

 Funabiki Laboratory

 Department of Electrical and Communication Engineering

Okayama University

STUDY OF PYTHON

PROGRAMMING LEARNING

ASSISTANT SYSTEM

(PYPLAS)

Pandas Library Usage

Correspondence Between Each Topic and Related VTPs

 | 1

Python Programming Learning Assistant System (PyPLAS)

・ Correspondence Between Each Topic and Related VTPs 2

・ What is Pandas? ... 3

・ What is a Pandas DataFrame and DataFrame Creation? 4

・ Indexing and Seleting Data in Pandas Frame .. 6

・ Excel File Reading ... 8

・ Excel File Writing .. 9

・ What is CSV file (CSV file Reading and Writing)? .. 10

・ Iterate Pandas DataFrame .. 12

・ Aggregation in Pandas DataFrame .. 12

・ Pandas Datetime Functionality .. 13

・ Pandas Options and Customizations .. 14

Correspondence Between Each Topic and Related VTPs

 | 2

 Correspondence Between Each Topic and Related VTPs

※ Click the link to go reference pages directly.

Pandas Concepts Related VTPs

Version

Related Problem

Numbers

What is a Pandas dataframe

and dataframe creation?

VTP_P5 1

Indexing and Selecting Data VTP_P5 6

Excel File Reading VTP_P5 2

Excel File Writing VTP_P5 3

What is CSV file? VTP_P5 4, 5

Iterate Pandas Dataframe VTP_P5 7

Aggregration in Pandas

Dataframe

VTP_P5 8

Pandas Datetime Function VTP_P5 9

Options and Customizations VTP_P5 10

Correspondence Between Each Topic and Related VTPs

 | 3

・ What is Pandas?

 Pandas is an open source Python package that is most widely used for data

science/data analysis and machine learning tasks. It is a fast, powerful, flexible and easy

to use open source data analysis and manipulation tool, built on top of the Python

programming language. It presents a diverse range of utilities, ranging from parsing

multiple file formats to converting an entire data table into a NumPy matrix array. It is

built on top of another package named Numpy, which provides support for

multi-dimensional arrays. As one of the most popular data wrangling packages, Pandas

works well with many other data science modules inside the Python ecosystem, and is

typically included in every Python distribution, from those that come with the operating

system to commercial vendor distributions like ActiveState’s ActivePython. Pandas

makes it simple to do many of the time consuming, repetitive tasks associated with

working with data, including:

1. Data cleansing

2. Data fill

3. Data normalization

4. Merges and joins

5. Data visualization

6. Statistical analysis

7. Data inspection

8. Loading and saving data

Correspondence Between Each Topic and Related VTPs

 | 4

9. And much more

・ What is a Pandas DataFrame and DataFrame Creation?

 To use pandas library, firstly we need to change the dataframe format. Pandas

dataFrame is the data Structure, which is a 2 dimensional Array. DataFrames are

visually represented in the form of a table. DataFrame stores tabular data to easily

manipulate it like rows and columns. A dataframe can be created from a list, or a

dictionary or numpy array.

1. Create DataFrame from list

A single list can be turned into a pandas dataframe:

import pandas as pd

data = [9,4,3]

df = pd.DataFrame(data)

print(df)

Output

 0

0 9

1 4

2 3

 Every element has an index (0,1,2).

2. Create DataFrame from n-demitional arrays

This works for tables (n-dimensional arrays) too:

 import pandas as pd

 data = [['Brown',22], ['John', 20], ['Smitt', 45]]

 df = pd.DataFrame(data,columns=['Name','Age']))

 print(df)

 Output

 Name Age

 0 Brown 22

Correspondence Between Each Topic and Related VTPs

 | 5

 1 John 20

 2 Smitt 45

3. Create DataFrame from a dictionary

From a dictionary, a dataframe can be created.

import pandas as pd

d = {'one':[7,2,9], 'two':[2,0,4], 'three':[3,2,1] }

df = pd.DataFrame(d)

print(df)

Output:

 one two three

0 7 2 9

1 2 0 4

2 3 2 1

The default index value begins form zero. However, the index value can be

changed as follows.

df = pd.DataFrame(d, index=[‘first’,’second’,’third’])

print(df)

Output:

 one two three

first 7 2 9

second 2 0 4

third 3 2 1

4. Create DataFrame from array

An array (numpy array) can be converted into an dataframe too.

