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Abstract— The Litz wire has been widely utilized as a wire 

with a low copper loss under high-frequency operation. 

However, design optimization of the Litz wire is difficult 

because this wire generally has a complicated structure of thin 

strands twisted in multiple levels, which hinders both of the 

analytical and numerical prediction of the copper loss. To 

overcome this issue, recent studies have proposed the analytical 

models of the copper loss in the bundle of twisted strands, which 

is the basic components constituting the Litz wire. This paper 

constructs a simple analytical copper loss model of the Litz wire 

based on these preceding insights. In addition to these insights, 

the proposed model further considers the effect of the 

inclination angle of the strands to the Litz wire on the proximity 

effect loss. The proposed model was tested in comparison with 

the experimentally measured AC resistance of commercially 

available Litz wires. As a result, the predicted AC resistance 

showed good agreement with the measured ac resistance, 

suggesting the effectiveness of the proposed model. 

Keywords—AC resistance, analytical model, copper loss, Litz 

wire, proximity effect  

I. INTRODUCTION 

The Litz wire is widely utilized in industrial applications 
that require high-frequency AC power, such as induction 
heating [1]–[3] and high-frequency resonant converters [4]–
[8]. The Litz wire is made of a number of thin strands twisted 
in multiple levels, e.g. the twisted bundles each made of 
twisted strands. As pointed out in [9][10], twisting the strands 
can prevent concentration of the ac current in particular 
strands. Therefore, the complicated structure of the Litz wire 
with multi-level twisting can ensure equal ac current flows 
among all the strands constituting the Litz wire. As a result, 
the Litz wire can effectively suppress the copper loss even 
under high-frequency operation. 

However, the too many levels of twisting may result in an 
increase in manufacturing cost and decrease the packing factor, 
which expands the volume occupied by the wire.  Therefore, 
the design of the Litz wire commonly requires seeking 
effective suppression of the copper loss with simple twisting 
structure. 

In this sense, efficient design of the Litz wire may need a 
prediction of the copper loss from the geometrical 
specifications of the Litz wire, such as the twisting structure, 
the diameter, and the number of the strands. However, the 
copper loss prediction of the Litz wire has been regarded to be 

difficult both for the analytical and numerical [11]–[14] 
approaches because multi-level twisting of many thin strands 
generally requires complicated modeling based on the 
electromagnetic analysis.  

Preceding studies [15]–[25] have proposed analytical 
prediction methods of the copper loss in the bundle of twisted 
strands (or the Litz wire with a single level of twisting), which 
is the basic element of the Litz wire. These methods provide 
analytical models of the skin and proximity effect of the 
bundle. Some of these models even have attractive features 
that they contain only physical constants and geometrical 
parameters, all of which can be straightforwardly obtained 
without FEM analysis. Therefore, the copper loss model of the 
Litz wire may be constructed by further considering the 
twisting process of these bundles. 

The purpose of this paper is to construct a simple copper 
loss model based on these preceding insights. In addition to 
these insights, the proposed model further considers the effect 
of the inclination angle of the strands to the Litz wire, caused 
through the twisting process. The proposed model applies 
drastic approximations to simplify the equation so that only 
physical constants and geometrical parameters are required 
for the copper loss prediction. 

The following discussion comprises 4 sections. Section II 
analytically derives the copper loss model of the Litz wire. In 
this section, we first briefly review the analytical copper loss 
model of the strand. Then, we derive the analytical copper loss 
model of the bundle of the twisted strands. As a result of the 
detailed analytical discussions, we propose a slight 
modification of the previous copper loss model of the bundle 
proposed in [25]. Based on the model of the bundle, we 
construct the copper loss model of the Litz wire. Section III 
presents experiments performed to verify the proposed copper 
loss model of the Litz wire. Finally, section IV gives 
conclusions. 

