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Abstract—A number of analytical models for switched 

reluctance motors have been proposed to promote development 

of control techniques that can alleviate the torque and source 

current ripples. However, these models can suffer from a large 

database of the nonlinearity as well as complicated derivation 

process of the torque and the voltage-current relation. The 

purpose of this paper is to propose a simple practical behavior 

model with small database and straightforward derivation of the 

torque and the voltage-current relation. The proposed model has 

a simple database of the magnetic energy as a matrix. The flux 

linkage and the electrical angle are chosen as the state variables. 

Along with theoretical formulation of the model, this paper 

presents a practical method of the model construction. In 

addition, experiments successfully predicted both torque and 

current waveforms, supporting appropriateness of the proposed 

model. 

Keywords—switched relutance motor; analytical model; 

magnetic energy; Lagrangian 

I.  INTRODUCTION 

Switched reluctance motors (SRMs) are attracting 
increasing attention for their robust mechanical construction 
and cost-effectiveness [1]–[3], [5], [6]. However, their 
industrial applications can be limited by large torque ripple and 
source current ripple caused by severe mechanical and 
electrical nonlinearity [4]–[6]. Therefore, motor control 
techniques are energetically studied to alleviate these ripples. 

Development of control techniques generally requires 
analytical motor models as the theoretical basis. Particularly, 
simple models are preferable for discovering simple solutions. 
As for permanent magnet motors, simple linear motor models 
have been widely utilized for practical applications [7]–[10]. 
On the other hand, analytical motor models for SRMs tend to 
be difficult because they are required to model the nonlinearity. 

 This issue is addressed by a number of analytical models 
proposed for SRMs [11]–[23]. These models are proposed to 
minimize the database of the nonlinearity. Many of these 
models [11]–[21] regard the phase current as the state variable, 
and formulates the flux-linkage as a function of the phase 
current and the electrical angle. However, this type of 
formulation may cause difficulties in analyzing real time 
behavior of SRMs, because the voltage source inverters are 

generally utilized for the motor drive, and therefore the flux 
linkage is directly determined according to the inverter output 
rather than the phase current.  

Another approach is to choose the flux linkage as the state 
variable. For example, [22][23] formulate the phase current as 
the function of the flux linkage and the electrical angle. 
Because the flux linkage can be more convenient as the state 
variable, this approach may be promising for practical uses. In 
addition, as shown in this paper, mechanical and electrical 
behavior of SRMs can be conveniently derived by the magnetic 
energy formulated as a function of the flux linkage and the 
electrical angle. Hence, SRMs can be effectively modeled 
based on the magnetic energy. 

The purpose of this paper is to show how the magnetic 
energy can construct a simple analytical model for SRMs. 
Certainly, the modeling theory of the proposed model is similar 
to that proposed in [23]. However, calculation of the torque in 
[23] may be complicated because it requires the following two 
steps: 1. All of the phase current is integrated with respect to 
the flux linkage; 2. The result is differentiated with respect to 
the mechanical angle. As shown in subsection II.A, calculation 
of the torque based on the magnetic energy can be slightly 
convenient because it only needs differentiation with respect to 
the mechanical angle. In addition, this paper improved the 
parameter extraction method for the proposed model as 
discussed in Subsection II.C. 

This paper derives the basic theory of the proposed model 
using Lagrangian dynamics. Lagrangian dynamics has been 
widely applied to mechanical systems. However, recent studies 
[24]–[34] showed that it can be also applied to power 
electronics. Particularly, [34] showed that Lagrangian 
dynamics can analyze nonlinear electrical and mechanical 
characteristics of SRMs. Therefore, Lagrangian dynamics can 
be expected to offer convenient basis to the modeling theory of 
SRMs. 