import numpy as np

ar = np.array([[1,2,3],[4,5,6],[6,7,8]])

df = pd.DataFrame(ar)

print(df)

Correspondence Between Each Topic and Related VTPs

 | 6

Output:

 0 1 2

0 1 2 3

1 4 5 6

2 6 7 8

5. Create DataFrame from DataFrame

The parts of a dataframe can be copied into a new dataframe.

df2 = df[[‘One’,’Two’]].copy(); #using the dataframe above

print(df2)

Output:

 One Two

A 1 2

B 4 5

C 6 7

・ Indexing and Selecting Data in Pandas Frame

Indexing in pandas is a very crucial function. It lets to select and observe data

according to requirements and thus allows getting of one step closer to improve data

analysis. Without indexing and selection of data in Pandas, analyzing data would be

extremely difficult. With the help of custom indices, we can access our data properly

and also manage it efficiently. Pandas indexing and selecting help to efficiently

customize the data.

1. Select column

To select a column, the column name can be used.

data = [['Brown',22], ['John', 20], ['Smitt', 45]]

df = pd.DataFrame(data,columns=['Name','Age'])

print(df['Name'])

Output:

0 Brown

1 John

Correspondence Between Each Topic and Related VTPs

 | 7

2 smitt

2. Column Addition

data = [['Brown',22], ['John', 20], ['Smitt', 45]]

df = pd.DataFrame(data,columns=['Name','Age'])

c = pd.DataFrame([$10,$11,$40], columns=['Salary'])

df[‘Salary’] = c[‘Salary’]

print(df)

Output:

 Name Age Salary

0 Brown 22 $10

1 John 20 $11

2 Smitt 45 $40

3. Column Deletion

To delete a column, the keywork del can be used.

data = [['Brown',22], ['John', 20], ['Smitt', 45]]

df = pd.DataFrame(data,columns=['Name','Age'])

c = pd.DataFrame([$10,$11,$40], columns=['Salary'])

df[‘Salary’] = c[‘Salary’]

>>> del df[‘Salary’]

Output:

 Name Age

0 Brown 22

1 John 20

2 Smitt 45

4. Select row

To select a row, the keywork .loc[index] or .iloc[index] can be used.

data = [['Brown',22], ['John', 20], ['Smitt', 45]]

df = pd.DataFrame(data,columns=['Name','Age'])

>>> df.loc[0]

Output:

Name Brown

Correspondence Between Each Topic and Related VTPs

 | 8

Age 22

Name: 0. dtype: object

5. Append row

To append a row, the method .append() can be used.

data = [['Brown',22], ['John', 20], ['Smitt', 45]]

df = pd.DataFrame(data,columns=['Name','Age'])

user = pd.DataFrame([['Tony',53]], columns= ['Name','Age'])

df = df.append(user)

print(df)

Output:

 Name Age

0 Brown 22

1 John 20

2 Smitt 45

3 Tony 53

6. Row Deletion

To delete a column, the method .drop(index) can be used.

data = [['Brown',22], ['John', 20], ['Smitt', 45]]

df = pd.DataFrame(data,columns=['Name','Age'])

print(df.drop(0))

Output:

 Name Age

1 John 20

2 Smitt 45

・ Excel file Reading

 Excel files (the first sheet, specific sheets, multiple sheets or all sheets) can be

read by using read_excel(‘sample.xlsx’) method. If there are multiple sheets, only the

first sheet is used by pandas. It reads as DataFrame.

1. Read Excel file

To read an excel file, the method .read_excel() can be used.

Correspondence Between Each Topic and Related VTPs

 | 9

import pandas as pd

df = pd.read_excel('sample.xlsx')

2. Get sheet from Excel file

To specify the sheet, the argument sheet_name can be used. It specifies by

number (starting at 0).

import pandas as pd

df = pd.read_excel('sample.xlsx', sheet_name=1)

3. Load multiple sheets from Excel file

 It is also possible to specify a list in the argument sheet_name. It is OK even if it

is a number of 0 starting or the sheet name.

import pandas as pd

df = pd.read_excel('sample.xlsx', sheet_name=[0, 'sheet2'])

4. Load all sheets from Excel file

 If sheet_name argument is none, all sheets are read.

import pandas as pd

df = pd.read_excel('sample.xlsx', sheet_name= None)

・ Excel file Writing

 Any data (lists, strings, numbers etc) can be written to Excel, by first converting it

into a Pandas DataFrame and then writing the DataFrame to Excel. Importing openpyxl

is required to append it to an existing Excel file described at the end.

