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What is Python ?

• Python is a high-level programming language, with applications

in numerous areas, including web programming, scripting,

scientific computing, and artificial intelligence.

• It is very popular and used by organizations such as Google,

NASA, U tube, I-robot, Intel, Cisco, etc.

• Python is easy to use, powerful, and versatile, making it a great

choice for beginners and experts.

• Therefore, we need to take a lot of study for future learning.
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Different Syntax usage of Python from Java
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Few Important Things to Remember 

• To represent a statement in Python, newline (enter) is used.

• Use of semicolon at the end of the statement is optional (unlike

languages like C/C++).

• In fact, it's recommended to omit semicolon at the end of the

statement in Python.

• Instead of curly braces { }, indentations( number of  tab) are 

used to represent a block.
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Commenting in Python

• Python single line comment preceded by a hash symbol (#)

Example:

#This is a comment

print("Hello, World!") 

• Three consecutive single quotation marks ‘’’ are used to give

multiple comments (or) paragraph comments.

Example:

""" This is a comment

written in

more than just one line """

print("Hello, World!") 
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Variables and its Names

• A variable allows to store a value by assigning it to a

name, which can be used to refer to the value later in the

program.

• Rules for Python variables:

- Must start with a letter or the underscore character

- Cannot start with a number

- Should be meaningful and short, case-sensitive(

age, Age are not the same)
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Data Types

• Different types in python are:

(1) Numbers (int, float, etc >> 3, 4.5, etc)

(2) Lists    >> [1, 2, 3, 4], ["Hello", "world!"], [1, 2, "Hello"]

(3) Tuples >> (1, 2), ("hi", "hello", "bye"), (2, "Lucy", 45)

(4) Strings >> "Hello world!", ‘K3WL’

(5) Sets >> {"apple", "banana", "cherry"}

(6) Dictionary >> {'StuName': 'Ajeet', 'StuAge': 30, 'StuCity': 

'Agra'}

12Index Page



Value and Built-in Type

• To know type of any value in Python use in-build method 
called type(value).

Example:

type(‘123’) return build-in type as <class 'int'>
type(‘123.33’) return build-in type as <class 'float'> 

type(‘hello’) return build-in type as <class 'str'>

type(‘True’) return build-in type as <class 'bool'>

type(‘3+4j’) return build-in type as <class 'complex'>
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Type Conversion

• It is possible to change one type of value/ variable to

another type. It is known as type conversion or type casting.

• Therefore, casting in python is done using constructor

functions.

Example:

a= 12.34

b= int(a)

print (b ) >> The result is 12.
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• Python automatically converts one data type to another data

type. This process doesn't need any user involvement. This is

called Implicit type conversion.

Example

num_int = 13

num_flo = 1.1

num_new = num_int + num_flo

print("datatype of num_int:",type(num_int)) >> <class 'int'>

print("datatype of num_flo:",type(num_flo)) >> <class 'float'>

print("Value of num_new:",num_new) >> 14.1

print("datatype of num_new:",type(num_new)) >> <class 'float'>
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Difference between end and sep

• end and sep are optional parameters of Python.

• The end parameter basically prints after all the output objects present in

one output objects present in one output statement have been returned.

• The sep parameter differentiates between the objects.

EXAMPLE:

a=2

b='abc'

print(a,b,sep=',')

print(a,b,end=',')

OUTPUT:

2,abc

2 abc,
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Operators

• Python divides the operators in the following groups:

- Arithmetic Operators

- Assignment Operators

- Comparison Operators

- Logical Operators

- Relational Operators

- Bitwise Operators

- Identity Operators

- Membership Operators
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Arithmetic Operators

