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Abstract—Recently Lagrangian dynamics has been applied to 

transforming integrated magnetic components into equivalent 
circuits of transformers and inductors. This Lagrangian method 
is expected to yield an equivalent circuit with few components, 
when applied to an integrated magnetic component with few flux 
paths that can be magnetized independently. However, 
properness of this method has not been verified.  As a case study, 
this paper derives the equivalent circuit of the integrated winding 
coupled inductor using the Lagrangian method to evaluate 
consistency with the magnetic circuit model and experimental 
behavior. As a result, the Lagrangian method yielded a simpler 
equivalent circuit than those by the conventional methods. 
Additionally, the equivalent circuit of the Lagrangian method is 
found to be functionally equivalent to the magnetic circuit model 
and consistent with the experiment. These results support that the 
Lagrangian method provides proper equivalent circuits, and is 
useful for deriving simple equivalent circuits in some cases. 
 

Index Terms—Integrated magnetic components, Lagrangian, 
equivalent circuits, magnetic circuits.  
 

I. INTRODUCTION 

A. Motivation 

ECENT expansion of the application of power 
electronics in industry has intensified the need to 

miniaturize power converters. Consequently, circuit elements 
that constitute the power converters also need to be minimized. 
Miniaturizing magnetic components such as transformers and 
inductors is crucial in many cases, because they tend to occupy 
significant volume. 

A possible remedy for the purpose is to employ integrated 
magnetic components [1]–[23]. These integrated components 
are composed of multiple windings on a single core, thus 
implementing the electric functions of plural basic magnetic 
components such as inductors and transformers. Integrating 
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inductors and transformers possibly allows saving of space. In 
addition, in a well-designed structure, the windings possibly 
share the flux. This leads to reduction in the total amount of 
flux, thus enabling miniaturization of the core [2], [3], [19]. 
Magnetic coupling between windings may also enhance the 
electric functions. As a consequence, the total amount of copper 
used may also be reduced, as reported in [4], because a smaller 
number of turns may implement the same inductance. Owing to 
these benefits, a number of magnetic structures have been 
studied and reported [1]–[23]. 

However, the integrated magnetic components often have 
complex magnetic circuits, particularly if leakage flux paths are 
considered. Consequently, their electric functions can be 
difficult to comprehend, compared to a basic inductor or 
transformer with a single magnetic path. If power converters 
with integrated magnetic components are analyzed directly, 
both the electric and magnetic circuits must be handled 
simultaneously. Accordingly, such analysis tends to be 
complex compared to that only of electric circuits. Examples of 
this approach are presented in [1]-[4], [6], [13], [16] [18], [20]. 

This approach calculates all the flux in the magnetic circuit, 
and thus it is useful for precise design of the magnetic core 
dimension. Conversely, the complex analysis procedure may 
hinder intuitive comprehension of the overall circuit behavior. 
Consequently, the industrial applications of the integrated 
magnetic components may be promoted by developing 
methods that can easily analyze circuit behaviors. 

B. Review of Preceding Approaches 

One promising strategy is to express the electric functions of 
an integrated magnetic component as a functionally equivalent 
electric circuit composed of inductors and transformers [5], 
[10], [12], [19], [20], [21], [23]. Hereafter, we refer to this 
circuit as the equivalent circuit. 

To the best of our knowledge, three methods to derive 
equivalent circuits have been proposed. These methods 
generally derive equivalent circuits that differ from others. 
Selecting a simpler equivalent circuit may therefore contribute 
to effortless circuit analysis. 

The inductance matrix method [12] is one such method. This 
first identifies the leakage inductance of all windings, and the 
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mutual inductance [26] of all winding pairs. Each leakage 
inductance is then directly transformed into an inductor, and 
each of the mutual inductances into a transformer. Hence, the 
integrated magnetic component with n windings is generally 
expressed by an equivalent circuit with n inductors and 
n(n-1)/2 transformers. 

