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 
Abstract—Litz wire has been widely utilized in power 

transformers and inductors as a wire with low copper loss at high-
frequency operation. The Litz wire is commonly made of many 
thin isolated strands twisted in multiple levels. Due to its 
complicated structure, the copper loss prediction of the Litz wire 
has been difficult, hindering the design optimization of the Litz 
wire structure. To overcome this difficulty, preceding studies have 
investigated the analytical copper loss models of the constituting 
elements of the Litz wire, i.e. the strands and the bundles of strands. 
The purpose of this paper is to propose an analytical copper loss 
model of the Litz wire by utilizing these preceding knowledge. The 
proposed model is formulated only with parameters that can be 
measured by basic testing instruments. Besides, the proposed 
model considers the bundle structure of the Litz wire, which 
affects the local ac current distribution, and the twisting pitch, 
which causes the inclination of the Litz wire strands. The proposed 
model was tested by comparing the analytical prediction and 
experimental measurements of the ac resistance of commercially 
available Litz wires. As a result, the predicted ac resistance showed 
good agreement with the measured ac resistance, suggesting the 
appropriateness of the proposed model.  
 

Index Terms—Ac resistance, analytical model, copper loss, Litz 
wire, proximity effect  
 

I. INTRODUCTION 

itz wire is widely utilized in power magnetic devices that 

carry high-frequency ac current, such as the heating coils 

of induction heating systems [1]-[3] and the transformers of 

high-frequency resonant converters [4]-[8]. The Litz wire is 

made by twisting many thin electrically-isolated strands. The 

strands are commonly twisted hierarchically in multiple levels 

in the Litz wire with a large cross-section area, particularly for 

large ac current applications. For example, a bunch of strands 

is firstly twisted to form the bundles, and then these bundles are 
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again twisted to form the Litz wire. As pointed out in [9][10], a 

single twisting process can prevent axial inhomogeneity of the 

ac current distribution among the twisted strands. Therefore, by 

combining multiple twisting processes in the hierarchy, the ac 

current of the Litz wire is expected to flow equally in all the 

constituent strands. As a result, the Litz wire can mitigate the 

the copper loss in thick Litz wires even under high-frequency 

operation. 

However, excessive levels of twisting may increase 

manufacturing cost and decrease the packing factor, which 

expands the wire cross-section area, consequently occupying 

additional volume. Therefore, Litz wire designs commonly 

require searching for the simplest twisting structure for 

achieving effective suppression of the copper loss at a given 

operating frequency.  

In this sense, the optimization of the Litz wire designs needs 

an accurate prediction of the copper loss based on the 

practically measurable parameters such as the strand diameter, 

the Litz wire diameter, the number of strands, the number of 

each level of the bundles, etc. However, the multiple levels of 

twisting of many thin strands forms a complicated structure, 

which hinders the numerical [11]-[15] and analytical [16]-[28] 

approaches to predict the copper loss of the Litz wire.  

Certainly, recent progress in computing has enabled the 

copper loss prediction of the Litz wire with multiple levels of 

twisting using finite element analysis (FEA) [15]. However, 

these approaches still require an enormous effort to construct 

the physical model for the electromagnetic analysis and 

enormous calculation resources, both of which may still cause 

obstacles in the practical design optimization of the Litz wire. 

Meanwhile, the analytical approach tends to result in a simpler 

physical approximation model and require less calculation 

resource than the numerical approach, which may be promising 

for application to practical design optimization of the Litz wire. 
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In the analytical approach, preceding studies [16]–[21], [25] 

–[28] have investigated analytical copper loss models of the 

constituting elements of the Litz wire as the strands and the 

bundles of strands. These methods provide analytical models of 

the skin and proximity effect of the stands and the bundle. 

Among these methods, [26] developed the analytical copper 

loss model of the Litz wire with multiple levels of twisting 

based on the analytical models of the strands and the bundles of 

strands. However, this analytical model may still have difficulty 

in practical application to Litz wires with multiple levels of 

twisting because these methods contain parameters such as the 

packing factor of each level of the bundles, which are difficult 

to be measured directly. 

By utilizing these preceding knowledge, this paper derives 

an analytical copper loss model of the Litz wire based on the 

parameters that can be measured with basic testing instruments. 

The proposed model applies certain approximations to simplify 

the equation so that only geometrical and electrical parameters, 

as well as physical constants, are required for the copper loss 

prediction. In addition to these preceding knowledge, the 

proposed model further improves the consideration of the 

bundle structure of the Litz wire, which affects the local ac 

current distribution, and includes the consideration of the 

twisting pitch, which causes the inclination of the Litz wire 

strands.  

The approximations of the proposed model are introduced by 

assuming typical Litz wire structure, as well as typical usage 

condition of the Litz wire, used for the power magnetic devices. 

Specifically, the proposed model is derived for the Litz wire 

under the following conditions: 

1. The surface of the strands is coated with non-conductive 

material for electrical isolation each from the others; 

2. The strands are twisted in two or more levels; 

3. The lowest level of twisting, i.e. twisting the strands, 

twists much more than 5 strands to form a bundle, 

whereas the higher levels of twisting twists no more than 

5 bundles to form a bundle of the bundles. 

4. The Litz wire does not contain magnetic material, e.g. in 

the isolation material for coating the strand surface; 

5. The Litz wire is used with a sufficiently longer length 

than the twisting pitch of each level of twisting so that 

each level of twisting ensures a rotationally symmetrical 

magnetic condition among the strands or the bundles to 

be twisted. (Please refer to the appendix for the 

estimation of the necessary length.) 

It is worth noting that these conditions can be applied for many 

commercial Litz wires in many applications, although these 

conditions do not cover all the Litz wires and all the 

applications.  

This paper is the updated version of the conference paper 

[29]. Compared with the conference paper, this paper further 

incorporates the detailed description of the derivation process 

of the proposed copper loss model. Besides, this paper added 

more experimental data for evaluating the proposed model. 

The following discussion comprises 4 sections. Section II 

analytically derives the copper loss model of the Litz wire. In 

this section, we first briefly review the analytical copper loss 

model of the strand. Then, we derive the analytical copper loss 

model of the bundle of the twisted strands. As a result of the 

detailed analytical discussions, this paper propose a slight 

modification of the previous copper loss model of the bundle 

proposed in [26]. Based on the model of the bundle, we 

construct the copper loss model of the Litz wire. Section III 

presents experiments performed to verify the proposed copper 

loss model of the Litz wire. Finally, section IV gives 

conclusions. 

II. COPPER LOSS MODEL OF LITZ WIRE 

This section formulates the proposed copper loss model of 

the Litz wire with multiple levels of twisting. For this purpose, 

a typical Litz wire structure illustrated in Fig. 1 is considered as 

an example. This Litz wire is assumed to satisfy the requirement 

conditions listed in the introduction. Because the Litz wire is 

 
Fig. 1. Litz wire structure under consideration with 3 levels of twisting.  