1. Write Excel file

To write an excel file, the method .to_excel() can be used.

import pandas as pd

import openpyxl

df = pd.read_excel('sample.xlsx')

df = pd.DataFrame([[11, 21, 31], [12, 22, 32], [31, 32, 33]],

 index=['one', 'two', 'three'], columns=['a', 'b', 'c'])

Correspondence Between Each Topic and Related VTPs

 | 10

df.to_excel('pandas_to_excel.xlsx', sheet_name='new_sheet_name')

 Note: that the data in the original file is deleted when overwriting. The argument

new_sheet_name is the name of the sheet. If omitted, it will be named Sheet1.

2. Write multiple DataFrames toExcel file

To write multiple data frames to an excel file as separate sheets, the method

ExcelWriter()can be used.

import pandas as pd

import openpyxl

df = pd.read_excel('sample.xlsx')

df = pd.DataFrame([[11, 21, 31], [12, 22, 32], [31, 32, 33]],

 index=['one', 'two', 'three'], columns=['a', 'b', 'c'])

df2 = df[['a', 'c']] // prepare another data frame

with pd.ExcelWriter('pandas_to_excel.xlsx') as writer:

 df.to_excel(writer, sheet_name='sheet1')

 df2.to_excel(writer, sheet_name='sheet2')

3. Append to an existing Excel file

 To append a DataFrame to an existing excel file, the method .The code below

opens an existing file, then adds two sheets with the data of the dataframes.

import pandas as pd

import openpyxl

path = 'pandas_to_excel.xlsx'

df = pd.read_excel('sample.xlsx')

df = pd.DataFrame([[11, 21, 31], [12, 22, 32], [31, 32, 33]],

 index=['one', 'two', 'three'], columns=['a', 'b', 'c'])

df2 = df[['a', 'c']] // prepare another data frame

with pd.ExcelWriter(path) as writer:

 writer.book = openpyxl.load_workbook(path)

 df.to_excel(writer, sheet_name='new_sheet1')

 df2.to_excel(writer, sheet_name='new_sheet2')

・ What is a CSV File (CSV file Reading and Writing)?

Correspondence Between Each Topic and Related VTPs

 | 11

 A CSV file is nothing more than a simple text file. However, it is the most

common, simple, and easiest method to store tabular data. This particular format

arranges tables by following a specific structure divided into rows and columns. It is

these rows and columns that contain the data. A new line terminates each row to

start the next row. Similarly, a comma, also known as the delimiter, separates

columns within each row.

1. Read CSV file

To read a CSV file, the method read_csv() can be used.

import pandas as pd

df = pd.read_csv('sample.csv')

df.data_head() # display the first five rows of the CSV file

 The read_csv() method then returns a Pandas DataFrame that contains the data of

the CSV file. By default, the read_csv() method treats the values in the first row of a

CSV file as column headers. However, custom header names can be passed while

reading a file via the read_csv() method as bellow code.

import pandas as pd

col_names = [‘Name’, ‘Age’, ‘Salary’]

df = pd.read_csv(r'sample.csv', names=col_names, header=None)

2. Write CSV file

 The process of creating or writing a CSV file through Pandas can be a little more

complicated than reading CSV, but it's still relatively simple. to_csv() function can

be used to perform this task. However, a Pandas DataFrame must be first created,

followed by writing that DataFrame to the CSV file.

import pandas as pd

city = pd.DataFrame([['Sacramento', 'California'], ['Miami', 'Florida']],

columns=['City', 'State’]

city_to_csv(‘city.csv’)

Correspondence Between Each Topic and Related VTPs

 | 12

Output (city.csv)

City,State

Sacramento, California

Miami, Florida

3. Writing to CSV files using CSV module

 Just like reading CSVs, the csv module appropriately provides plenty of

functionality to write data to a CSV file as well. The writer object presents two

functions, namely writerow() and writerows(). The difference between them, is that

the first function will only write one row, and the function writerows() writes

several rows at on csv file.

import csv

myData = [[1,2,3], ['Good Morning', 'Good Evening', 'Good Afternoon']]

myFile = open('csvexample3.csv', 'w')

with myFile:

 writer = csv.writer(myFile)

 writer.writerows(myData)

Output (csvexample3.csv)

1,2,3

Good Morning,Good Evening,Good Afternoon

・ Iterate Pandas Dataframe

 DataFrame looping (iteration) with a for statement. Over a pandas dataframe can be

looped, for each column row by row. There are 3 ways to loop over data frame.