The duality method has also been used [24] [25]. An 
advantage of this method is its straightforward derivation 
process. The method first transforms the network of the 
magnetic circuit model [27] of an integrated magnetic 
component. Specifically, the series-connections of the original 
network are transformed into parallel connections, and vice 
versa. Each reluctance is then replaced by an inductor, and all 
except one of the magnetomotive forces are replaced by an 
ideal transformer. The remaining magnetomotive force is 
eliminated. Consequently, if the integrated magnetic 
components contain n windings and m reluctance, the resultant 
equivalent circuit derived from the duality method will have 
n-1 transformers and m inductors. 

The recently-proposed Lagrangian method [28] can also be 
used. This method is obtained by theoretical discussion on the 
Lagrangian dynamics of the integrated magnetic components, 
and utilizes Lagrangian expression for magnetic circuits. As 
discussed in [28, Sec. 3.2], the method transforms an integrated 
magnetic component into an equivalent circuit, composed of as 
many transformers and inductors as the flux paths of the 
original component that can be magnetized independently. This 
method can thus be expected to yield a simple equivalent circuit, 
if the integrated magnetic component has a small number of 
independent flux paths. 

However, the properness of the equivalent circuit derived  by 
this method has not been verified in the literature, although 

consistency of the method with Lagrangian dynamics suggests 
that it is proper [28]. 

C. Purpose of This Paper 

To verify the Lagrangian method, this paper presents a case 
study using the integrated winding coupled inductor [4] [21].  
The integrated winding coupled inductor has three windings. Its 
magnetic circuit model, as shown in this paper, has six 
reluctances, three magnetomotive forces, and five independent 
flux paths, including leakage flux paths. Consequently, among 
the three methods, the Lagrangian method is expected to yield 
the equivalent circuit with fewest magnetic components. 

The following discussion is divided into four sections. 
Section II derives the equivalent circuits using the three 
methods to show that the Lagrangian method yields an 
equivalent circuit differing from those by the conventional 
methods, i.e. the inductance matrix method and the duality 
method. Section II also shows that the equivalent circuit from 
the Lagrangian method has fewest components, as expected. 

Section III then shows theoretically that the equivalent 
circuit by the Lagrangian method is consistent with the 
magnetic circuit model, as are those by the conventional 
methods. For this purpose, we compare the electric functions of 
the equivalent circuits of the Lagrangian method and the 
inductance matrix method with the magnetic circuit model. 

Section IV experimentally confirms that the equivalent 
circuits discussed in Section III are also consistent with 
experimental behavior of the integrated winding coupled 
inductor.  

 The conclusions are then presented in Section V. 

II. DERIVATION OF EQUIVALENT CIRCUITS 

A. Integrated Winding Coupled Inductor 

The interleaved converter with the integrated winding 
coupled inductor [4][21] is illustrated in Fig. 1. The magnetic 
core has three legs, each of which has a winding. Input current 
flows into winding C, and the current is then split into windings 
1 and 2.  

In this paper, we ignore non-linearity due to magnetic 
saturation or core loss. Similar to the conventional methods, the 
Lagrangian method also does not allow non-linearity so far, 
because it assumes linear media of the electromagnetic field. 

The magnetic circuit model [27] of the integrated magnetic 
component can be expressed as in Fig. 2. We denote the electric 
current of windings 1 and 2 as i1 and i2, respectively. The outer 
legs and the center leg have windings with the number of turns 
NO and NC, and the reluctances RO and RC, each of which are 
made by core and gaps. We assume that both outer legs have 
the same reluctance RO and the number of turns NO, according 
to the design concept of the magnetic structure. Leakage flux 
paths of the windings are implemented as the reluctance 
RL1–RL3. 

B. Lagrangian Method 

Based on Fig. 2, we derive an equivalent circuit according to 
the Lagrangian method proposed in [28]. The method provides 

 
Fig. 1.  Interleaved converter with the integrated winding coupled inductor. 
 

Fig. 2.  Magnetic circuit model of the integrated winding coupled inductor. 
  