 

Figure 1: Litz wire structure under 

Strand: radius αs

1st level bundle: radius αb

2nd level bundle

 
Fig. 2. Strand under consideration.  

 
Fig. 3. AC current distributions of the ac current density vector iacs_dens, 

which constitutes the strand current is under the absence of the external field, 

and the eddy current density vectors is_dens and is//_dens, which are generated 

by hs and hs//, respectively. 
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assumed not to contain magnetic material, linear media is 

assumed for the electromagnetic analysis. 

 The Litz wire of Fig. 1 has 3 levels of twisting. This Litz 

wire (3rd level bundle) is assumed to be formed by twisting no 

more than 5 bundles (2nd level bundle), each of which is formed 

by twisting no more than 5 bundles (1st level bundle). Therefore, 

in these twisting process, the twisted bundles are placed in the 

rotational symmetry in the cross-section, and they exchange 

their position rotationally along the Litz wire. However, the 1st 

level bundles are assumed to be formed by twisting many 

strands (much more than 5).  

The commercial Litz wires commonly have, but are not 

limited to 2 or 3 twisting levels. This section derives the 

proposed model by analyzing the Litz wire with 3 twisting 

levels. However, as it is shown later, the proposed model can 

be applied to the Litz wire with 2, 4, or more twisting levels. 

Nonetheless, the proposed model requires that the lowest 

twisting level involves much more than 5 strands and the higher 

twisting levels involve no more than 5 bundles. 

The copper loss of a wire is generated by two causes: The ac 

current flowing through the wire, and the external ac magnetic 

field applied to the wire. Therefore, the copper loss model 

should incorporate both of these two factors. The Litz wire 

under consideration is assumed to carry a sinusoidal ac current 

iL with the frequency f. Additionally, uniform external 

sinusoidal ac magnetic field hL with the frequency f is assumed 

to be applied in perpendicular direction to the Litz wire. The 

reason for assuming the same frequency for the ac current and 

the external magnetic field is that the external magnetic field is 

generated by the ac current flowing in the Litz wire in common 

magnetic devices used in power electronics applications. (iL and 

hL are the instantaneous current and the instantaneous magnetic 

field vector, respectively.) 

Certainly, the actual current in the Litz wire, as well as the 

actual magnetic field applied to the Litz wire, is not necessarily 

sinusoidal. However, the copper loss of an arbitrary current 

waveform and an arbitrary external magnetic field waveform 

can be determined as the sum of the copper loss generated by 

their fundamental waves and each of their harmonics waves 

because this copper loss model is constructed on the 

electromagnetics in linear media. 

The copper loss model was constructed based on the 

hierarchical structure of the Litz wire. Starting from the copper 

loss of the strand, the copper loss model of the bundle of each 

twisting level was formulated based on the copper loss model 

of its subcomponents. Specifically, the analytical copper loss 

model of a strand is firstly derived. Then, based on the model 

of the strand, the analytical copper loss model of the 1st level 

bundle is derived. Finally, the analytical copper loss model of 

the Litz wire is derived based on the copper loss model of the 

1st level bundle. 

A. Copper Loss Model of a Strand 
The copper loss model of the strand is well known in the 

literature as the copper loss model of the round solid copper 

wire [16]–[21], [25], [26]. This strand is assumed to carry an ac 

current is. Additionally, an external magnetic field hs is assumed 

to be applied to the strand. (is and hs are the instantaneous 

current and the instantaneous magnetic field vector, 

respectively. The direction of hs is not limited to be 

perpendicular to the strand.) Magnetic field hs should include 

not only the magnetic field applied from outside the Litz wire 

but also the magnetic field generated by the ac current flowing 

through all the strands of the Litz wire under consideration as 

well as the eddy current generated in these strands. However, 

as discussed later in subsection II.C, this paper neglects the 

contribution of the eddy current to hs for simplifying the model 

construction. 

The copper loss of the strand is the sum of the Joule loss 

generated by the local ac current inside the strand. Therefore, 

the instantaneous copper loss ps per the unit of length of the 

strand can be expressed as 

 

.
2

_ 
sS

sdensss dSp i  (1) 

 

where ρ is the resistivity of the copper, Ss is the horizontal cross-

section of the strand, and is_dens is the instantaneous ac current 

density vector inside the strand. 

The instantaneous ac current density vector is_dens can be 

expressed as the sum of the eddy current density vector 

generated by hs under the absence of the strand current is and 

the ac current density vector iacs_dens constituting is under the 

absence of hs. Therefore, by further dividing hs into hs and hs//, 

which are the components of hs in perpendicular and parallel 

directions to the strand, respectively, (1) can be rewritten as 

 

,
2

//___  
sS

sdenssdenssdensacss dSp iii  (2) 

 

where is_dens and is//_dens are the instantaneous eddy current 

density vector generated by hs and hs//, respectively. 

Figure 3 depicts the distribution of the current density vectors 

iacs_dens, is_dens, and is//_dens in the cross-section of the strand. 

Because of the axial symmetry of the electromagnetic condition 

when the ac current flows under the absence of the external 

magnetic field, the current density vector iacs_dens must also have 

axial symmetry. Meanwhile, the eddy currents induced by the 

uniform external magnetic field must be perpendicular to the 

field. Furthermore, the surface integral of is_dens and is//_dens over 

the strand cross-section must vanish because i s_dens and is//_dens 

are the eddy current density under the absence of the strand 

current is. Therefore, considering the two-fold symmetry of the 

electromagnetic condition caused by hs with respect to the 

dashed line in Fig. 3(b), and the axial symmetry of the 

electromagnetic condition caused by hs//, is_dens must be in 

parallel to the strand and distributed in the two-fold 

antisymmetry and is//_dens must be in perpendicular to the strand 

and distributed in the axial symmetry. Consequently, the 

following relations can be obtained among iacs_dens, is_dens, and 

is//_dens:  
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By utilizing (3), (2) can be further rewritten as 
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According to (4), the time-averaged copper loss Ps per unit 

of length of the strand can be expressed as 

 

,2
////

22
sssssss HGHGIRP    (5) 

 

where Rs is the strand-level loss coefficient caused by the strand 

current is, which includes both dc resistance and skin effect loss, 

Gs and Gs// are the strand-level proximity effect loss 

coefficients, which expresses the eddy current losses caused by 

the external magnetic field hs and hs//, respectively, and Is, Hs 

and Hs// are the root-mean-square values of is, hs, and hs// , 

respectively. 