II. COPPER LOSS MODEL OF LITZ WIRE 

This section derives an analytical copper loss mode based 
on an example of a typical Litz wire, illustrated in Fig. 1, 
carrying sinusoidal ac current. This Litz wire has 3 levels of 
the twisting. As in many commercially available Litz wires, 
this Litz wire (3rd level bundle) is assumed to be formed by 
twisting no more than 5 bundles (2nd level bundle), each of 
which is formed by twisting no more than 5 bundles (1st level 



bundle). However, 1st level bundles are assumed to be formed 
by twisting many (much more than 5) strands, as is common 
in many Litz wire. 

The copper loss of a wire is generally dependent on two 
factors: One is the ac current flowing through the wire, and the 
other is the external ac magnetic field applied to the wire. 
Therefore, the copper loss model should be expressed as a 
function of these two factors. The Litz wire under 
consideration is assumed to carry the total ac current iL. In 
addition, the uniform sinusoidal external ac magnetic field HL 
is assumed to be applied in perpendicular to the Litz wire. 

Derivation of the proposed copper loss model is based on 
modeling of the copper loss in each level of twisting in the 
Litz wire. We first derive the analytical copper loss model of 
a strand. Then, based on this model of the strand, we formulate 
the analytical copper loss model of a bundle made of the 
strands. Finally, we formulate the analytical copper loss model 
of the Litz wire based on the model of the bundle. Because the 
Litz wire is made of non-magnetic material, the linear media 
is assumed in the electromagnetic analysis. 

A. Analytical Copper Loss Model of Strand 

We focus on a strand shown in Fig. 2 and formulate the 
copper loss of the strand. The strand is assumed to carry the 
ac current is. In addition, the external ac magnetic field Hs is 
applied to the strand, although we do not limit the direction of 
Hs to be perpendicular to the strand. 

The copper loss of the strand is the sum of the Joule loss 
generated by the local ac current inside the strand. Therefore, 
the copper loss of the unit length of the strand Ps can be 
expressed as 
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where ρ is the resistivity of the copper, Ss is the horizontal 
cross-section of the strand, and is_dens is the local ac current 
density vector inside the strand. 

The local ac current density is the sum of the eddy current 
density, generated by Hs, and the ac current density iacs_dens, 
constituting is under the absence of the external field. We 
denote the component of Hs in perpendicular and in parallel to 

the strand as Hs⊥ and Hs//, respectively. Then, (1) can be 
rewritten as 
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where is⊥_dens and is//_dens is the eddy current generated by 

Hs⊥ and Hs//, respectively. 

As depicted in Fig. 3, the current density iacs_dens and is⊥_dens 
are in parallel to the strand, whereas is//_dens is in perpendicular 
to the strand. Furthermore, iacs_dens has the axial symmetry with 

respect to the central axis of the strand, whereas is⊥_dens has the 
anti-symmetry with respect to the line passing through the 

center of the strand and in parallel to Hs⊥ (dashed line in Fig. 

3(b)). Noting that is⊥_dens and is//_dens must be proportional to the 

magnitude of Hs⊥ and Hs//, respectively, in the linear media, 
we can further express (2) as 
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where Rs is the strand-level loss coefficient caused by the 

skin effect; Gb⊥ and Gb// are the proximity effect coefficients, 
respectively. 

According to the preceding studies [15]–[25], these 
coefficients are analytically derived as 

 ( )
2

,s s

s

R F


= 


 () 

 ( )4 ,s sG K⊥ =    () 

 ( )/ / 2 ,s sG K=    () 

 

Fig. 1. Litz wire structure under consideration with 3 levels of twisting.  

 

Figure 1: Litz wire structure under 

consideration with 3 levels of twisting.
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Fig. 2. Strand under consideration.  

 

Fig. 3. AC current distributions of the ac current density iacs_dens, which 
constitutes is under the absence of the external field, and the eddy current 

is⊥_dens and is//_dens, which is generated by Hs⊥ and Hs//, respectively. 
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where s is the radius of the strand. Parameter γs and 
functions F and K are defined as 
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where ω is the angular frequency, μ0 is the permeability of 
the air. 