• Arithmetic operators are used with numeric values to perform

common mathematical operations.
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• Example

x = 33

y = 2

# Output for addition of x and y 

print('x + y = {}'.format(x+y)) >> 35

# Output for subtration of x and y  

print('x - y = {}'.format(x-y)) >> 31

# Output for multiplication of x and y 

print('x * y = {}'.format(x*y)) >> 66

# Output for division of x and y  

print('x / y = {}'.format(x/y)) >> 16.5

# Output for modulus of x and y 

print('x // y = {}'.format(x//y)) >> 16

# Output for exponent of x and y 

print('x ** y = {}'.format(x**y)) >> 1089
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Assignment Operators

• Assignment operators are used to assign values to variables: 
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Comparison Operators

• Comparison operators are used to compare two values: 
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• Example

# Output: x > y is True or False

print('x > y is',x>y) >> False

# Output: x == y is True or False

print('x == y is',x==y) >> False

# Output: x != y is True or False

print('x != y is',x!=y) >> True

# Output: x >= y is True or False

print('x >= y is',x>=y) >> False

# Output: x <= y is True or False

print('x <= y is',x<=y) >> True
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Logical Operators

• Logical operators are used to combine conditional statements.
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• Example

x = False

y = True

print('x and y is',x and y) >> False

print('x or y is',x or y) >> True

print('not x is',not x) >> True
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Identity Operators

• Identity operators are used to compare the objects.
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• Example

x1 = 3

y1 = 3

x2 = 'Welcome'

y2 = 'Welcome'

x3 = [1,2,3,4]

y3 = [1,2,3]

print("x1 is not y1", x1 is not y1) >> False

print("x2 is y2", x2 is y2) >> True

print("x3 is y3", x3 is y3) >> False
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Bitwise Operators

• Bitwise operators are used to compare (binary) numbers.
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String

// Output is c.

// Output is thon.
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String Operations

>> True

>> 14

29

Python is cool?
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• subscripting of strings

'Hello'[2] → 'l'

slice: 'Hello'[1:2] → 'el‘

'Hello'[:2] → ‘He‘

'Hello'[2:] → ‘llo‘

'Hello'[2:-1] → ‘llo'

word[-1] → last character ‘o’

len(word) → 4

‘Hello’* 3 → HelloHelloHello (String Replication)
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Relational Operator on String

• The ASCII value of a is 97, b is 98 and so on.

• The ASCII value of A is 65, B is 66 and so on.

Example

str1 = 'A'

str2 = 'B'

str3 = 'a'

str4 = 'b'

print (“str1>str3”, str1>str3) ,The output is False.

print (“str2> str1”, str2>str1), The output is True.
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String Format

• Strings and numbers can be combined by using the format()

method.

• The format() method takes the passed arguments, formats them,

and places them in the string where the placeholders {} are.

Example:

age = 36

txt = "My name is John, and I am {}"

print(txt.format(age))

Output: My name is John, and I am 36 
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Lists

• A list is created by placing all the items (elements) inside a

square bracket [], separated by commas.

• It can have any number of items, and they may be of

different types (integer, float, string, etc.)

• Lists are mutable, meaning, their elements can be changed.
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Creating List

Example

#empty list >> my_list = []

#list of integers >> my_list = [1,2,3]

#list with mixed data types>> my_list = [1, “Hello”, 3.4]

#nested list >> my_list = [“Welcome”, [8,4,6]]
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Accessing Items from a list

• Use the index operator []

Example

list = [‘p’,’r’,’o’,’b’,’e’]

# positive indexing

Print (list[2]) >> o

# negative indexing and negative index -1 refers to the last item

Print (list[-2]) >> b

# Slicing operation on list

Print(list[1:3]) >> r,o

# nested list

list = [“welcome”, [8,4,6]]

Print(list[1][0]) >> 8
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Change or Add Elements to a list

#Change Elements  

marks=[90,60,80,66,76,45,60]

marks[1]=100

marks[3:6] = [11, 22, 33]
print(marks) >>>[90, 100, 80, 11, 22, 33, 60]

#Add Elements

-add one item to a list using append() method

-add several items using extend()