These coefficients Rs, Gs, and Gs// can be obtained using 

analytical expressions. As reported in [16]-[26], the expressions 

for calculating these coefficients are as follows:  

 

 
2

,s s
s

R F
 


 (6) 

 4 ,s sG K     (7) 

 / / 2 ,s sG K    (8) 

 

where s is the radius of the strand, γs is the parameter defined 

as (9), and F and K are functions of real number x defined as 

(10) and (11), respectively.  
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where ω is the angular frequency, μ0 is the permeability of the 

air, ber and bei are Kelvin functions, which are the special 

functions related to the Bessel function [30]. 

B. Copper Loss Model of First Level Bundle 
Based on the analytical solutions of the copper loss of the 

strand, this subsection formulates the analytical copper loss 

model of the 1st level bundle. The 1st level bundles are made by 

twisting many strands. As a result of the twisting process, the 

strands located at the same distance from the center of the 

bundle rotationally exchange their position along the bundle. 

Consequently, by assuming that the length of the bundle is far 

longer than the twisting pitch, these strands can be 

approximated to have the same electromagnetic condition and 

therefore to carry the same strand ac current. Hence, the 

distribution of the strand ac current among the strands 

constituting the 1st level bundle can be approximated to have 

the axial symmetry in the cross-section of the bundle. 

As discussed in the preceding study [26], not only the strand 

but also the bundle is susceptible to the proximity effect. In 

other words, the distribution of the strands ac current in the 

bundle is affected by the external ac magnetic field. This 

bundle-level proximity effect generates a strand current 

distribution of the two-fold antisymmetry by the external ac 

magnetic field in perpendicular to the bundle. However, this 

strand current distribution is not acceptable in the bundle far 

longer than the twisting pitch because the long bundle requires 

the axial-symmetrical strand ac current distribution. Similarly, 

the bundle-level proximity effect generates the circulating 

current flow in the bundle cross-section by the external ac 

magnetic field in parallel to the bundle. However, this current 

flow is not acceptable because the surface of the strands is 

insulated and therefore the current cannot flow between the 

strands. Consequently, the bundle-level proximity effect is 

simply ignored in this paper by assuming that the bundle is far 

longer than the twisting pitch, although the strand-level 

proximity effect still causes the local eddy current is_dens and 

is//_dens confined inside the strands. The necessary Litz length for 

this approximation is estimated in the appendix. 

Because the proximity effect is considered only in the strand 

level, the time-averaged copper loss Pb of the 1st level bundle 

per unit of length can be expressed in the following form:  

 

,2
////

22

2
////

22
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
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
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



j jssj jssbb

j jssj jssj jssb

HGHGIR
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where j is the index of the strands constituting the 1st level 

bundle, Is_j is the root-mean-square value of the ac current 

flowing through strand j, Rb is the bundle-level loss coefficient 

caused by the ac current of the bundle, Ib is the root-mean-

square value of the ac current flowing through the bundle, and 

Hsj and Hs//j are the root-mean-square values of the local 

magnetic field hs and hs// at strand j. 
As a result of twisting the strands, the strand must be slightly 

longer than the 1st level bundle. However, this paper simply 

neglects this effect in (12), although this paper only considers 

this effect for twisting the 2nd level bundles to form the Litz wire 

in the next subsection. The reason for this simplification is that 

the largest scale of twisting tends to mainly contribute to the 

length increase of the strand to the Litz wire. 

The first term of the right-most side of (12), i.e. RbIb
2, 

corresponds to the total copper loss of the bundle under the 
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absence of the external magnetic field. Hence, Rb can be 

determined by calculating the total copper loss of the bundle 

when no external magnetic field is applied to the bundle. For 

this purpose, this paper approximates that the ac current 

distribution among the strands in the bundle is the same as the 

ac current distribution in the solid wire with the same diameter 

as the bundle. This imaginary solid wire is assumed to be made 

of the uniform material with the resistivity ρeff defined as 

 

,
2

s
s

s
s

eff RRA






  (13) 

 

where  is the packing factor of the bundle, which is the area 

rate of the copper in the cross-section of the bundle, and As is 

the cross-sectional area of the strand. 

This approximation is consistent with the ac current 

distribution of the strands in the bundle according to the 

following three reasons. Firstly, the solid wire model results in 

the ac current distribution in which the direction of the ac 

current is in parallel to the bundle. Therefore, if the same 

current distribution is assumed for the ac current of the strands 

in the bundle, the ac current of a strand can be automatically 

confined to the strand. (Twisting the strands to form the 1st level 

bundle causes the slight inclination of the strands to the bundle. 

However, this inclination angle of the strand to the 1st level 

bundle is ignored because the diameter of the 1st level bundle is 

far smaller than that of the Litz wire.) 

Secondly, the solid wire model results in an ac current 

distribution of the strands that ensures the ac electric potential 

to be the same at each strand in the cross-section of the solid 

wire. Therefore, the solution automatically meets the implicit 

boundary condition of the Liz wire that all the strands are 

connected in parallel at both ends of the Litz wire. 

Thirdly, the solid wire model results in the same total copper 

loss as the bundle, when the same ac current distribution among 

the strands is assumed in the bundle. In fact, by determining the 

instantaneous strand current is_j of strand j according to 

 

,___ jdensb
s

js iAi


  (14) 

 

where ib_dens_j is the instantaneous ac current density of the solid 

wire model at the point that corresponds to the center of strand 

j. Therefore, the following relations can be obtained:  
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where ib_dens is the instantaneous ac current density of the solid 

wire model, Sb is the cross-section of the bundle, and Ib, Is_j, 

Ib_dens_j, and Ib_dens are the root-mean-square values of ib, is_j, 

ib_dens_j, and ib_dens, respectively. 

Equation (15) indicates that the total ac current flowing 

through the bundle is the same as that in the solid wire model. 

Furthermore, (16) indicates that the total copper loss generated 

in the bundle is also the same as that in the solid copper model. 

 The copper loss of the solid wire model can be analytically 

calculated similarly as in the previous subsection. Hence, Rb can 

be calculated as 
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where αb is the radius of the 1st level bundle, γb is the parameter 

defined as 
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Finally, substituting (6) into (17) yields 
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where ns is the number of the strands contained in a 1st level 

bundle. 

The basic idea of formulating Rb by the solid wire model has 

been proposed in the preceding study [26]. The aforementioned 

discussion is fundamentally the same as this preceding study, 

although there is a slight difference in the definition of the 

effective resistivity ρeff. The preceding study [26] defined ρeff as 

ρeff =ρ/η. However, this paper rather defines ρeff as (13) for 

ensuring the third feature of the analytical solution of the solid 

wire model. This difference, however, may have a subtle effect 

on the calculation result of Rb in many Litz wire because the 

strand is commonly designed to be sufficiently thinner than the 

skin depth and therefore the definitions of [26] and this paper 

 
Fig. 4. Internal magnetic field in Litz wire generated as a result of twisiting.  
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tend to take similar values.  