B. Analytical Copper Loss Model of 1st Level Bundles 

A 1st level bundle is a group of twisted strands. Therefore, 
the strands placed at the same distance from the center of the 
bundle rotationally exchange their position along the bundle. 
This indicates that these strands must carry the same ac current. 
Hence, the current distribution among the strands of the 1st 
level bundle must have the axial symmetry. 

As mentioned in the previous subsection, the external 
magnetic field applied in perpendicular to the bundle must 
induce the ac current with the anti-symmetry distribution with 
respect to the line passing through the center of the bundle and 
in parallel to the field. However, this anti-symmetry current 
distribution cannot be achieved in the 1st level bundle because 
of the requirement of the axial symmetry current distribution 
among the strands. As a result, this external magnetic field 
does not induce the ac current circulating through any pairs of 
the strands, although this field still induces the local eddy 

current confined inside the strand, i.e. is⊥_dens mentioned in the 
previous subsection. (We neglected the bundle-level 
proximity effect [25] because we assume the Litz wire much 
longer than the twisting pitch.) 

Similarly, the external magnetic field applied in parallel to 
the bundle must induce the ac current of the direction in 
perpendicular to the bundle. However, the bundle is made of 
thin isolated strands; and therefore, this requirement cannot 
also be achieved in the bundle. As a result, this external 
magnetic field does not induce the circulating ac current 
through the strands, although this field still induces the local 
eddy current inside the strands, i.e. is//_dens. 

Consequently, the copper loss per unit length of the 1st 
level bundle Pb has the following form.  
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where Rb is the bundle-level loss coefficient caused by the 
strand-level and bundle-level skin effect; ib is the total ac 
current flowing through the bundle; j is the index of the strands 

contained in this 1st level bundle; Hs⊥j and Hs//j are the RMS 

value of the local external magnetic field Hs⊥ and Hs//, 
respectively, at the strand j. 

The coefficient Rb can be regarded as the ac resistance of 
the bundle under the absence of the external magnetic field. 
Therefore, we can determine Rb by calculating the copper loss 

when no external magnetic field is applied to the bundle. Note 
that the electromagnetic field of the bundle-level must have 
the axial symmetry inside the bundle because the current 
distribution among the strands in the bundle also has the axial 
symmetry. In this case, we can approximate the ac current 
distribution among the strands in the bundle as the ac current 
distribution inside the solid wire with the same diameter as the 
bundle.  

We assume that this imaginary solid wire is made of the 
uniform material with the resistivity ρeff defined as 
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eff s

A
R =


 () 

where  is the porosity factor of the bundle, and As is the 
cross-sectional area of the strand. This solid wire model gives 
the solution of the ac current distribution that ensures 1. the 
direction of the ac current to be in parallel to the bundle and 2. 
the ac electric potential to be the same at any point inside the 
cross-section of the solid wire. If we assume the same ac 
current distribution inside the bundle as the solid wire, we can 
find that these features satisfy the requirement of the ac current 
distribution among the strands in the bundle because  

1. The former feature prohibits the ac current flowing 
outside the strand, (We assume that the inclination 
angle of the strands to the bundle is small because the 
diameter of the 1st level bundle is far smaller than that 
of the Litz wire and therefore twisting the strands does 
not cause large inclination angle to the bundle.)  

2. The latter feature prohibits the ac current circulating 
through any pair of the strands.  

Furthermore, the total copper loss generated in this solid 
wire model is the same as the copper loss in the bundle. In fact, 
by determining the strand current is according to 
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where ib_dens is the ac current density vector component 
parallel to the wire in the solid wire model (The component 
perpendicular to the wire is zero.), we have 
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Equation (13) indicates that the total ac current flowing 
through the bundle is the same as that in the solid wire model. 
In addition, (14) indicates that the total copper loss inside the 
bundle is the same as that in the solid wire model. 

