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Intrinsic eigenvibration frequency in the resonant ultrasound spectroscopy:
Evidence for a coupling vibration between a sample and transducers
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The resonant ultrasound spectroscopy enables us to measure elastic constants of various materials with high
accuracy. One of its curious features is resonance frequency shift caused by modulation of clamp force for a sample,
although its mechanism has not been clarified yet. A coupling vibration model is newly proposed to interpret this
phenomenon and predict its functional form. Further, it is confirmed that the resulted functional forms depend
on characteristics of each eigenvibration mode. The extrapolation based on those functional forms enables us to
correct measured frequency to the intrinsic one with improved accuracy at least by one order of magnitude. Thus
the correction is essential in order to obtain accurate derivatives of frequency with respect to temperature, pressure,
composition, and so forth.

1. Introduction
The resonance method, or resonant ultrasound spec-

troscopy (RUS), has been extensively used to elucidate elas-
tic properties of various materials (e.g., Suminoet al., 1976;
Migliori and Sarrao, 1997; Ohnoet al., 2000; Suzukiet al.,
2000). One of the main features of the current RUS is that
sample must contact to a couple of transducers; one is an os-
cillator, and the other a receiver for sample vibration (Fig. 1).

It has been recognized that an observed resonance fre-
quency f is slightly shifted with magnitude of clamp-force
F to the sample, although its mechanism has not been clari-
fied yet. Therefore intrinsic resonance frequencies,f0, have
been determined through an empirical extrapolation off to-
wardsF = 0 (e.g., Suminoet al., 1976), because the current
RUS requires a finite magnitude ofF in order to transmit
vibration energy from transducer to sample, and vice versa.

A coupling vibration between a sample and transducers is
inevitably excited on sample-transducer interface. I found
that the coupling vibration enables us to explain the magni-
tude of observed frequency shifts. Then I confirmed that the
predicted functional forms explain experimental frequency
shifts observed in a sphere sample of soda glass. In this
study, I devised a clamp force controller (Appendix A) to
increase efficiency and reliability.

I classify vibrational modes of an isotropic sphere into
two types according to seismological notation for the earth’s
free oscillation. While spheroidal modes,q Sn, are of radial
motion, troidal modes,q Tn, are of no radial motion. The
former subscript ofq is radial order corresponding number
of nodal surface inside the sphere, while the latter angular
order corresponding number of nodal lines on the spherical
surface. Note that the number of nodal lines on the surface
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is n for q Sn modes andn − 1 for q Tn modes.
Note that SI unit is used in this literature except for show-

ing magnitude of clamp force measured in ‘gw’. As 1 gw=
0.0098 N� 0.01 N, it is not difficult to convert ‘gw’ to ‘N’,
or vice versa, without losing perspective idea.

2. Coupling Vibration Model
We have experienced that the magnitude of� f/ f0 is of

the order of 10−3 against a few gw ofF (see Fig. 2 as
an example). Neither deformation of sample nor increase
of elastic wave velocities is able to explain such a large
deviation of resonance frequency (Appendix B).

Only coupling vibration model (Fig. 3) is able to explain
the observed magnitude of frequency shift. The intrinsic an-
gular frequencyω0 (= 2π f0) is defined for the free oscil-
lation state characterized byks = 0, or, F = 0. Thus we
have

ω2
0 = 2k

m
(1)

for the decoupling free, state, wherem andk are mass and
spring constant, respectively, of the simplified system. Then
the effect of weak springks is incorporated into the system,
we have

ω2 = 2k + ks

m
= ω2

0 + ks

m
(2)

for a coupling state characterized byks , which must be a
function of F through an elastic contact between a sample
and transducers. This is the essence of the coupling vibration
model.

The coupling springks is a model of the elastic property
at around the contacting region between a sample and trans-
ducers; I apply the contacting sphere theory to describe the
property (see Fig. 4 and Appendix B).

Although actual eigenvibration modes are not identical
with that simplified configuration shown by Fig. 3, we can
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764 A. YONEDA: INTRINSIC EIGENVIBRATION FREQUENCY IN RUS

still expect the similar relation under the reasonable assump-
tions (Appendix C).

According to the contacting sphere theory, the distance
between two spheres, x , varies with F as

Fig. 1. Block diagram for a RUS experiment. Thick lines correspond to
coaxial cable for sinusoidal wave transmission. Thin lines are GPIB cable
for digitized data. A set of longitudinal wave transducers (M121 from
Panametrics Co.) and shear wave transducers (V156 from Panametrics
Co.) are used. Transformer is used to cut low frequency noise.