C. Copper Loss Model of Litz Wire 
Because each twisting process forming the 2nd bundle and the 

Litz wire involve no more than five 1st level bundles and 2nd 

level bundles, respectively, these twisted bundles rotationally 

exchange their position along the Litz wire. Therefore, these 

twisted bundles have the axial symmetry, thus carrying the 

same ac current. Consequently, all the 1st level bundles in the 

Litz wire can be assumed to carry the same ac current. In other 

words, the bundle-level proximity effect is also neglected in the 

2nd level and 3rd level bundles, i.e. the Litz wire. The necessary 

Litz wire length for neglecting the bundle-level proximity effect 

in the 2nd and 3rd level bundles is estimated in the appendix. 

The twisting process generally needs a longer length of the 

subcomponents to be twisted than the product of the twisting 

process. As a result, the strands must have a greater length than 

the Litz wire. This effect occurs at any level of twisting. 

However, the largest scale of twisting tends to mainly 

contribute to the length increase of the strands. Therefore, this 

paper simply considers this effect only for the highest level of 

twisting, i.e. twisting the 2nd level bundles to form the Litz wire, 

and neglects the effect for the lower levels of twisting, i.e. 

twisting the strands to form the 1st level bundle and twisting the 

1st level bundles to form the 2nd level bundle. 

Because of the rotational symmetry among the 2nd level 

bundles, the 2nd level bundles are assumed to have a constant 

length ratio m to the Litz wire. Meanwhile, the strands and the 

1st level bundles are approximated to have the same length as 

the 2nd level bundles. Hence, all the 1st level bundles (and 

therefore all the strands) are approximated to have the same 

length ratio m to the Litz wire. Consequently, the total copper 

loss PL of the Litz wire can be expressed as 

 

,
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 (20) 

 

where k is the index of the 1st level bundles contained in the Litz 

wire, IL is the root-mean-square value of iL, i.e. the ac current of 

the Litz wire, n1 is the number of the 1st level bundles in a 2nd 

level bundle, n2 is the number of the 2nd level bundles in a Litz 

wire, and Hskj and Hs//kj are the root-mean-square value of the 

local ac magnetic field hs and hs//, respectively, at the strand j 
in the 1st level bundle k. (Because of the symmetry among the 

1st level bundles in a 2nd level bundle and the symmetry among 

the 2nd level bundles in the Litz wire, the same value of m is 

assumed to all the 1st level bundles.) 

Equation (20) still contains local parameters Hskj and Hs//kj, 

which are dependent on the position of the 1st level bundle and 

the strand. Therefore, from this subsection hereafter Σk,jHskj 

and Σk,jHs//kj are formulated by the global parameters that 

specify the Litz wire.  

As a result of twisting, the strands generally have a slight 

inclination in the Litz wire. This inclination causes the 

derivation of the local magnetic field Hskj and Hs//kj 

complicated. For example, the ac current flowing in a bundle 

forms the circulating current around the center of the bundle as 

a result of the twisting. This circulating current generates the 

magnetic field parallel to the bundle, which does not appear 

without twisting. 

This effect occurs at any level of twisting. However, 

considering this effect at all levels may lead to extremely 

complicated calculations. Therefore, this paper again simply 

considers the effect only for the highest level of twisting and 

neglects the effect for the lower levels of twisting. The reason 

for this approximation is that the largest scale of the twisting 

mainly causes the inclination angle of the strands. Hence, all the 

strands are assumed to be twisted to form the 1st level bundle 

with a negligible inclination angle to this bundle; and similarly, 

all the 1st level bundles are assumed to be twisted to form the 

2nd level bundle with a negligible inclination angle to this 2nd 

level bundle. Nonetheless, all the 2nd level bundles are twisted 

with a constant inclination angle to the Litz wire. As a result, 

all the strands contained in the Litz wire are assumed to be 

inclined to the Litz wire at the same angle θ as the 2nd level 

bundles. 

The magnetic field inside the Litz wire can be expressed as 

the sum of the instantaneous external ac magnetic field hL and 

the instantaneous internal ac magnetic field hint generated by the 

ac current flow through the strands of the Litz wire as well as 

the eddy current generated inside these strands. However, this 

paper simply approximates hint to be the magnetic field 

generated by the uniform ac current distribution in the Litz wire 

cross-section because all the 1st level bundles carry the same ac 

current. This uniform ac current distribution assumes the ac 

current density vector inclined with respect to the Litz wire at 

the constant inclination angle θ because of the assumption of 

the constant inclination of the 1st level bundles with respect to 

the Litz wire. 

Certainly, this approximation of hint neglects the 

inhomogeneity of the ac current distribution inside a 1st level 

bundle at high frequency, which is modeled as the ac current 

distribution of the solid wire model, introduced in the previous 

subsection. Furthermore, this approximation also neglects the 

inhomogeneity of the ac current distribution inside a strand due 

to the strand-level skin effect as well as the eddy current 

generated inside the strand. However, these two types of 

inhomogeneity have a far smaller scale than the Litz wire cross-

section. Therefore, they can scarcely affect hint at the point far 

more distant from the 1st level bundle or the strand than the scale 

of the inhomogeneity. Consequently, these two types of 

inhomogeneity cause the smaller scale of fluctuations in hint 

compared with the scale of the Litz wire cross-section. 

Therefore, this paper regards these small-scaled fluctuations to 

be ignorable when compared with the large-scaled magnetic 

field generated by the uniform current distribution among all 
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the 1st level bundles. These assumptions are later validated by 

the good agreement with experimental results. 

Under this approximation, the internal magnetic field hint can 

be expressed as the sum of the axially symmetric magnetic field 

hint in perpendicular to the Litz wire, and the axially symmetric 

magnetic field hint// in parallel to the Litz wire, as illustrated in 

Fig. 4. The absolute values of hint and hint// are 

 

,
2 2 L
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h  (21) 

 
,

tan
2// L
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h  (22) 

 

where αL is the radius of the Litz wire, r is the distance from the 

center of the Litz wire, and θ is the inclination angle of the 1st 

level bundles to the Liz wire. 

All the strands are assumed to be inclined to the Litz wire at 

the constant angle θ. Therefore, if hskj and hs//kj denote the 

instantaneous local ac magnetic field hs and hs// at the strand j 
in the 1st level bundle k, the square of the absolute values of hskj 

and hs//kj can be obtained as  
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 (24) 

 

wherekj is the angle between hL and the vector in the Litz wire 

cross-section drawn from the center of the Litz wire to the 

center of strand j of the 1st level bundle k. Therefore, the 

summation of (23) and (24) over all the strands in the Litz wire 

can be obtained by approximating the summation by the area 

integration.  
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where ntotal is the total number of the strands in the cross-section 

area of the Litz wire (Hence, ntotal=nsn1n2), AL is the cross-

section area of the Litz wire, SL is the cross-section of the Litz 

wire. 