Therefore, the copper loss in the solid wire model can be 
analytically calculated, similarly as in the previous section. As 
a result, inferred from (4), Rb can be obtained as 
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where b is the radius of the 1st level bundle. Parameter γb 
is defined as 
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Substituting (4) into (15), Rb can be finally determined as 
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where ns is the number of the strand in a 1st level bundle. 

The analytical solution of Rb, shown in (17), is similar to 
the model of the preceding study [25]. However, there is a 

slight difference that ρeff contained in b was set at ρ/η in [25], 
whereas ρeff is defined as (11) in the proposed model. This 
difference may have a subtle effect on the calculation of Rb in 
many actual cases. Nonetheless, as discussed above, (17) has 
the theoretical basis on the electromagnetism.  

C. Analytical Copper Loss Model of Litz Wire 

The 2nd and 3rd level bundles are assumed to be formed by 
twisting no more than 5 bundles. Therefore, the bundles of the 
same twisting group rotationally exchange their position along 
the Litz wire. Because these bundles have the axial symmetry, 
thus carrying the same ac current. As a result, all of the 1st 
level bundles in the Litz wire carry the same ac current.  

Noting that the 1st level bundles have a greater length than 
the Litz wire as a result of the twisting process, the total copper 
loss of the Litz wire PL can be obtained as 
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where m is the length ratio of the 1st level bundle to the 
Litz wire, iL is the total ac current of the Litz wire, n1 is the 
number of the 1st level bundles in a 2nd level bundle, n2 is the 
number of the 2nd level bundles in a Litz wire, and k is the 

index of the 1st level bundles contained in the Litz wire, Hs⊥kj 
and Hs//kj are the RMS value of the local external magnetic 

field Hs⊥ and Hs//, respectively, at the strand j in the 1st level 
bundle k. 

Equation (18) still contains the unknown parameters Hs⊥kj 
and Hs//kj. The next subsection discusses the derivation of these 
parameters to determine the copper loss model of the Litz wire. 

D. Magnetic Field in Litz Wire 

The multi-level twisting structure of Litz wire makes 

complicated the estimation of Hs⊥kj and Hs//kj because the 
strands have the inclination angle to the Litz wire. For 
example, the ac current flowing inside a bundle forms a 
circulating component around the center of the bundle. This 

current generates the magnetic field parallel to the bundle, as 
illustrated in Fig. 4, which does not appear without twisting. 

This effect takes place in all levels of the twisting. 
However, considering this effect for all levels of bundles may 
lead to the extremely complicated calculation. Therefore, we 
simply consider this effect only for twisting the 2nd level 
bundles to form the Litz wire because its largest scale of 
twisting tends to be the major cause of the inclination angle of 
the strands. Hence, all the strands are assumed to be twisted to 
form the 1st level bundle with a negligible inclination angle to 
this bundle; and similarly, all the 1st level bundles are assumed 
to be twisted to form the 2nd level bundle with a negligible 
inclination angle to this 2nd level bundle. Nonetheless, all the 
2nd level bundles are twisted with the constant inclination 
angles to the Litz wire. As a result, all the strands contained in 
a 2nd level bundle (and therefore all the strands of the Litz wire 
because of the axial symmetry among the 2nd level bundles) 
are assumed to be inclined at the same angle as the 2nd level 
bundle.  

Because all the 1st level bundles carry the same ac current, 
we approximate the magnetic field inside the Litz wire as the 
sum of the external field HL and the internal field Hint 
generated by the uniform current density in the Litz wire 

cross-section, flowing at the constant inclination angle . 
Certainly, the current distribution inside the 1st level bundles 
may not be uniform in high frequency due to the bundle-level 
skin effect, i.e. the ac current distribution of the solid wire 
model in subsection 2.B. However, we consider this small-
scaled fluctuation of the magnetic field caused by this non-
uniformity inside the 1st level bundle to be small compared 
with large-scale magnetic field generated by uniform current 
distribution among all the 1st level bundles. 

