break

print letter

The output will be printed like:

P y t

58Index Page

Continue Statement

• This statement is used to skip the rest of the statements

of the current loop block and to move to next iteration,

of the loop.

• Example:

for letter in “Python”:

if letter == “h”:

continue

print letter

Will result into

P y t o n

59Index Page

Pass Statement

• pass does nothing

• Example :

i = 3

if i==3:

pass;

print("\nWe are inside pass block\n")

The output will be printed like We are inside pass block.

60Index Page

Correspondence Between Each Topic and Related VTPs

Basic Grammar Concepts Related Problem Number

Data Types 1

Value and Built-in Type 10

Type Conversion 3,4

Difference between end and sep 11

Operators 5,6,7,8

String 2,23,24,25,26,27,28,40,41,42

Lists 36,37,38,39

Tuples 9,29,30,31,32,33,34,35

Dictionary 43,44,45,46,47

Selection Construct 12,13,14

Iteration Construct 15,16,17,18,19

Break, Continue, Pass 20,21,22

61Index Page

Conclusion

• This presentation includes basic concepts for python

Programming.

• I hope that it will help for your study.

62Index Page