The following discussion consists of four sections. Section 
II presents the modeling theory as well as the parameter 
extraction method for the proposed model. Section III presents 
the experimental verification results of the proposed model. 
Finally, Section IV gives conclusions.  
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II. PROPOSED MODEL 

A. Basic Theory of Lagrangian SRM Model 

Basic theory of the proposed model can be derived 
according to the Lagrangian model of SRMs [34]. As shown in 
literature [24]–[34], the Lagrangian model is configured as a 
scalar function called Lagrangian, which has the same 
dimension as the energy.  

For convenience, we assume the three-phase concentrated 
winding SRM as shown in Fig. 1. The motor is assumed to 
have multiple rotor pole pairs, and each rotor pole pair has as 
many stator poles as the phases. Hence, each phase consists of 
series-connection of as many windings as the rotor pole pairs. 
All windings belonging to phase U, V, and W is assumed to 
have the same number of turns N.  

Let LM be the Lagrangian of the motor. According to [34], 
LM can be defined as 
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where I is the moment of inertia; θM is the mechanical angle; qU, 
qV, and qW are the time integration of the current of phase U, V, 

and W, respectively; φU, φV, and φW are the sum of the flux 
interlinked with the windings in phase U, V, and W, 
respectively; E is the magnetic energy of the motor. The dot 

over a variable indicates its time derivative. Hence, 
WVU

qqq &&& ,,  

are the phase current. 

Next, we apply a simple coordinate transformation. We 
introduce the electrical angle θE and the flux linkage λU, λV, and 
λW of phase U, V, and W, defined as 
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where P is the number of the rotor poles. 

Substituting (2) into (1) yields 
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Now, we consider an arbitrary system including the SRM 
under consideration. We denote the Lagrangian and the 
dissipation function [29][35][36] of the system as LA and DA, 
respectively. In addition, we consider Lagrangian LʹA in which 
contribution of the SRM is omitted. Hence, LA=LʹA+LM. 
Because λU, λV, and λW are not contained outside the motor, λU, 
λV, and λW are not contained in LʹA and DA. Hence, Euler-
Lagrange equation [29][35][36] of LA and DA with respect to λU, 
λV, and λW yields ∂LM/∂λU=0, ∂LM/∂λV=0, and ∂LM/∂λW=0, 
respectively. As a result, we obtain 
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Note that (4) can be obtained for any arbitrary system. Hence, 
(4) gives definition of the phase current. 

In addition, the torque τ is defined as the generalized force 
[37] with respect to θM. Hence, we obtain 
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Equations (4) and (5) indicate that both the phase current 
and the torque can be obtained as a function of the flux linkage 
and the electrical angle by partial derivative of the magnetic 
energy. Because the flux linkage is the time integration of the 
voltage applied to the phase windings, the magnetic energy 
suffices to define the mechanical and electrical behavior of the 
SRM. 

B. Modeling Theory 

This subsection constructs the modeling theory based on 
the basic theory discussed in the previous subsection. 
Specifically, the magnetic energy is formulated as a function of 
the flux linkage and the electrical angle. In this paper, we 
neglect the magnetic coupling between the phase windings, for 
convenience. Because of the geometrical symmetry between 
the phases, we can express the magnetic energy as 
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where Eʹ is the magnetic energy contributed from phase U. 

Magnetic energy Eʹ has dependency on the flux linkage λU 
and the electrical angle θE. If we set zero of θE at the aligned 
position of phase U, we can approximate Eʹ as 
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Fig. 1. Example of a three-phase concentrated-winding SRM. 
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where n is a natural number and M1, M2, … are Fourier cosine 
coefficients as function of λU. 

Then, M1, M2, … are approximated using Taylor expansion 
as 
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where k is an arbitrary number between 1 and n. Note that 
right-hand side of (8) does not have a term of the first order of 
λU because the phase current should be zero at λU=0. 

As a result, we can model the magnetic energy in a matrix 
form as 
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where c(θE) is a vector defined as ct(θE)≡[1, cosθE, cos2θE, …, 
cos(n−1)θE], M is a matrix of coefficients Mkj defined as 

M≡{Mkj: 1≤k≤n, 1≤j≤m}, and λU is a vector defined as λt
U≡[λ2

U, 
λ3

U, λ4
U, …, λm+1

U].  