Under this approximation, the internal magnetic field Hint 
can be determined as 
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Fig. 4. Internal magnetic field genreated as a result of twisting.  
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where Hint// and Hint⊥ are the RMS values of the parallel 

and perpendicular components of Hint with respect to the Litz 
wire, aL is the radius of the Litz wire, and r is the distance from 
the center of the Litz wire.  

Because all the strands are assumed to be inclined to the 
Litz wire at the constant angle θ, the magnetic field at the 
strands can be obtained as 
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where HL is the RMS value of the external field and kj is 
the angle between HL and the vector drawn from the center of 
the Litz wire to the center of the strand j of the 1st level bundle 
k. 

Therefore, the second and third terms of the right-hand 
side of (18) can be obtained by utilizing (19)–(22). First, we 
approximate the second and third terms by replacing the 
summation by the areal integration:  
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where ns is the number of the strands in the 1st level 
bundles, and ntotal is the total number of the strands contained 
inside the Litz wire (Hence, ntotal=nsn1n2.), AL is the cross-
section area of the Litz wire, SL is the horizontal cross-section 
of the Litz wire. 

Substituting (19)–(22) into (23) and (24), we have 
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Because all the 1st level bundles are regarded to have the 
constant inclination angle θ to the Litz wire, the following 
relation is obtained between θ and m, i.e. the length ratio of 
the 1st level bundle to the Litz wire:  
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Substituting (27) into (25) and (26), we have 
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Finally, analytical copper loss model of the Litz wire is 
obtained by substituting (17), (28), and (29) into (18)  
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As can be seen in (30), the copper loss of the Litz wire can 
be expressed in the form of PL=RLiL2+GLHL

2, where RL and GL 
are the loss coefficient of the skin effect and that of the 
proximity effect. These coefficients are given as 
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The proposed copper loss model of the Litz wire contains 
only physical constants and geometrical parameters of the Litz 
wire except for the external field HL, which is dependent on 
the magnetic structure outside of the Litz wire and therefore 
should be given by the external condition. Therefore, the 
proposed model is a fully analytical copper loss model of the 
Litz wire. 

 

III. EXPERIMENT 

A simple experiment was carried out to verify the 
proposed copper loss model. In this experiment, we evaluated 
the copper loss coefficients RL and GL of two different Litz 
wires and compared the results with the theoretical values 
analytically calculated based on (31) and (32). These 
experimental Litz wires are formed with three levels of 
twisting. Specifications of these Litz wires are presented in 
Table I. 

For the evaluation of RL, the Litz wire to be tested was 
wound on the core-less bobbin to form a non-inductive 
solenoidal coil with four clockwise turns and four counter-
clockwise turns, as shown in Fig. 5(a), so that the wire 
experience no external field HL. The diameter of the bobbin 

was 100mm. Then, we measured the frequency dependence 
of the ac resistance below 2MHz using the LCR meter 
(Agilent E4980A). The measured ac resistance was divided by 
the total wire length to obtain the ac resistance per unit length, 
which equals RL. Consequently, the frequency dependence of 
RL was obtained as a result of this experiment. 

For the evaluation GL, the Litz wire to be tested was wound 
on the core-less toroid with 20 turns, as shown in Fig. 5(b), to 
generate the uniform ac magnetic field perpendicular to the 

wire. The inner and outer diameter of this toroid was 76mm 

and 86mm, respectively; and the height of the toroid was 
50mm. Then, the frequency dependence of the ac resistance 
was measured below 2MHz using the LCR meter. The 
measured ac resistance was divided by the total wire length to 
obtain the ac resistance per unit length. The difference of the 
resultant ac resistance per unit length from RL, which was 
measured using the non-inductive solenoidal coil, is the ac 
resistance per length contributed by the external ac magnetic 
field. Therefore, we compared this ac resistance difference 
with the theoretical value to verify GL of the proposed model. 