Substituting (21) and (22) into (25) and (26) yields 
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Consequently, the 2nd and 3rd terms of the right-most side of 

(20) can be obtained as 
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Because all the 1st level bundles are regarded to have a 

constant inclination angle θ to the Litz wire, the following 

relation can be obtained between θ and m: 

 

.
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1


m  (31) 

 

Finally, the analytical copper loss model of the Litz wire is 

obtained by substituting (19), (29), (30), (31) into (20):  

 

   

 

  .
1

24

11

2
2

212

11

3

1

2
4

22

22

22

23

2

2

12
212







 











































 
















m
mIHnK

Im
m

m

m
mHnK

nn
IFF

n
nmnP

L

LL
totals

L

L

L
totals

L
bs

ss
L

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

8 

   

 

  .
4

1

4

3
4

6

11

6

13

3

4

8

4

2

2
3

22

2

2

Lstotal

L
L

stotal

Lbs
totals

L

H
m

mKn

I
m

mmKn

IFF
n

mP







 
























 (32) 

 

As it can be seen in (32), the copper loss of the Litz wire has 

the form of PL=RLIL
2+GLHL

2, where RL and GL are the copper 

loss coefficients. These coefficients are therefore obtained as 
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As we have seen, (33) and (34) were derived directly from 

the copper loss of the strand and the 1st level bundle, i.e. (7), (8), 

and (17), based on the two assumptions: 

1. All the 1st level bundles carry the same ac current; 

2. Only the highest level of twisting contributes to the 

inclination angle θ as well as the length increase of the 

1st level bundles. 

Therefore, (33) and (34) can be applied to the Litz wire with 

any levels of twisting greater than 2 because these two 

assumptions are not restricted by the number of twisting levels.  

D. Estimation of Copper Loss Coefficients Using Directly 
Measurable Parameters 

Table I lists the parameters contained in the coefficients RL 

and GL obtained in expressions (33) and (34). Parameters η, αb, 

ω, and μ0 do not explicitly appear in (33) and (34). However, 

these parameters are indirectly included in γs and γb, defined in 

(9) and (18), for characterizing the ac current distribution inside 

the strand and the 1st level bundle. Among the Litz wire 

parameters listed in Table I, the strand radius αs, the Litz wire 

radius αL, and the number of strands ntotal are commonly given 

by the Litz wire manufacturer or can be otherwise 

straightforwardly measured with basic instruments. However, 

the other parameters, the packing factor η, the radius of the 1st 

level bundle αb, and the length ratio of the 1st level bundle to the 

Litz wire m are difficult to be directly measured and therefore 

need estimation based on the directly measurable parameters 

for practical application of the copper loss model of the Litz 

wire. This subsection discusses the estimation method of these 

three parameters. 

The packing factor η is introduced in subsection II.B as the 

ratio of the copper in the cross-section area of the 1st level 

bundle. However, this paper simply approximates η as the ratio 

of the copper in the cross-section area of the Litz wire because 

the strands are commonly distributed with the uniform density 

in the Litz wire cross-section in actual Litz wires. Under this 

approximation, η can be estimated as  
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Next, the radius of the 1st level bundle αb is difficult to be 

physically determined in actual Litz wires because the 1st level 

bundles are commonly deformed in the twisting process. 

However, because the strands are distributed uniformly in the 

Litz wire cross-section, the cross-section area of the 1st level 

bundle can be calculated by dividing the cross-section area of 

the Litz wire by the number of the 1st level bundles contained 

in the Litz wire. Therefore, this paper simply approximates αb 

as the radius of the circle area that occupies the same area as the 

cross-section of the 1st level bundle. Under this approximation, 

αb can be estimated as 
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Finally, parameter m is the length ratio of the 1st level bundle 

to the Litz wire. However, direct measurement of this parameter 

TABLE I 

PARAMETERS CONTAINED IN INITIAL VERSION OF PROPOSED COPPER LOSS 

MODEL DERIVED IN SUBSECTION II.C 

 

 

TABLE II 

PARAMETERS IN FINAL VERSION OF PROPOSED COPPER LOSS MODEL 

AFTER USING ESTIMATION 

 

Symbol Meaning

η Packing factor of 1st level bundle

αs Radius of strand

αb Radius of 1st level bundle

αL Radius of Litz wire

n total Total number of strands in Litz wire

m Length ratio of 1st level bundle to Litz wire

ω Angular frequency

μ
0

Permeability of air

ρ Resist ivity of copper

Litz wire

Parameters

Physical

Parameters

Symbol Meaning

αs Radius of strand

αL Radius of Litz wire

n s Number of strands in 1st level bundle

n total Total number of strands in Litz wire

l L Length of Litz wire

R dc DC resistance of Litz wire

ω Angular frequency

μ
0

Permeability of air

ρ Resistivity of copper

Litz wire

Parameters

Physical

Parameters
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is difficult because the measurement of the length of each 1st 

level bundle needs disassembling the Litz wire. For estimating 

m without disassembling the Litz wire, this paper utilizes the 

measurement result of the dc resistance Rdc of the Litz wire 

under consideration.  

Because the dc current is uniformly distributed in all the 

strands, the length of the strand ls can be estimated as  

 

..
2

dc
stotal

dc
stotal

sdcs
stotal

RnRAnlRl
An 





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
 (37) 

 

Noting that parameter m is also assumed to be the length ratio 

of the strand to the Litz wire, m can be estimated by measuring 

the length of Litz wire lL as 

 

.
L

s
l
lm   (38) 

 

 To summarize, using the estimation presented in this 

subsection, the loss coefficients RL and GL can be calculated by 

the parameters listed in Table II. Consequently, the copper loss 

model of the Litz wire derived in this paper can be expressed 

by directly measurable parameters of the Litz wire and the 

physical constants. 

E. Utilization of the Proposed Model for Copper Loss 
Estimation of Litz Wire Coil in Magnetic Devices 

The copper loss of model, i.e. (33) and (34), directly includes 

the proximity effect caused by the strands in the adjacent part 

of the Litz wire under consideration. Meanwhile, the proximity 

effect caused by the other wires and the distant part of the same 

Litz wire, as well as and the magnetic field generated by other 

elements, is modeled using the external magnetic field HL. The 

reason for this indirect modeling is that the magnetic field 

caused by the other wires and the distant part of the same Litz 

wire, as well as and other magnetic elements, is dependent on 

the magnetic structure surrounding the Litz wire coil. However, 

if the external magnetic field is given, the copper loss model of 

(33) and (34) can be utilized for copper loss estimation of the 

Litz wire coil in various magnetic devices. 