Substituting (6) and (9) into (4), we can straightforwardly 
obtain the phase current using matrix M as 
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where λʹU, λʹV, and λʹW are vectors defined as λʹtU≡[2λU, 3λ2
U, 

4λ3
U, …, (m+1)λm

U], λʹtV≡[2λV, 3λ2
V, 4λ3

V, …, (m+1)λm
V], and 

λʹtW≡[2λW, 3λ2
W, 4λ3

W, …, (m+1)λm
W], respectively.  

In addition, substituting (6) and (9) into (5), we can 
straightforwardly obtain the torque as 
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where cʹt(θE) is a vector defined as cʹt(θE)≡[0, −sinθE, −2sin2θE, 
…, −nsinnθE]. 

As we have seen above, matrix M represents the 
mechanical and electrical nonlinearity of the SRM. In other 
words, M works as a simple behavior model of SRMs. In the 
next section, we present how matrix M is determined for 
practical SRMs. 

C. Parameter Extraction Method 

Matrix M can be determined experimentally by 
measurement of the magnetization energy of one phase, 
according to the following procedure. 

First, Eʹ, i.e. the magnetic energy contributed by phase U, is 
measured. The rotor of the motor under test is mechanically 

fixed at a predetermined mechanical angle. Then, the square 
voltage waveform, as illustrated in Fig. 2(a), is applied as 
voltage VU of phase U, whereas other phases are left open. At 
the same time, the phase current iU is measured. An example of 
typical waveform of iU is illustrated in Fig. 2(b). Then, we can 
obtain instantaneous Eʹ and λU as follows: 

 ( ) ,' ∫ −= dtiRViE UUU  (12) 

 ( ) ,∫ −= dtiRV UUUλ  (13) 

where R is the resistance of phase U and t is the time. Based on 
these experimental data, we can obtain Eʹ(λU) as a function of 
λU at the predetermined mechanical angle. Dependency of 
Eʹ(λU) on the mechanical angle θE is obtained by repeating the 
above procedure at various mechanical angles. Consequently, a 
complete database of Eʹ(θE, λU) can be obtained. 

Next, Fourier cosine coefficients M1(λU), M2(λU), … are 
determined based on the database of Eʹ(θE, λU). We regard the 
magnetic energy Eʹ(θE, λU) at a predetermined flux linkage 
value as a function of the mechanical angle θE. Then, we apply 
Fourier expansion to the function to determine Fourier cosine 
coefficients. Dependency of the Fourier cosine coefficients on 
λU is obtained by repeating the above procedure at various flux 
linkage value. 

Finally, we further apply linear regression analysis to the 
Fourier cosine coefficients to obtain Taylor expansion 
coefficients Mkj, which are the elements of matrix M. 

This parameter extraction method is similar to that 
proposed in [23], which is employed to determine the matrix 
representing dependency of the phase current on λU. However, 
in [23], Taylor expansion coefficients are first determined; and 
then, Fourier expansion coefficients are determined, contrarily 
to the proposed method.  

This previous method reported in [23] can also be applied 
to determine matrix M from the database of Eʹ(θE, λU). In this 
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+100V

- 100V

Time
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(b) The current of phase U.
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Fig. 2. Voltage and current waveforms in measurement of the magnetic 

energy Eʹ contributed by phase U.  



case, we first approximate Eʹ(θE, λU) using Taylor expansion:  
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where Mʹ1, Mʹ2, … are Taylor expansion coefficients as 
function of θE. Then, Mʹ1, Mʹ2, … are approximated using 
Fourier expansion as 
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As a result, the matrix elements of M is obtained. 

As shown later in the experiment, matrix M by the 
proposed method modeled Eʹ(θE, λU) with a smaller matrix size 
compared with the previous method. Therefore, it appears that 
Fourier expansion should be first applied rather than Taylor 
expansion.  