 

Lagrangian expressions for an integrated magnetic component, 
which are directly configurable from their electric and 
magnetic network. We first translated Fig. 2 into Lagrangian. 
We then applied point transformation [29] to the result. Based 
on this, we obtained another Lagrangian belonging to an 
equivalent circuit. Finally, the equivalent circuit was obtained 
by translating the resultant Lagrangian into a physical circuit. 

In the Lagrangian expression, the current flowing through a 
winding is regarded as the time derivative of the cumulative 
charge q [28], which is the time integration of the current i from 
the initial time t0 to the time t: 
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t

t
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We denote the cumulative charge for i1 and i2 as q1 and q2, 

respectively. Translation of Fig. 2 yields the Lagrangian L: 
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where l is a Lagrangian multiplier, and the dot over a 

variable is its time derivative. 
The term with l is eliminated by substituting f3=-f1-f2  

into (2). Additionally, we replace f1 by introducing 

fA =f1 +f2 /2. The purpose of introducing fA is to express the 
magnetic energy terms, i.e. the 4th–9th right-hand terms of (2), 
in the diagonal form of the fluxes without using the Lagrangian 
multiplier. Consequently, we obtain: 
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Equation (3) corresponds to a circuit of transformers and 

inductors. Translating (3) yields the equivalent circuit shown in 
Fig. 3(a). Along with the circuit diagram, we also present the 
self and mutual inductance of the constituting elements. 

The Lagrangian method preserves the number of 
independent fluxes. Note that f3  is dependent on f1  and f2 , 
because the constraint f1+f2 +f3=0 is represented by the last 
right-hand term of (2). Hence, (2) contains five independent 
fluxes, namely fL1, fL2, fL3, f1, f2. Consequently, the resultant 
equivalent circuit is composed of five magnetic components, 
each of which consists of a single independent flux path. 

Fortunately, in this case the equivalent circuit can be 
simplified further, because inductors L1 and L2 are connected 
in series. By replacing them by an inductor whose inductance is 
their sum, we obtain Fig. 3(b), which is composed of only four 
magnetic components. The result is similar to the equivalent 
circuit proposed in [4]. Nonetheless, our result is derived 
automatically under the predetermined procedure. 

 
Fig. 3.  Equivalent circuit by the Lagrangian method. (a) Direct translation 
from Lagrangian. (b) Simplified circuit with fewer inductors. Values in 
brackets are the number of turns. Values without brackets are the 
self-inductance for the inductors or the mutual inductance for the 
transformers.  
 

Fig. 4.  Replacing each winding of the integrated winding coupled inductor by 
an inductor representing the leakage inductance and transformers representing 
the mutual inductance. 
 

 
Fig. 5.  Equivalent circuit by the inductance matrix method. Values in brackets 
are the number of turns. Values without brackets are the self-inductance for 
the inductors or the mutual inductance for the transformers. 
  



 

C. Inductance Matrix Method 

In the inductance matrix method, the leakage and mutual 
inductance are calculated for each winding. The leakage 
inductance is transformed into an inductor with the same 
inductance, and the mutual inductance is transformed into a 
transformer with the same mutual inductance. Finally, the 
equivalent circuit is obtained by replacing each winding in the 
original component by a series-connection of the inductor and 
the transformers that represent the leakage and mutual 
inductance of the windings. 

Now, we derive the equivalent circuit according to the 
inductance matrix method. To calculate the leakage and mutual 
inductance, we first solve the magnetic circuit model presented 
in Fig. 2. In the magnetic circuit, the flux follows Kirchhoff's 
current law, and the magnetomotive force follows Kirchhoff's 
voltage law. In calculation of the inductance, the method does 
not utilize the fact that the current of winding C is equal to the 
sum of windings 1 and 2. Therefore, we denote the current of 
the winding C as iC. Hence, we have: 
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Solving the above equations with respect to the fluxes, we 

obtain: 
 

( )
( )