Fig. 2. An example of frequency shift caused by clamp-force modulation; they are 0T2 peaks of a soda glass sample. The clamp force values are shown in
each subplot. We can see that even a few gw clamp force variation causes ∼1 kHz peak shift.

�x = −g(ν, Y, R)F2/3 (3)

where the factor g is a function of Poisson ratio ν, Young
modulus Y , and curvature radius R. The area of contact, A,
is similarly expressed as

A = h(ν, Y, R)F2/3. (4)

As long as we do not disturb the sample-transducer coupling
state, we can assume constant values for g and h during
modulation of F .

First let consider the case of 0S0 mode characterized as
pure normal displacement of sample surface. In this case,
the modeled spring constant, ks , is given as

ks = −d F

dx
= 3

2
g−1 F1/3. (5)

Thus we have the relation:

ks ∝ F1/3. (6)

Combining (2) and (6), we have a result:

�ω2 = ω2 − ω2
0 ∝ F1/3, or � f 2 = f 2 − f 2

0 ∝ F1/3.

(7)

The characteristics of T modes are completely different
with those of S modes; T modes are free from normal surface
displacement. Therefore, some modification is required for
T modes, because the weak spring constant ks corresponds
to tangential displacement between sample and transducer. It
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Fig. 3. Illustration for a coupling vibration model. In this figure, an eigen
vibration mode is simplified to a harmonic oscillator; the stronger spring
constant k corresponds to intrinsic elasticity of sample, and the weaker
one ks to extrinsic property at around contact region between sample and
transducer. Note that total sample mass is 2m in this configuration.

Fig. 4. Illustration for the contacting sphere theory. R is the radius of each
sphere. The distance x between the center of the two spheres decreases
with F . Note that a contacting circle of diameter 2a is formed at the
interface of the two sphere owing to their elastic deformation. Therefore,
the area of contacting circle, A, is πa2.

may be reasonable to assume ks proportional to the contact
area, A, between sample and transducer. The contacting
sphere theory shows A is in proportion with F2/3. Therefore
we may expect

�ω2 ∝ ks ∝ F2/3 (8)

for T modes.
The S modes except 0S0 are constituted with both normal

and tangential surface displacements. Therefore it is difficult
to predict the functional form theoretically. It should be
revisited after experimental observation.

3. Experimental
A soda glass sphere (diameter, d: 2.890 mm; mass, m:

3.18 × 10−5 kg; density, ρ: 2.52 × 103 kg/m3) is used to
evaluate the above model, because it is homogeneous and
elastically isotropic. In the resonance frequency measure-
ments, clamp force for sample is automatically controlled by
a combination of an electric actuator, a load cell, and a volt-
age regulator (Appendix A). The sample temperature was
kept at 25 ± 0.1◦C by placing the main part of the system in
a temperature-controlled chamber in order to remove a bias
caused by temperature fluctuation.

The resonance frequencies measured at various clamp
forces are curve-fitted by assuming the proposed functional
forms; note that the present correction method does not re-
quire any additional information such as physical properties
of sample, etc.

4. Results and Discussion
0S0 mode

Figure 5 shows the observed resonance frequency varia-
tions observed in two runs separately conducted; we can rec-
ognize ∼0.5 kHz shift of resonance frequency even at a few
gw of F . The resulted trends are consistent with the relation
(7). Please note that the each trend in Fig. 5 was measured in
a single run keeping contacting condition; otherwise, we can
recognize that � f may differ even at the same F .

The extrapolated free oscillation frequencies converge to
1611.3–1611.4 kHz. In the following discussion, the intrin-
sic eigenfrequency of 0S0 is fixed at 1611.4 kHz. As a sample
is clamped vertically by a couple of transducers, the sample
weight may be a possible source of error in f0. However its
small weight is negligible, because it causes only ∼0.02 kHz
deviation.

As shown in Appendices B and C, numerical estimation
gives theoretical value of 2.2×1011 Hz2/N1/3 for �ω2/F1/3.
The observed gradients in Fig. 5 are calculated to be 2.9 ×
1011 Hz2/N1/3 and 1.8 × 1011 Hz2/N1/3, respectively, for
each run. This agreement in magnitude between theory and
experiments is additional support for the coupling vibration
model.
T modes

Resonance frequency variations in T modes (0T4, 1T1) are
shown in Fig. 6; those two modes are selected for compari-
son, because they have similar resonance frequencies in spite
of quite different vibrational character. The main difference
is in radial order q; q = 0 for 0T4 and q = 1 for 1T1. Al-
though the amplitude information is not presented in Fig. 6,
the signal amplitude of 0T4 is much larger by ∼20 times than
that of 1T1.