The reason is not cleared in this paper. However, linear 
regression analysis used for determining Taylor expansion 
coefficients is a statistical method based on optimistic 
assumption that the residual is always normally distributed. On 
the other hand, Fourier expansion does not require this 
assumption owing to the orthogonality of triangular functions. 
Therefore, Taylor expansion coefficients may be less precisely 
determined compared with Fourier cosine coefficients. 

As a result, Mʹj(θE) may contain extremely high harmonics 
caused by significant error generated during linear regression 
analysis. Hence, Fourier expansion of Mʹj(θE) may require to 
consider high harmonics, leading to large size of matrix M in 
the previous method. Contrarily, Mk(λU) may be comparatively 
precisely determined in the proposed method; and therefore, 
Mk(λU) may be well approximated in (8) with Taylor expansion 
with small order. Consequently, the proposed parameter 
extraction method might construct M with a small sized matrix. 

III. EXPERIMENT 

Experiment is carried out to verify the proposed model. 
Figure 3 shows the motor test bench employed for the 
experiment. A SRM and a hysteresis brake is mechanically 
coupled together via a torque meter. Table I shows the 
specifications of the test bench. 

A. Model Constructuion 

First, we constructed the model for the experimental motor. 
We measured the magnetizing curves at 14 electrical angles in 
0–180 degrees, according to the method described in Section 
II.C. The measurement result is shown in Fig. 4. Then, the 
magnetic energy was calculated based on the magnetizing 
curves, as shown in Fig. 5. The result was utilized to construct 
the database of the magnetic energy Eʹ(θE, λU), i.e. a table of 
magnetic energy in 28 electrical angles and 100 flux linkage 
levels. 

Hysteresis 

Brake

Switched Reluctance

Motor

Coupling

Torque

Meter

 
Fig. 3. Photograph of the experimental motor test bench.  

TABLE I.  SPECIFICATIONS OF THE MOTOR TEST BENCH 

Instrument Specifications

RB165SR-96VSRM

(Motion System Tech. Inc.)

1.2kW, 96V, 6000rpm

Stator: 12 poles, Rotor: 8 poles.

Number of turns: 14T

Torque Meter UTMII-5Nm (Unipulse Corp.)

Hysteresis Brake AHB-6 (Magtrol Inc.)

Motor
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Fig. 5. Measurement results of the magnetic energy of phase U.  



We modeled the magnetic energy according to the 
proposed parameter extraction method. We applied the Fourier 
expansion of order 4 to the database so that the magnetic 
energy is approximated with the coefficient of determination of 
99.5%. Figure 6 shows the resultant Fourier cosine coefficients 
M1, M2, …. Then, we approximated M1(λU), M2(λU), …. using 
(8). The maximum order of λU is determined as 5 to achieve the 
coefficient of determination of 99.9%. As a result, matrix M is 
determined as presented in Table II. 

We also modeled the magnetic energy according to the 
previous parameter extraction method presented in [23]. We 
applied Taylor expansion of order 4 to the database so that the 
magnetic energy is approximated with the coefficient of 
determination of 99.9%, similarly as in the proposed parameter 
extraction method. Figure 7 shows the resultant Taylor 

expansion coefficients Mʹ1(θE), Mʹ2(θE), …. Then, we 
approximated Mʹ1(θE), Mʹ2(θE), … using Fourier expansion as 
in (15). The maximum order of θE is determined as 12 to 
achieve the coefficient of determination of 99.5%. As a result, 
matrix M is determined as presented in Table III.  