( )

( )

( )
( )

( )

1 1 2 3 2
1 2 3

1 1

2

2 1 2

3 1

2

, , ,

2 2

,
2

2
,

2 2

2 2

.
2

O C O
L L C L

L L L

O C OC
C

O C O O C

C O

O O C

C O
C

O C O C

C C O
C

O C O O C

O C O

O O C

N N N
i i i

NN
i i

N
i

N N
i i i

N N
i i

N
i

f = - f = f = -

+
f = - -

+ +

+
+

f = + +
+ +

f = - +
+ +

+
-

+

R R R

R R

R R R R R

R

R R R

R R R R

R

R R R R R

R R

R R R

 (5) 

 
We denote the total flux that interlinks with windings 1, C, 

and 2 as fT1, fTC, and fT2, respectively. Using the above 
equation, fT1, fTC, and fT2 can be expressed as: 

 

( )

( )

( )

( )

( )

1 1
1

2

1 2
2

2 1

2
3

1

2 2

,
2

2 1
,

2 2

2 2

1
.

2

C O C
T C O

O C O O C L

C O

O O C

O
TC C C

O C L O C

C C O
T C

O C O O C

O C
O

O O C L

N
i N i

N
i

N
N i i i

N N
i i

N i

 + f = - - + + +  

+
+

 
f = + + + + + 

f = - +
+ +

 + - + +  

R R

R R R R R R

R

R R R

R R R R R

R

R R R R R

R R

R R R R

 (6) 

 
Next, we derive the inductance matrix. Electric functions of a 

magnetic component can be expressed as an inductance matrix. 
As for a magnetic component with three windings, the general 
definition of the matrix is expressed as: 
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where V1, VC, and V2 are the induced voltage of windings 1, C, 

and 2, respectively; L1, LC, and L2 are the self-inductance; and 
M1C, M2C, and M12 are the mutual-inductance. Substituting (6) 
into (7), the elements of the matrix are determined as follows: 
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We seek a circuit that represents the same inductance matrix, 

by replacing each winding by a series connection of an inductor 
and two transformers, as shown in Fig. 4. We assume that each 
transformer represents the magnetic coupling of a winding pair, 
and its mutual inductance is equal to the matrix element that 
corresponds to the coupling. Furthermore, it is assumed that the 
transformers have the same number of turns as the original 
winding. 

Note that the self-inductance of the original winding equals 
the sum of self-inductance of the inductor and transformers. In 



 

other words, the self-inductance of the inductor corresponds to 
the leakage inductance [30] of the original winding. If the 
self-inductance of the inductors that replace windings 1, C, and 
2 are denoted as L1, LC, and L2, respectively, we obtain:  
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Finally, we obtained the circuit illustrated in Fig. 5. 

Obviously, this is the equivalent circuit of the integrated 
winding coupled inductor. The equivalent circuit has three 
inductors, because the method yields as many inductors as the 
windings. It also has three transformers, which are as many as 
the winding pairs. 

D. Duality Method 

The detailed process of this method is presented in [24], [25]. 
We followed this process to derive the equivalent circuit for Fig. 
2. 

The duality method does not require calculation of the 
inductance matrix or translation of the magnetic circuit into 
Lagrangian expression. Instead, it requires the following two 
steps. 

The first step is to transform the magnetic circuit network. In 
this transformation, each series-connection of the network is 
replaced by a parallel-connection, and vice versa. 

The second step is to replace each element of the magnetic 
circuit model by an electric component. In this step, each 
reluctance is replaced by an inductor, and all except one 
magnetomotive forces are replaced by an ideal transformer. 
The remaining magnetomotive force is eliminated to extract a 
pair of terminals. The primary windings of the ideal 
transformers and the pair of terminals correspond to the 
windings of the original integrated magnetic component. 

Consequently, the equivalent circuit for Fig. 2 is obtained as 
Fig. 6. The equivalent circuit contains six inductors, which is as 

many as the reluctance in Fig. 2. It contains two transformers, 
which equals the magnetomotive force less one. 