1. iteritems() : Helps to iterate over each element of the set, column-wise.

2. iterrows(): Each element of the set, row-wise.

3. itertuple(): Each row and form a tuple out of them.

import pandas as pd

df = pd.DataFrame({'age': [20, 32], 'state': ['NY', 'CA'], 'point': [64, 92]},

 index=['Alice', 'Bob'])

for key,values in df.iteritems():

Correspondence Between Each Topic and Related VTPs

 | 13

 print(key, values)

for row_index,row in df.iterrows():

 print(row_index, row)

for row in df.itertuples():

 print(row)

・ Aggregation in Pandas DataFrame

 Pandas provide with a variety of aggregate functions. These functions help to

perform various activities on the datasets. The functions are:

1. count(): This gives a count of the data in a column.

2. .sum(): This gives the sum of data in a column.

3. .min() and .max(): This helps to find the minimum value and maximum value,

ina function, respectively.

4. .mean() and .median(): Helps to find the mean and median, of the values in a

column, respectively.

import pandas as pd

df = pd.read_csv(r'sample.csv')

 print(df.count())

print(df.sum())

print(df.min())

print(df.max())

print(df.mean())

print(df.median())

・ Pandas Datetime Functionality

 To create pandas DateTime object, .date_range function is used. It has the

following parameter:

1. First parameter: start= ‘dd/mm/yyyy’.

2. Second parameter: periods= n, where n is no of periods or date time elements

you need.

3. Third parameter: freq= ‘x’, where ‘x’ can be ‘H’(hour), ‘D’(days), ‘W’(weeks),

‘M’(month), ‘Y’(years), etc.

Correspondence Between Each Topic and Related VTPs

 | 14

Import pandas as pd

dataflair = pd.date_range(start='1/1/2011', periods = 10, freq =’H’)

print(dataflair)

Output

DatetimeIndex([‘2011-01-01 00:00:00’, ‘2011-01-01 01:00:00’,

‘2011-01-01 02:00:00’, ‘2011-01-01 03:00:00’,

‘2011-01-01 04:00:00’, ‘2011-01-01 05:00:00’,

‘2011-01-01 06:00:00’, ‘2011-01-01 07:00:00’,

‘2011-01-01 08:00:00’, ‘2011-01-01 09:00:00′],

dtype=’datetime64[ns]’, freq=’H’)

Breaking the dime and date into separate features

dataflair_rng['year'] = dataflair_rng['date'].dt.year # creates ‘year’ column and

extracts year

dataflair_rng['month'] = dataflair_rng['date'].dt.month # creates ‘month’ column

and extracts month

dataflair_rng['day'] = dataflair_rng['date'].dt.day # creates ‘day’ column and

extracts the day

dataflair_rng['hour'] = dataflair_rng['date'].dt.hour # creates ‘hour’ column and

extracts the hour

dataflair_rng['minute'] = dataflair_rng['date'].dt.minute # creates ‘minute’

column and extracts minute

Get the present time as a timestamp

 .Timestamp.now() function is used to get the current time and date details.

dataflair_time = pd.Timestamp.now()

・ Pandas Options and Customizations

 Pandas options allow a user to customize the data according. Pandas have some

default factors which restrict the analysis of data. Therefore to have a stronghold over

the library and to make the most out of its uses, it is important to know the various

methods to change the default pandas values.

Correspondence Between Each Topic and Related VTPs

 | 15

Common default values-

1. display.max_rows and display.max_columns which shows the default number

of rows and columns.

2. display.max_colwidth which gives us the maximum width of the column

3. display.expand_frame_repr which gives us DataFrames that is spread across

numerous pages.

4. display.precision gives us the precision of the decimal numbers

Types of Pandas Options and Customization

 There are five types of pandas options. They are

1. .get_option(): can define parameter which will give a particular detail about the

default values in pandas.

2. .set_option(): allows to change a default value to something of choice.

3. .reset_option(): can get back the default values which may change previously.

4. .describe_option(): describes the details about each parameter.

5. .opton_context(): can invoke a pandas option function which will be only active

within the scope of the function.

import pandas as pd

dataflair= pd.get_option("display.max_rows")

pd.set_option("display.max_rows",90)

pd.reset_option("display.max_rows")

pd.describe_option("display.max_rows")

with pd.option_context("display.max_rows",30):

 print(pd.get_option("display.max_rows"))