-insert one item at a desired location by insert() method       

marks.append(50)

print(marks) >>>[90, 100, 80, 50]

marks.extend([60,80,70])

print(marks) >>>[90, 100, 80, 50, 60, 80, 70 ]

marks.insert(3,40)

print(marks) >>>[90, 100, 80, 40, 50, 60, 80, 70] 
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Delete or Remove Elements from a List

• del keyword to delete one or more items from a list.

marks = [90, 100, 80, 40, 50, 60, 80, 70]

del marks[6]

print(marks) >>> [90, 100, 80, 40, 50, 60, 70]

del marks[2:4] >>> [90,100,50,60,70]

• clear() method to empty a list.

marks.clear()

print(marks) >>> []

• remove() method to remove the given item

marks.remove(50)

print(marks) >>> [90, 100, 60, 70]
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• pop() method to remove an item at the given index.

marks=[100,20,30]

marks.pop() >>> 30

print(marks) >>> [100, 20]

marks.pop(0) >>> 100

print(marks) >>>[20]
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Tuples

• Tuples are very similar to lists, except that they are

immutable ( they cannot be changed).

• They are created using parentheses, rather than square

brackets.
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Creating a Tuple
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Accessing Elements in a Tuple

• Can access the values with their index.

• Nested tuple are accessed using nested indexing.

• A range of items can be accessed by using slicing operator.

marks = (23,45,32,44,30,80,70)

print (marks[0]) >>> 23

print (marks[-2]) >>> 80

print (marks[1:5]) >>> 45,32,44,30

# nested tuple

n_tuple = ("Skin", [8,4,6], (1,2,3))

print (n_tuple[0]) >>> Skin

print(n_tuple[1]) >>> [8,4,6]

print (n_tuple[0][0]) >>> S

print(n_tuple[1][0]) >>> 8
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• Iteration on Tuple

Example

# tuple of names

my_tuple = (“John", “Smitt", “Roy San", “Carlk")

# iterating over tuple elements

for name in my_tuple: 

print(name)

Then, the output is John, Smitt, Roy San, Carlk.
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Changing a Tuple

• If the element is itself a mutable data type like list, its nested items can be changed.

Example

n_tuple = ("Skin", [8,4,6], (1,2,3))

n_tuple[1][1] = 23

print (n_tuple) >>> ('Skin', [8,23,6], (1,2,3))

• + operator can be used to combine two tuples.

• * operator can be used to repeat the elements in the tuples for a given number of

times.

Example

# Concatenation

print ((1,2,3)+(4,5,6)) >>> (1,2,3,4,5,6)

# Repeat

print (("Repeat")*2) >>> ('Repeat', 'Repeat')
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Tuple Membership Test

• in keyword is used to test if an item exists in a tuple or not.

Example

my_tuple = ('a','p','p','l','e')

print('a' in my_tuple) >>> True

print('b' in my_tuple) >>> False

print('g' not in my_tuple) >>> True

Iterating Through a Tuple

names = ("John", "Kate", "Shan")

for name in names:

print('Hello', name)

Output >>> Hello John

Hello Kate

Hello Shan
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Dictionary

• A dictionary is mutable and is another container type that 

can store any number of Python objects.

• It consists of pairs (called items) of keys (unique) and their

corresponding values.

• The values can be of any type, but the keys must be of an

immutable data type such as strings, numbers, or tuples.

• The general syntax of a dictionary is as follows:

dict = {'A': '2341', 'B': '9102', 'C': '3258'}
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Accessing Values in Dictionary

• To access dictionary elements, the familiar square brackets
along with the key can be used to obtain its value.

Example

dict = {‘Name’: ‘Zara’, ‘Age’: 7, ‘Class’: ‘First’};

print ( dict[‘Name’]) >>> Zara

# loop through dictionary

for e in mydict:

print("Key:",e,"Value:",dict[e])

Then, the output is Key: Name Value: Zara

Key: Age Value: 7

Key: Class Value: First

46Index Page



Updating Dictionary

• A dictionary can be updated by adding a new entry or item

(i.e., a key-value pair), modifying an existing entry or deleting

an existing entry.