E. Comparison between the Equivalent Circuits  

As seen above, the three methods yield their own equivalent 
circuits, all of which differ. Compared to Fig. 5 and Fig. 6, Fig. 
3(b) contains fewer magnetic components. In this case, the 
Lagrangian method thus yields simpler equivalent circuit. 
Hence, in some cases the Lagrangian method can be a helpful 
method for discussing the overall electric functions of an 
integrated magnetic component. For example, the Lagrangian 
method may possibly be useful in some cases when we invent a 
novel magnetic structure. 

The main drawback of the Lagrangian method is that the 
voltage induced in the windings of the integrated magnetic 
component does not appear in the equivalent circuit, because 
generally a winding is not directly replaced by transformers and 
inductors. On the other hand, the equivalent circuits produced 
by the inductance matrix and duality methods directly present 
the induced voltage of any windings. The reason is that a 
winding is replaced by a series of connected inductors and 
transformers in the inductance matrix method, and by the 
primary winding of an ideal transformer or a pair of terminals in 
the duality method. Therefore, if it is necessary to discuss the 
induced voltage to design the insulation of the windings, the 
inductance matrix or duality methods seem preferable. 

III. ANALYTICAL EQUIVALENCE OF THE EQUIVALENT 

CIRCUITS WITH THE MAGNETIC CIRCUIT MODEL 

This section confirms that the equivalent circuit from the 
Lagrangian method has the same electric functions as the 
original magnetic circuit, similar to the equivalent circuits by 
the conventional inductance matrix and duality methods. For 
this purpose, we show that Fig. 3(a) is functionally equivalent 
to the original magnetic circuit, as well as Fig. 5. In order to 
discuss the functional equivalence, we employed the magnetic 
energy expressed as a function of current. 

The electrical function of an integrated magnetic component 
can be fully determined if the magnetic energy E(i1, i2, …) is 
given as a function of the electric current. Here, we present a 
brief explanation of the reason. 

We consider an arbitrary magnetic component with multiple 
current paths, and denote the voltage induced through the 
current path j as Vj. Because input energy equals the increase in 
magnetic energy, we have: 
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where ij is the current of the current path j. 
Because the magnetic energy is a quadratic form of the 

current, ¶E/¶ij is a linear form of the current. By partially 
differentiating (10) with respect to the current, we obtain: 

 

 
Fig. 6.  Equivalent circuit by the duality method. Values in brackets are the 
ratios of the number of turns. Values without brackets are the self-inductance 
for the inductors. 
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Equation (11) indicates that the energy expression 

E(i1, i2, …) is sufficient to determine the electrical input-output 
relation of the magnetic component. Hence, we only need to 
show that Fig. 3(b) and Fig. 5 belong to the same energy 
expression as that of the magnetic circuit model, in order to 
confirm the properness of the equivalent circuits. 

First, we derive the energy expression for Fig. 2. The 
magnetic energy EM of the whole magnetic circuit model is: 
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The energy expression for Fig. 2 is obtained by expressing 

the above equation as a function of i1 and i2. With a view to this 
purpose, the fluxes f1–f3 are expressed as functions of  i1 and i2 
in advance. Substituting iC=i1+i2 into (5) yields: 
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Substituting (5) and (13) into (12) leads to: 
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This is then compared with the energy expression for Fig. 

3(b) and Fig. 5. The energy expression ELag for Fig. 3(b) is: 
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On the other hand, the energy expression EMatrix for Fig. 5 is: 
 

( )

( )

( )

( ) ( )

2
2

1 2
2

2

1 2 1

2

1 2 2

2 2
2 2

1 2
1 3

2
2

1 2

1

2

1 1

2 2

1 1

2 2

1 1

2 2

1
.