It is impossible to judge which is better model, the 1/3
model or the 2/3 model, just from a first look of Fig. 6.
However we can recognize that the slope of f 2 variation
for 1T1 is much smaller than that for 0T4. Note that 1T1 is
characteristic mode having a nodal surface inside, and thus
relatively small surface motion. The extrapolated value for
1T1 is 2190.2 kHz for the 1/3 model and 2190.3 kHz for the
2/3 model; the difference is as small as 0.1 kHz.

Note that every T mode frequency is determined only
by sample diameter, d, and shear wave velocity, vs (e.g.,
Schreiber et al., 1973). Therefore the resonance frequency of
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Fig. 5. Frequency shifts for 0 S0 mode in two measurements. Upper frame: f 2 − F1/3 plot; Lower frame: f − F plot.
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Fig. 6. Frequency shifts for 1T1 and 0T4. (a1) f 2 − F1/3 plot for 1T1; (a2) f 2 − F2/3 plot for 1T1; (b1) f 2 − F1/3 plot for 0T4; (b2) f 2 − F2/3 plot for
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Table 1. The results for corrected frequencies of T modes. Note that normalized ratio is based on f0 of 1T1 in each column.

Modes f0 by f0 by Normalized ratio in Normalized ratio in Theoretical

the 1/3 model the 2/3 model the 1/3 model the 2/3 model ratio

0T2 948.9 kHz 950.3 kHz 0.4333 0.4339 0.4340

0T3 1466.9 1468.2 0.6700 0.6703 0.6706

0T4 1932.9 1934.8 0.8825 0.8834 0.8840

1T1 2190.2 2190.3 1.0 1.0 1.0

Table 2. The results for corrected frequencies of selected S modes. The theoretically calculated frequencies are also shown in the last column for
comparison.

Modes f0 by f0 by Average of the 1/3 f0 by theoretical

the 1/3 model the 2/3 model and the 2/3 models calculation

0 S2 1001.7 kHz 1003.0 kHz 1002.4 kHz 1002.1 kHz

1 S1 1282.3 1282.8 1282.6 1282.8

1 S2 1823.2 1824.1 1823.7 1824.3

0 S3 1483.5 1485.6 1484.6 1484.5

1T1 can constrain vs most reliably, because its frequency shift
is much smaller than that of other T modes. Table 1 summa-
rizes f0 ratio with comparing the theoretical one. We can dis-
tinguish which is better model from the f0 ratio among the T
modes. In every case shown in Table 1, the 2/3 model gives
better internal consistency; differences with the theoretical
ratios are only a few parts of 10−4. Therefore I concluded
that the 2/3 model is the right model for T modes. Thus the
intrinsic eigenfrequency of 1T1 is fixed at 2190.3 kHz.

Now we can obtain longitudinal wave velocity vp =
5811.7 m/s, shear velocity vs = 3450.4 m/s, Poisson ra-
tio v = 0.228, and Young modulus Y = 73.7 GPa from
f0 = 1611.4 kHz for 0S0, f0 = 2190.3 kHz for 1T1,
d = 2.890 mm, and ρ = 2.52 × 103 kg/m3; these values
are used in the following discussion and Appendix B.
S modes except 0S0

The S modes except 0S0 are a combination of normal
and tangential surface displacement. Therefore it is quite
probable that those f − F trends are composite of the 1/3
and the 2/3 models. Table 2 compares experimental results
with calculated frequencies based on vp and vs determined
in this work.

Comparing those experimental values with calculated
ones, we can recognize that the average of the 1/3 and the
2/3 models is consistent with the calculated frequencies. The
differences are of only a few parts of 10−4. Therefore I pro-
pose the averaged value for general S modes as a practical
and reasonable solution.

The above averaging method may be a kind of com-
promise; in order to develop more sophisticated correction
method, we have to know vibration pattern at the inter-
face between a sample and transducers. Unfortunately it is
quite difficult to generate reproducible vibration pattern in
the present experimental technique.