We denote this ac resistance difference per unit length as 
RGL. The theoretical value of RGL can be obtained as follows. 
The ac magnetic field inside the toroidal Litz wire coil Htroid 
can be approximately calculated as 
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2

L
troid

eq

Ni
H

r
=


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TABLE I.  SPECIFICATIONS OF EXPERIMENTAL LITZ WIRES 

 

 

Fig. 5. Photographs of the experimental setup for evaluation of the loss 

coefficient RL and GL.  

Wire A Wire B

Strand diameter s 0.05mm 0.071mm

Litz wire diamter L mm mm

Number of strands n total 1050 800

Wire length 3 3

Parameters n s, n 1, n 2 42, 5, 5 40, 5, 4

Parameter m 1.055 1.077

(a) Solenoidal coil for evaluation of RL

(b) Toroidal coil for evaluation of GL

Litz wire

Bobbin

 100

Litz wire

 76

 86

 

Fig. 6. Comparison result between the theoretically predicted RL and 

experimentally measured RL.  
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where N is the number of turns wound on the toroid, and 
req is the representative distance from the center of the toroid 
to the coil. In this experiment, we simply set req=40.5mm, 
which equals the average of the inner and outer radius of the 
coreless toroid. 

The ac magnetic field outside the toroidal Litz wire coil is 
zero. Therefore, the part of the Litz wire that faces the outside 
of the toroidal coil has the zero ac magnetic field, whereas the 
part that faces the inside of the toroidal coil has the ac 
magnetic field Htroid. However, we approximate that the 
uniform representative external ac magnetic field HL_rep was 
applied to the Litz wire. We set HL_rep at the RMS average of 
the ac magnetic field, simply assuming that the ac magnetic 
field increases linearly from the outer side to the inner side of 
the Litz wire toroidal coil. Hence, we set  

 _ ,
2 3

L
L rep

eq

Ni
H

r
=


 () 

Consequently, the theoretical value of RGL can be 
calculated as  
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Figure 6 shows the evaluation results of RL. The frequency 
dependence predicted by the proposed model agreed well with 
the experiment in both of the two experimental Litz wires. 
According to (31), the coefficient RL is the sum of the 1st term, 
which is related to the skin effect inside the Litz wire, and the 
2nd term, which is related to the proximity effect caused by the 
internal magnetic field Hint. As can be seen in Fig. 7, which 
presents the ratio of these two terms to RL, the 1st term is 
dominant at low frequencies, whereas the 2nd term is dominant 
at high frequencies. Therefore, the consistency of RL between 
the theory and the experiment for wide frequency range 
implies appropriateness of both of the 1st and 2nd terms of (31).  

Figure 8 shows the evaluation result of RGL. The frequency 
dependence predicted by the proposed model also agreed well 
with the experimental result in both of the two experimental 
Litz wires, although drastic approximation was applied for 
calculating RGL. As a result, Fig. 8 supported the 
appropriateness of (32). Consequently, the experiment 
supported the appropriateness of the proposed model. 

IV. CONCLUSIONS 

 The copper loss prediction of the Litz wire is important 
for design optimization of the Litz wire. However, the Litz 
wire has the complicated structure with multi-level twisting, 
which hinders the analytical and numerical analysis of the 
copper loss. In spite of the difficulty of the fully analytical 
model of the Litz wire, the preceding studies have long 
accumulated analytical insights for the loss of the strands and 
the bundle of twisted strands. Based on these insights, this 
paper constructed a simple fully analytical copper loss model 

 

Fig. 8. Comparison result between the theoretically predicted RGL and 
experimentally measured RGL.  
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Fig. 7. Conposition ratio of the 1st and 2nd terms of equation (31) in the 

simulation result of RL.  
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of the Litz wire. Appropriateness of the proposed copper loss 
model was evaluated by the experiment. As a result, the 
proposed copper loss model successfully predicted the 
frequency dependence of the ac resistance of the commercial 
Litz wires, supporting the appropriateness of the proposed 
model. 
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