Example

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

dict['Age'] = 8; # update existing entry

dict['School'] = "DPS School"; # Add new entry

print("dict['Age']:", dict['Age']); >>> 8

print("dict[School']:", dict['School']); >>> DPS School
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Delete Dictionary Elements

• Individual dictionary elements can either be removed or the

entire contents of a dictionary can be cleared.

Example

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

del dict['Name']; # remove entry with key 'Name'

dict.clear(); # remove all entries in dict

del dict; # delete entire dictionary
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Selection Construct

• It is also known as conditional construct. This structure helps

the programmer to take appropriate decision.

• There are five kinds of selection constructs

1. Simple – if

2. if – else

3. elif

4. Nested – if

5. Multiple Selection 
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1. Simple-if

• The general form of simple – if statement is:

if x > 0:

Statement 1

Statement 2

• Here, if the result of the test condition is TRUE then the

Statement 1 is executed. Otherwise, Statement 2 is executed
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2. if-else Statement

• This structure helps to decide whether a set of statements

should be executed or another set of statements should be

executed. This statement is also called as two-way branch.

• The general form of if – else statement is:

if (Test Condition A):

Statement B

else:

Statement C

• Here, If the test-condition is TRUE, statement-B is executed. 

Otherwise, Statement C is execute 
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3. elif Statement

• This structure helps the programmer to decide the execution of a

statement from multiple statements based on a condition.

• There will be more than one condition to test. This statement is

also called as multiple-way branch.

• The general form of if – else – if statement is:

if (Test Condition 1):

Statement 1;

elif (Test Condition 2):

Statement 2

………

elif( test Condition N):

Statement N 
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4. Nested if statement

• The statement within the if statement is another if statement is 

called Nested– if statement.

• The general form of Nested – if statement is:

• if (Test Condition 1):

if (Test Condition 2):

Statement 1

else:

Statement 2;

else:

if (Test Condition 3):

Statement 3;

else:

Statement 4; 
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Iteration Constructs

• Python provides two types of looping constructs:

(1) While statement

(2) For statement

• While: The set of statements are executed repeatedly until

the condition is true. When it becomes false, control is 

transferred out of the structure.

54Index Page



• The general form of while structure is:

While ( Test Condition):

Statement 1

Statement 2

……..

Statement N

[else: # optional part of while

STATEMENTs BLOCK 2]
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• Nested loops

Block of statement belonging to while can have another while 

statement, i.e. a while can contain another while.

Example

i=1

while i<=3:

j=1

while j<=i:

print j, # inner while loop

j=j+1

print i=i+1

The output is printed as:

>>>1

1 2

1 2 3 
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For Loop

• This structure is usually used when we know in advance exactly

how many times asset of statements is to be repeatedly executed

repeatedly.

• It can be used as increment looping or decrement looping structure.

• The general form of for structure is as follows:

• for i in range (initial value, limit, step):

STATEMENT BLOCK 1

[else: # optional block

STATEMENT BLOCK 2]

Example

# loop to print value 1 to 10

for i in range (1, 11, 1):

print (i) # the output is 1,2,3,4,5,6,7,8,9,10 
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Break Statement

• Break can be used to unconditionally jump out of the loop. 

• It terminates the execution of the loop. 

• Example

for letter in ‘’Python’’:

if letter = = ‘’h’’:

break

print letter

The output will be printed like:

P y t

58Index Page



Continue Statement

• This statement is used to skip the rest of the statements 

of the current loop block and to  move to next iteration, 

of the loop. 

• Example:

for letter in “Python”:

if letter == “h”:

continue

print letter

Will result into

P y t o n
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Pass Statement

• pass does nothing

• Example :

i = 3

if i==3:  

pass;  

print("\nWe are inside pass block\n")

The output will be printed like We are inside pass block.
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Conclusion

• This presentation includes basic concepts for python

Programming.

• I hope that it will help for your study.
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