5. Concluding Remarks
The coupling vibration model clearly explains the fre-

quency shift caused by clamp force modulation. The phe-
nomenon is quite similar to the bond effect recognized in ul-
trasound velocity measurement (e.g., Yoneda, 1990; Spetzler
et al., 1993), because both the problems are originated from
vibration energy transfer.

If you just want to obtain elastic constants with accuracy
of 10−3, the resonance frequency correction may be unnec-
essary. However if you need better accuracy, for instance
to obtain precise derivatives of elastic constants on temper-
ature, pressure, or composition, etc., it is very important to
apply the present correction method in order to eliminate the
ambiguity in resonance frequency.

Last of all, I would like to stress the following three notes
in order to enhance accuracy and efficiency:

(1) 0S0 and T modes are special modes realized only for
elastically isotropic sphere sample. If the sample shape
is not sphere or physical property of sample in not
isotropic, eigenviblation modes are basically combi-
nation of normal and tangential surface displacement.
Therefore the average of 1/3 and 2/3 models should be
recommended in general in order to conduct resonance
frequency correction.

(2) Sample and transducers should be clean enough. If the
surface is contaminated by greasy substance, you may
observe substantial frequency shifts even at negative
clamp force. It is not surprising, because “grease” can
keep substantial contact between a sample and trans-
ducers against tensional force.

(3) As far as my experience, larger amplitude of eigenfre-
quency peaks tends to have larger frequency shift; an
example is amplitude contrast between 1T1 and 0T4. It
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is reasonable, because harder coupling between sample
and transducer may give simultaneously larger ampli-
tude and larger frequency shift. Therefore smaller am-
plitude modes may be more important in order to con-
strain sample properties in spite of relative difficulty in
determining the resonant frequency.
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Appendix A. Automatic Clamp-Force Controller
So far the clamp force has been controlled by manual

adjusting of weight on a balance equipped in the resonance
measurement system. This is not only inconvenient but also
inaccurate due to frictional bias in a balance. Note that the
uncertainty of an ordinary commercial balance is as large as
0.2 gw, which may cause trouble in the present frequency
correction.

Therefore I devised an automatic clamp force controller
free from frictional error. Figure A1 shows the concept of
the instrument. Figure A2 shows the stability of F , or output
of load-cell. We can see that F is controlled automatically
within 0.1 gw, or ∼0.001 N, both for long-term variation and
short period fluctuation.

Fig. A1. Schematic diagram of the clamp-force controller. The voice coil is
a clamp-force stabilizing actuator; it is operated by a feedback DC current
supplier minimizing the difference between the input target voltage and
the load cell output. The spring is used to minimize weight bias caused
by coaxial cable for transducer.

Appendix B. Contacting Sphere Theory and its
Characteristics

The contacting sphere theory itself is found in many text
book (e.g., Timoshenko and Goodier, 1970). It is well
known that the theory is applicable as well for sphere-plane
contact by assuming infinitely large curvature radius to the
plane. Note that sample and transducer are assigned by sub-
suffixes, 1 and 2, respectively. Elastic properties of the sam-
ple are ν1 = 0.228 and Y1 = 73.8 GPa. Its curvature radius,
R1, is identical with its radius r0; thus R1 = r0 = d/2 =
1.445 mm. Note that the transducers’ surface is covered by
a thin tungsten-carbide plate (ν2 = 0.22; Y2 = 534 GPa;
R2 = ∞).

By substituting those values, the contacting radius a is
given as

a = 3

√
3π(k1 + k2)R1

4
F1/3 ≈ 2.5 × 10−5 F1/3 (B.1)

where F is force, and k1 and k2 are defined as

ki = 1 − ν2
i

πYi
, i = 1, 2. (B.2)

Then dx , the normal displacement between sample and
transducer, is given as

dx = 3

√
9π2(k1 + k2)2

16R1
F2/3 ≈ 4.4 × 10−7 F2/3. (B.3)

Then we have ks as

ks =
(

∂ F

∂x

)
= 3F1/3

2 × (4.4 × 10−7)
≈ 3.4 × 106 F1/3. (B.4)

In Fig. B1, I present variations of a, A (= πa2), dx , and ks

with F in the present experimental configuration. These pa-
rameters are useful to evaluate effect of other possible mech-
anisms for resonance frequency shift. First, length change
�x/x is estimated to be ∼10−5 at 5 gw for a soda glass sam-
ple of ∼3 mm diameter. Second, mean pressure at contact
area is estimated to be 106 Pa at 5 gw as well. We can as-
sume that �v/v ∼ �p/C , where v is elastic wave velocity,
�p pressure increment, and C a representative elastic con-
stant ∼100 GPa. Then substitute �p = 106 Pa, we have
�v/v ∼ 10−5. Note that relative resonance frequency shift
� f/ f is given by �x/x + �v/v. Therefore even the com-
bination of the two mechanisms cannot explain the observed
frequency shift of order of � f/ f ∼ 10−3.