Equations (33) and (34) give the Litz wire copper loss per 

length unit at a local point in the magnetic device. Therefore, 

the total copper loss PL_total of the Litz wire coil in a magnetic 

device can be formulated as 
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22

22
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C
LLLLL
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HlGIlR

dsHGIlRdsPP



 
 (39) 

 

where ∫C indicates the line integral along the Litz wire of the 

coil, ds is the line element along the Litz wire, LH  is the root-

mean-square of the external magnetic field HL, defined as 
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C
L

L
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l
H  (40) 

 

The root-mean-square external magnetic field LH  is 

dependent on the magnetic structure, in which the Litz wire is 

incorporated. In some simple coil structures, as exemplified in 

the next section, LH  can be analytically determined. However, 

in more complicated structures as in many practical magnetic 

devices, numerical magnetic analysis may be needed to 

calculate LH . Nonetheless, this does not deny the benefit of 

the proposed analytical copper loss model of the Litz wire. The 

numerical calculation of LH  needs the magnetic analysis 

covering the scale greater than the Litz wire diameter, whereas 

the direct numerical calculation of the Litz wire copper loss will 

need the magnetic analysis covering the scale smaller than the 

strand diameter to calculate the eddy current flow inside the 

strand. Therefore, even with the numerical calculation of LH , 

the proposed model can simplify the copper loss prediction and 

reduce the necessary calculation resource. 

III. EXPERIMENT 

Two experiments were carried out to verify the proposed 

copper loss model of the Litz wire. In these experiments, the ac 

resistance of various Litz wires was evaluated and compared 

with the theoretical values, which are analytically calculated 

using the loss coefficients RL and GL from the parameters listed 

in Table II. Specifications of these experimental Litz wires are 

presented in Table III. These experimental Litz wires were 

formed with two or three levels of twisting. The bundle-level 

TABLE III 

SPECIFICATIONS OF EXPERIMENTAL LITZ WIRES 

 

Parameter Wire A Wire B Wire C Wire D Wire E Wire F Wire G Wire H Wire I

αs  [mm] 0.025 0.025 0.025 0.355 0.355 0.0355 0.040 0.060 0.060

αL  [mm] 0.82 1.12 1.13 0.90 1.35 1.40 1.78 0.87 1.15

n s 24 40 42 18 32 40 40 21 36

n total 600 1000 1050 270 800 800 1000 105 180

l L  [m] 3.01 3.01 2.95 3.01 3.00 2.95 3.01 3.01 3.01

R dc  [mΩ] 47.0 28.7 26.7 52.3 17.5 17.7 11.1 46.2 26.7

η 0.56 0.50 0.52 0.42 0.55 0.51 0.51 0.51 0.49

m 1.049 1.068 1.059 1.062 1.056 1.074 1.059 1.041 1.032

η and m  are estimated parameters based on (35) and (38), respectively.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

10

proximity effect in these Litz wires was estimated to have a 

neglectable effect under the experimental conditions according 

to the discussion in the appendix. 

The first experiment was targeted at evaluating the 

coefficient RL. In this experiment, the Litz wire to be tested was 

wound on the core-less bobbin with the diameter of 100 mm to 

form a non-inductive solenoid coil, which was made of 4 

clockwise turns and 4 counter-clockwise turns, as shown in Fig. 

5(a). Then, the ac resistance of the non-inductive solenoid coil 

was measured using the LCR meter (NF Corp. ZM2376 with 

attachment ZM2363) to obtain the ac resistance per unit of 

length Rac1 of the wire of this solenoid coil. The frequency 

region for the measurement of Rac1 was 1 kHz–700 kHz for wire 

G and 1 kHz–2 MHz for the other experimental Litz wires, 

because wire G was predicted to violate the condition for 

neglecting the bundle-level proximity effect in the 1st level 

bundle at higher frequencies than 700kHz.  

Thanks to this configuration, the total external field is 

cancelled. The wire of the non-inductive solenoid coil can be 

approximated to be free from external magnetic field HL 

because the non-inductive solenoid coil does not have 

magnetomotive force. Therefore, Rac1 can be analytically 

predicted as 

 

.. 1
22

1_ LacLLLLLactotalL RRIlRIlRP   (41) 

 

 The second experiment was targeted at evaluating the 

coefficient GL. According to (39), the copper loss of the Litz 

wire coil is the sum of two terms: One is RLlLIL
2, which is the 

loss characterized by RL, and the other is 
2

LLL HlG , which is 

the loss characterized by GL. The former loss can be estimated 

using RL, which is evaluated in the first experiment. Therefore, 

GL can be evaluated from the ac resistance of an arbitrary coil 

of the Litz wire as far as LH  can be estimated. 

Estimation of LH  is complicated in many magnetic device 

structures. Therefore, for simplifying this experiment, the 

coreless toroidal coil was adopted because LH  for this coil 

structure can be analytically derived in a simple formula. 

 In this experiment, the Litz wire to be tested was uniformly 

wound on the coreless toroidal coil with 22 turns, as shown in 

Fig. 5(b). The inner and the outer diameter of the toroidal coil 

was 76 mm and 86 mm, respectively; the height was 50 mm. 

Then, the ac resistance of the toroidal coil was measured using 

the LCR meter to obtain the ac resistance per unit of length Rac2 

of the wire of this toroidal coil. The frequency region for 

measurement of Rac2 was 1 kHz–700 kHz for wire G and 1 kHz–

2 MHz for the other experimental Litz wires. Finally, the 

measured difference between Rac1 and Rac2 was compared with 

the theoretical prediction to evaluate the appropriateness of the 

coefficient GL. The difference between Rac1 and Rac2 is the 

 
Fig. 6. Comparison results between the theoretically predicted and 

experimentally measured ac resistance per unit of length of wire of the non-

indcutive solenoid (Rac1).  
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Fig. 5. Photographs of the experimental setup.  
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copper loss caused by the magnetic field generated in the 

toroidal coil. Because the difference Rac2Rac1 is small in thin 

wires, this experiment evaluated Rac2Rac1 for wires G-I. 

 The toroidal coil generates the uniform ac magnetic field in 

perpendicular to the wire in the inner side of the coil. If Htoroid 

denotes the root-mean-square of the ac magnetic field inside the 

toroidal coil, Htoroid can be calculated according to Ampere’s 

law as  

 

,
2 eq

L
toroid r

NIH


  (42) 

 

where N is the number of turns wound on the toroid, req is the 

representative distance from the center of the toroid to the coil. 

This experiment adopted req = 40.5 mm, which equals to the 

average of the inner and outer radius of the coreless toroidal coil. 