Comparison between Table II and Table III shows that the 
proposed method can model the magnetic energy with smaller 
size of M compared with the previous method. This reduction 
of matrix size was mainly contributed by smooth dependency 
of M1(λU), M2(λU), … on λU. On the other hand, Mʹ1(θE), 
Mʹ2(θE), … contained high harmonics of θE, thus resulting in 
large size of M. The result implies that the proposed parameter 
extraction method is advantageous in constructing a small-
sized model.  
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Fig. 7. Fourier cosine coefficients determined by the proposed parameter 

extraction method 

TABLE III.  MATRIX M DETERMINED BY THE PROPOSED PARAMETER 

EXTRACTION METHOD 

λ
U

2 λ
U

3 λ
U

4 λ
U

5

1 1.19.E+03 3.17.E+03 -7.59.E+04 2.66.E+06

cosθ
E

-1.35.E+03 1.70.E+04 -6.95.E+05 8.64.E+06

cos2θ
E

3.46.E+02 4.87.E+03 -2.80.E+05 1.50.E+06

cos3θ
E

-1.99.E+01 -8.19.E+02 1.88.E+05 -3.24.E+06

cos4θ
E

-5.43.E+01 -7.42.E+03 3.54.E+05 -3.91.E+06
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Fig. 6. Taylor expansion coefficients determined by the previous 

parameter extraction method 

TABLE II.  MATRIX M DETERMINED BY THE PREVIOUS PARAMETER 

EXTRACTION METHOD 

λ
U

2 λ
U

3 λ
U

4

1 1.24.E+03 -2.73.E+03 1.47.E+05

cosθ
E

-1.19.E+03 -2.12.E+03 2.71.E+04

cos2θ
E

3.74.E+02 1.53.E+03 -1.54.E+05

cos3θ
E

-7.93.E+01 6.36.E+03 -8.24.E+04

cos4θ
E

-1.26.E+02 1.25.E+03 2.73.E+04

cos5θ
E

1.09.E+02 -5.36.E+03 7.21.E+04

cos6θ
E

1.80.E+01 -4.59.E+02 6.02.E+01

cos7θ
E

-6.02.E+01 2.64.E+03 -3.78.E+04

cos8θ
E

3.69.E+01 -9.40.E+02 1.08.E+04

cos9θ
E

-1.94.E+01 1.22.E+02 3.69.E+03

cos10θ
E

1.43.E+00 -7.14.E+01 2.40.E+03

cos11θ
E

1.26.E+01 -1.04.E+02 -2.03.E+03

cos12θ
E

-2.20.E+01 6.43.E+02 -8.32.E+03
 



B. Evaluation of the Model 

Next, the proposed model shown in Table II was evaluated 
by predicting the phase current and the average torque of the 
experimental motor. For this purpose, we drove the motor with 
two types of the voltage waveforms. As a result, two types of 
flux linkage waveforms were induced as presented in Fig. 8(a) 
and Fig. 9(a). The rotating velocity of the motor was set at 
1000rpm approximately.  

The evaluation results are shown in Figs. 8–10. Figure 8(b) 
and Figure 9(b) present the phase current. Figure 10 presents 
the average torque. These evaluation results show that both the 
torque and the phase current waveforms are well predicted by 
the proposed model. The maximum deviation of the model 
from the experiment was found to be within 10% of the peak 
current in the current waveforms. In addition, the model 
predicted the torque within an error of 15%. These results 
support appropriateness of the proposed model for SRMs.   

IV. CONCLUSIONS 

Control techniques of SRMs is requiring simple analytical 
models for mechanical and electrical nonlinearity of the motor. 
As a promising solution, this paper presented an analytical 
model based on the magnetic energy. The proposed model 
adopts the flux linkage and the electrical angle as the state 
variables. In addition, the proposed model expresses the 
nonlinearity by a matrix that represents the magnetic energy. A 
practical parameter extraction method is also presented to 
minimize the size of the matrix.  

An experiment was carried out to evaluate the parameter 
extraction method and the proposed model. As a result, the 

proposed extraction method successfully derived the small-
sized matrix that represents the magnetic energy. In addition, 
the proposed model successfully predicted the torque and phase 
current waveforms. Consequently, we concluded that the 
proposed model is promising for an analytical model for SRMs.  
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Fig. 9. Comparison of current waveforms between the experiment and the 

proposed model under flux linkage waveform B 
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model under flux linkage waveforms A and B 
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