Appendix C. Coupling Vibration for a General
Eigenvibration Mode

Actual eigen vibration of sample is much more compli-
cated than the simplified model shown in Fig. 3. Therefore I
show here that the coupling vibrational model is still reason-
able to any eigenvibration mode. Let suppose the following
conditions for eigenvibration modes and the coupling vibra-
tion.

(I) The modeled spring ks yields only small perturbation
for an eigenvibration mode.

(II) It does not have its own mass like an ideal spring, or
cannot store any kinetic energy.



A. YONEDA: INTRINSIC EIGENVIBRATION FREQUENCY IN RUS 769

0 50 100 150 200 250 300
5

6

7

8

9

10
x 10

-6 sodaglass4

am
pl

itu
de

, 
V

0 50 100 150 200 250 300

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

 lo
a

d
, 

g
w

t ime, min

Fig. A2. An example of resonance signals by using the clamp-force controller. We can see that the clamp force is controlled within 0.1 gw. Upper frame:
Resonance signals. Lower frame: Load, or clamp force F , during the measurement. We can see that amplitude of resonance peaks decreases with
decreasing F .

0 1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

(a)                F, gw                  

a
, m

m

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3
x 10-4

(b)             F, gw                  

A
, m

m
2

0 1 2 3 4 5
0

1

2

3

4

5

6
x 10-5

(c)             F, gw                  

dx
, m

m

0 1 2 3 4 5
0

200

400

600

800

1000

1200

1400

(d)             F, gw            

ks
, N

/m
m

Fig. B1. Useful parameters in the coupling model as a function of clamp force F . (a) radius of contacting circle, a; (b) area of contacting circle, A; (c)
displacement of sphere, dx ; (d) spring constant, ks .



770 A. YONEDA: INTRINSIC EIGENVIBRATION FREQUENCY IN RUS

According to the eigenvibration analysis (e.g., Ohno,
1976; Visscher et al., 1991; Yoneda, 2000) intrinsic angu-
lar frequency must satisfy

Ek = ω2
0

∫
1

2
ρui ui dV =

∫
1

2
Ci jklεi jεkldV = ES (C.1)

where EK and ES are kinetic energy and strain energy, re-
spectively, ρ density, u displacement, C elastic stiffness con-
stants, ε strain. The assumption (I) allows us to modify (C.1)
as

ω2
∫

1

2
ρui ui dV =

∫
1

2
Ci jklεi jεkldV + 1

2
ks1δ(u1)

2

+ 1

2
ks2δ(u2)

2 (C.2)

where δ(u) is an effective displacement for spring ks , and
sub-suffixes, 1 and 2, specifies contact states against the
two transducers. Because δ(u1)/δ(u2) is considered to be
a constant in each eigenvibration mode, we can combine the
additional terms in (C.2) as

1

2
ks1δ(u1)

2 + 1

2
ks2δ(u2)

2 = ksδ(u)2. (C.3)

Note that there is no additional term for kinetic energy be-
cause of assumption (II). Combining (C.1), (C.2), and (C.3),
we can derive

�ω2 = ω2 − ω2
0 ∝ ks (C.4)

for any eigenvibration mode. Therefore we can apply the
coupling vibration model in general.

Last of all, let estimate �ω2/F1/3 for 0S0. In the 0S0

mode, the surface displacements u is simply expressed in the
spherical coordinates:

ur = −h J1.5(hr)√
r

, uθ = uφ = 0 (C.5)

where h (= ω/vp) is wave number. Then substituting (C.5)
and sample’s parameters (ρ = 2.52×103 kg/m3; r0 = d/2 =

1.445 mm) into the following equation

�ω2
∫

1

2
ρu2

r dV = ksδ(u)2 = ksur (r0)
2 (C.6)

we have �ω2/ks = 6.5 × 104. Combining (B.4) and (C.6),
we have

�ω2 ≈ 2.2 × 1011 F1/3. (C.7)

Note that the above estimation is only possible for 0S0, be-
cause it is the unique mode of uniform surface displacement,
ur (r0).
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