The ac magnetic field outside the toroidal coil is zero. 

Therefore, the part of the Litz wire that faces the outside of the 

toroidal coil has the zero ac magnetic field, whereas the part 

that faces the inside of the toroidal coil has the ac magnetic field 

Htoroid. However, this experiment approximates that the Litz 

wire is applied with the uniform representative external ac 

magnetic field, whose root-mean-square value equals to the 

root-mean-square average over the Litz wire. Consequently, 

LH  can be expressed as follows by simply approximating that 

the ac magnetic field increases linearly from the outer side to 

the inner side of the toroidal coil:  

 

,
32 eq

L
L r

NIH


  (43) 

 

 By utilizing (43), the theoretical value of Rac2 can be 

calculated as  
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 (44) 

 

Consequently, the difference between Rac1 and Rac2, i.e. 

Rac2Rac1, can be theoretically predicted as 

 

.
12 22

2

12

eq
Lacac r

NGRR


  (45) 

 

Figure 6 shows the evaluation results of Rac1. The maximum 

estimation error rate was 28% observed in wire I at 200 kHz. 

However, the proposed model well predicted the frequency 

dependence of different Litz wire constructions. Consequently, 

the result supported the model of RL, derived as (33).  

Figure 7 shows the evaluation result of Rac2Rac1. Because 

the measured Rac2Rac1 was extremely small at low frequencies 

below 200 kHz, as is also expected from the proposed Litz wire 

copper loss model, Fig. 7 presents the results for the frequencies 

higher than 200 kHz. The maximum estimation error rate for 

Rac2Rac1 was 50% observed in wire I at 1 MHz. However, as it 

can be seen in Fig. 7, the frequency dependence predicted by 

the proposed model also agreed well with the experimental 

result in both of the two experimental Litz wires, although 

drastic approximation was applied for calculating Rac2Rac1. As 

a result, Fig. 7 supported the model of GL, derived as (34).  

Consequently, these experiments supported the proposed 

copper loss model of the Litz wire. 

IV. CONCLUSIONS 

 The copper loss prediction of the Litz wire is important for 

the design optimization of the Litz wire. However, the Litz wire 

has a complicated structure with multi-level twisting, which 

hinders the analytical and numerical analysis of the copper loss. 

The preceding studies have long accumulated analytical 

insights for the copper loss modeling of the strands and the 

bundle of twisted strands. However, there is currently no 

analytical model available that allows the designer to calculate 

copper loss by using easily obtained constructive parameters. 

Therefore, this paper constructed an analytical copper loss 

model of the Litz wire, which is formulated only with 

parameters that can be measured by basic testing instruments.  

Based on these preceding insights, the proposed model 

introduced the frequency-dependent effective resistivity of the 

Litz wire for estimation of the local ac current distribution 

inside the Litz wire, which is affected by the bundle structure. 

Furthermore, the proposed model includes analysis of the 

proximity losses of strands caused by the parallel field due to 

twisting the strands. 

 Appropriateness of the proposed copper loss model was 

experimentally evaluated by comparing the ac resistance 

between the measurement and the analytical prediction. The 

result revealed the successful prediction of the frequency 

dependence of the ac resistance of the commercial Litz wires, 

supporting the proposed copper loss model. 

 
Fig. 7. Comparison results between the theoretically predicted and 

experimentally measured Rac1Rac2, which is the ac resistance difference  per 

unit of length of wire between the toroidal coil and the non-inductive 

solenoid coil.  
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APPENDIX 

A. Estimation of Litz Wire Length for Neglecting Bundle-
Level Proximity Effect in 1st Level Bundle 

The bundle-level proximity effect deteriorates the 

rotationally symmetrical ac current distribution among the 

strands. The deterioration of this current distribution is caused 

by the difference of the voltage induction, which is caused by 

the external ac magnetic field applied to the 1st level bundle, 

among the strands in the 1st level bundle. For analyzing this 

phenomenon, a pair of strands is considered as shown in Fig. 

8(a). Owing to the twisted structure of the bundle, the pair of 

the strands has the double helix structure as shown in Fig. 8(b). 

According to Faraday’s law, the difference of the voltage 

induction between these two strands equals to the time 

derivative of the magnetic flux linkage with the closed-loop 

path formed of these strands. Because the two ends of the 

strands are connected at the Litz wire ends, the voltage 

difference generates circulating ac current, which deteriorates 

the rotationally symmetrical ac current distribution. 

Considering the external magnetic field in parallel to the 

bundle, this closed-loop path does not have total flux linkage 

with this field. This indicates that the bundle-level proximity 

effect does not occur for the external field applied in parallel to 

the bundle. Therefore, the external field applied perpendicular 

to the bundle is analyzed hereafter. 

Because of the double helix structure of the pair of strands, 

the flux linkage equals to zero and therefore the bundle-level 

proximity effect does not occur if the bundle length equals to 

the integral multiplication of the twisting pitch. However, if the 

bundle length deviates from the accurate integral multiplication 

of the twisting pitch, the difference of the voltage induction 

between the two strands causes the circulating ac current, which 

appears as the bundle-level proximity effect. 

The worst case, i.e. the condition when the maximum voltage 

difference occurs, takes place when two strands are located at 

the two opposite sides of the outer periphery of the bundle, as 

strand A and B in Fig. 8(a), and the bundle length equals to the 

integral multiple and half of the twisting pitch, as in Fig. 8(b). 

Therefore, if vdiff_max denotes the maximum difference of the 

voltage induction in a pair of strands, vdiff_max can be estimated 

as follows, considering that the trajectory of these strands along 

the Litz wire forms the circle in the bundle cross-section as 

shown in Fig. 8(a):  

 

,42
2

14
_0__0_

_0

_2/1max_

bextbpitchbbextbpitchb

bext
bpitchdiff

HflHfl

dt
Hd

Av









 (46) 

 

where Hext_b is the root-mean-square value of the external ac 

magnetic field applied perpendicular to the bundle; A1/2pitch_b is 

the projected area of the region surrounded by two strands A 

and B of the 1/2 twisting pitch length with respect to a plane 

perpendicular to the external magnetic field, as defined in Fig. 

8(b); αb is the radius of the bundle cross-section; lpitch_b is the 

twisting pitch length of the strands to form the 1st level bundle; 

f is the frequency of the external magnetic field; μ0 is the 

permeability of the air. 

Therefore, if Icir_b denotes the ac current circulating between 

these two strands in the worst case, Icir_b can be estimated as 

 

,
2

4 _0_

_
ss

bextbpitchb
bcir lR

Hfl
I


  (47) 

 

where Rs is the ac resistance of the strand given in (6), and ls is 

the strand length in the bundle. For neglecting the bundle-level 

proximity effect, Icir_b must be sufficiently smaller than the non-

circulating ac current flow in the strand. The non-circulating ac 

current in the strands is affected by the bundle-level skin effect. 