2 2

C
Matrix

L

C C O
O C

C C O
O C

O O

L L

C O

O O C

N
E i i

N i N i N i

N i N i N i

N N
i i

N
i i

= +

+ + +
+

+ + +
+

+ +

+ -
+

R

R R

R R

R R

R

R R R

 (16) 

 
Equations (14)–(16) can be developed to obtain 

EM=ELag=EMatrix. Consequently, both Fig. 3(b) and Fig. 5 are 
shown to have the same electric functions as the magnetic 
circuit model.  

IV. CONSISTENCY WITH EXPERIMENTAL BEHAVIOR 

This section confirms consistency of the equivalent circuits 
with experimental behavior of the integrated magnetic 

TABLE I 
SPECIFICATIONS OF THE PROTOTYPE CONVERTER 

 

 
Fig. 7.  Photograph of the integrated winding coupled inductor employed for 
the prototype converter. 

 



 

component. Current waveforms of the converter shown in Fig. 
1 were simulated utilizing the equivalent circuit shown in Fig. 
3(b) and Fig. 5. The results were then compared with the 
experimental waveforms of a prototype converter with the 
integrated magnetic component. We employed SCAT 

K.460PR1 (Keisoku Giken Co., Ltd.) as the simulator. 
The specifications of the prototype are given in Table 1, and 

a photograph of the magnetic component in Fig. 7. To simplify 
the waveform, the converter was operated under the continuous 
conduction mode. Hence, RO is designed to be far smaller than 
the design concept presented in [4]. We equipped no gap on the 
outer legs. The reluctance of the magnetic circuit is estimated 
from results of inductance measurement of the magnetic 
component. Details of the estimation are presented in the 
appendix. 

First, we compared the experimental and simulated 
waveform of the current i1, when the duty ratio is set at 0.3. The 
result is shown in Fig. 8. Figure 8(a) is the experimental 
waveform, and Fig. 8(b) and Fig. 8(c) are the simulated 
waveforms of the equivalent circuits by the Lagrangian method 
and the inductance matrix method, respectively. The two 
simulated waveforms are identical, indicating equivalency 
between the two equivalent circuits, as expected from the 
previous section. In addition, the simulation predicted the 
experimental waveform well, except for surge current during 
the switching of S1 and S2. 

Next, we compared the simulated current ripple of i1 with the 
experimental result over several duty ratios. The result is shown 
in Fig. 9. As expected from the previous section, the simulation 
of the two equivalent circuits resulted in the same current ripple. 
In addition, the simulation successfully predicted dependency 
of the ripple current on duty ratio. Hence, the result also 
supported consistency of the equivalent circuit with the 
experiment. Certainly, the experiment showed that the ripple 
current was slightly smaller than predicted when the duty ratio 
was set at 0.4. The reason for this is not clear. However, the 
surge current during switching of S1 and S2 may have caused 
measurement deviation of the ripple current. 

Consequently, we concluded that the experiment also 
supported the properness of the equivalent circuits. 

V. CONCLUSION 

Lagrangian dynamics have recently been applied to deriving 
the equivalent circuit of an integrated magnetic component. 
This method is expected to derive a simpler circuit than the 
conventional inductance matrix and duality methods, when 
applied to an integrated magnetic component with few flux 
paths that can be magnetized independently. However, the 
properness of the equivalent circuit by the Lagrangian method 
has not been verified.  

As a case study, this paper investigated equivalent circuits of 
the integrated winding coupled inductor. The equivalent 
circuits were derived using the Lagrangian, inductance matrix, 
and duality methods, respectively. Among these three methods, 
the Lagrangian method yielded the equivalent circuit with 
fewest components. Specifically, the equivalent circuit by the 
Lagrangian method is composed of only four magnetic 
components. 

We then investigated the consistency of the equivalent 
circuit by the Lagrangian method with the magnetic circuit 
model, and the experimental behavior of the integrated winding 

 
Fig. 8.  Experimental and simulated waveforms of the current of the 
winding 1 (i1) and the voltage across S1 (VS1). (a) Experiment. (b) 
Simulation based on the Lagrangian method. (c) Simulation based on the 
inductance matrix method. 
 