However, if the average strand current in the Litz wire is taken 

as the representative non-circulating strand current for 

simplifying the discussion, this requirement can be expressed 

as 

 

,
2 _0_

_
total

L

s

b

ss

bextbpitchb
bcir n

I
n
I

lR
Hfl

I 


  (48) 

 

where Ib and IL are the ac current flowing through the 1st level 

bundle and the Litz wire, respectively; ns and ntotal is the number 

of strands contained in the 1st level bundle and the Litz wire, 

respectively. (Because the bundle-level skin effect results in the 

larger strand current than the average strand current at the 

periphery of the bundle, the requirement in (48) is stricter than 

the actual requirement.) 

The copper loss of the strands is proportional to the square of 

the ac current flowing through the strands. Therefore, this 

circulating ac current Icir_b should be smaller than 1/3 of the 

average strand current IL/ntotal, if the copper loss increase caused 

by Icir_b is less than approximately 10% of the total copper loss 

in the pair of the strands. Therefore, (48) would be expressed 

more specifically as follows in the practical point of view:  

 

 
Fig. 8. Condition when the maximum voltage difference occurs between a 

pair of strands located in a 1st level bundle.  
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 (49) 

 

By approximating that the largest scale of twisting tends to 

mainly contribute to the length increase of the strands, the 

strand length ls can be regarded to be the same for all the strands, 

as discussed in subsection II.C. Therefore, the Litz wire length 

lL can be expressed as lL=ls/m where m is the length ratio of the 

1st level bundle to the Litz wire. Consequently, the necessary 

Litz wire length for neglecting the bundle-level proximity effect 

can be obtained from (49) as 

 

L

bext

s

bpitchbtotal
L I

H
mR

fln
l _0_6 
  (50) 

 

Finally, by utilizing (36), (50) can be rewritten as 

 

L

bext

s

bpitchL
stotalL I

H
mR

fl
nnl _0_

6


  (51) 

 

In the Litz wire structure, Hext_b is the sum of the magnetic 

field HL applied from outside the Litz wire and the internal 

magnetic field generated inside the Litz wire. Therefore, the 

former is dependent on the magnetic structure surrounding the 

Litz wire, whereas the maximum value of the latter is 

approximately given as IL/2παL at the outer periphery of the Litz 

wire, according to Ampere’s law. Therefore, in the worst case 

where the two fields reinforce each other, Hext_b is given as 

 

.
2

_
L

L
Lbext

IHH


  (52) 

 

In section III, the Litz wires with 3 m length, used in the 

experiment, were all confirmed to satisfy the requirement of 

(51) in the experimental frequency region. For calculation of 

Hext_b, HL=0 was adopted in the first experiment, whereas HL 

given in (43) was adopted in the second experiment. 

B. Estimation of Litz Wire Length for Neglecting Bundle-
Level Proximity Effect in 2nd and 3rd Level Bundles  

The necessary Litz wire length for neglecting the bundle-

level proximity effect in the 2nd and 3rd level bundles can be 

calculated according to a similar discussion as the previous 

subsection. The magnetic field parallel to the bundle is again 

not considered according to the same reason as the previous 

subsection. The slight difference is that the distance between a 

pair of the bundles to be twisted in the worst case, i.e. the pair 

with the maximum distance, equals to the radius of the 

produced bundle because of the small number of bundles to be 

twisted, as shown in Fig. 9. (The distance of the strands in a 1st 

level bundle is 2αb in the worst case.) Therefore, if Icir_c and Icir_L 

denote the ac current circulating between the pair of the two 

bundles to be twisted in the 2nd level bundle and 3rd level bundle, 

i.e. the Litz wire, respectively, Icir_c and Icir_L can be expressed 

as 
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 (53) 

 

where αc is the radius of the 2nd level bundle; lpitch_c and lpitch_L 

are the twisting pitch length of the 1st level bundles to form the 

2nd level bundle and that of the 2nd level bundles to form the 3rd 

level bundle, respectively; Hext_c and Hext_L are the root-mean-

square value of the perpendicular external ac magnetic field 

applied to the 2nd and 3rd level bundles, respectively; Rc is the 

ac resistance of the 2nd level bundle; lb and lc is the length of the 

1st level and 2nd level bundles, respectively. 

By approximating that lb=lL/m and lc=lL/m according to the 

same reason as in the previous subsection, the necessary Litz 

wire length for neglecting the bundle-level proximity effect can 

be obtained as (54) for the 2nd level bundle and (55) for the 3rd 

level bundle. 
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 (54) 

 

where n1 is the number of the 1st level bundles in a 2nd level 

bundle and n2 is the number of the 2nd level bundles in a Litz 

wire. 
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Parameter αc can be estimated as the radius of the circle area 

that occupies the same area as the cross-section of the 2nd level 

bundle. Furthermore, Rc is approximated as Rb/n1 to simplify 

the analysis. Then, the necessary Litz wire length for neglecting 

the bundle-level proximity effect is finally formulated as (56) 

 
Fig. 9. Pairs of 1st level bundles and 2nd level bundles with the maximum 

distance in the 2nd and 3rd level bundles, i.e. the Litz wire, respectively.  
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for the 2nd level bundle and (57) for the 3rd level bundle. 
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As for the pair of the 1st level bundles in a 2nd level bundle, 

the center of the pair in the worst case is always located at the 

distance of 1/2αL from the center of the Litz wire, as shown in 

Fig. 9. Meanwhile, a pair of the 2nd level bundles in a 3rd level 

bundle, i.e. the bundle of the highest level, does not interlink 

with the internal magnetic field because hint has the rotational 

symmetry in the Litz wire cross-section and hint// is in parallel 

to the pair. Therefore, Hext_c and Hext_L are approximately 

calculated as 

 

.,
4

__ LLext
L

L
Lcext HHIHH 


  (58) 

 

The necessary Litz wire length for neglecting the bundle-

level proximity effect in Litz wires with twisting levels other 

than 3 can be calculated according to the similar discussion. For 

example, for Litz wires with 2 twisting levels, the necessary 

condition should be considered only for the 2nd level bundle. As 

a result, the necessary length can be calculated by substituting 

n2=1 and Hext_c=HL to (56). The reason for substituting Hext_c=HL 

is that the 2nd twisting is the highest level in these wires.  

In section III, the Litz wires with 3-m length, used in the 

experiment, were all confirmed to satisfy the requirement of 

(56) and (57) in the experimental frequency region. For 

calculation of Hext_c and Hext_L, HL=0 was adopted in the first 

experiment, whereas HL given in (43) was adopted in the second 

experiment. 
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