 
Fig. 9.  Experimental and simulated ripple current in the current of the 
winding 1 (i1) 

 



 

coupled inductor. The results showed the equivalent circuit was 
functionally equivalent to the magnetic circuit model, and 
predicted the experimental behavior as well as the equivalent 
circuit produced by the inductance matrix method. 

Consequently, these results support that the Lagrangian 
method provides proper equivalent circuits, and in some cases 
is useful for deriving simple equivalent circuits. 

APPENDIX 

The reluctance of the prototype of the integrated winding 
coupled inductor was estimated based on measurement of the 
self-inductance of all windings, and the mutual inductance of 
all winding pairs. The self-inductance is the inductance of a 
winding when all the other windings are opened. The result of 
the measurements is presented in Table II. 

We can analytically express the inductance as functions of 
the reluctance. By equating the expression to the measured 
inductance, the reluctance can be determined.  

The expression for the self and mutual inductance are already 
obtained in (8) by the inductance matrix method. However, this 
does not indicate that the inductance matrix method is more 
useful than the Lagrangian method, because we can also derive 
the same result by the latter. In order to prove this, we here 
employ the Lagrangian method to derive the expression. 

We consider that the windings in Fig. 2 are disconnected 
each from the other. Then, Lagrangian L¢ of Fig. 2 can be 
described introducing qC, which is the cumulative charge 
through the winding C: 
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We simplify (17) by eliminating l and introducing 

fA =f1 +f2 /2. Then, we have: 
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First, we determine the mutual inductance M1C between the 

windings 1 and C. By substituting q2=0, we can obtain the 
equivalent circuit of the magnetic component, when the 
winding 2 is opened: 
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Now, we consider Lagrangian Ltemp of an arbitrary circuit 

with the magnetic component represented by (19). In other 
words, Ltemp contains the above Lagrangian L'. Because Ltemp 
does not contain fL3 except L', the Euler-Lagrange equation 
[26] of Ltemp with respect to fL3 gives fL3=0. Therefore, we can 
eliminate fL3 from (19), obtaining: 
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The above Lagrangian can be translated into Fig. 10(a). 

Therefore, the mutual inductance M1C is:  
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Next, the self-inductance L1 of winding 1 is obtained by 

further opening winding C. Substituting qC=0 into (20) yields: 
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We eliminated the term with fL2 in (22), because the 

Euler-Lagrange equation with respect to fL2 now yields fL2= 0.  

TABLE II 
MEASUREMENT RESULT OF SELF- AND MUTUAL INDUCTANCE 

 

 
Fig. 10.  Translation from Lagrangian expression into circuit diagram. (a) 
Equation (19). (b) Equation (25). 
 



 

Equation (22) corresponds to series-connected inductors 
whose inductances are NO

2/RL1, NO
2/2RO, and NO

2/(2RO+4RC), 
respectively. Therefore, we have: 
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Similarly, the self-inductance LC of winding C is obtained by 

substituting q1=0 into (20). Then, fL1=0 and fA=0 can be 
substituted, according to the similar reason described above. As 
a result, we have: 
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Equation (24) corresponds to series connected inductors 

whose inductances are NC
2/RL2 and 2NC

2/(RO+2RC). Hence, we 
have: 
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Then, we determine the mutual inductance M12 between 

windings 1 and 2. Now, only winding C is opened. Thus, 
substitute qC=0 into (18) to obtain: 
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Note that we eliminated the term with fL2, similarly as in (22). 

Equation (26) can be translated into Fig. 10(b). Therefore, the 
mutual inductance M12 is:  
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According to similar discussion to obtain (21) and (23), we 

obtain the self-inductance L2 of winding 2 and the mutual 
inductance M2C between windings 2 and C: 
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Finally, the reluctance can be determined by equating Table 

2 with (21), (23), (25), (27)–(29), obtaining the values of 
reluctance shown in Table 1. 
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