New! N. Tsutsumi, K. Nakai and Y. Saiki, Data-driven ODE modeling of the high-frequency complex dynamics via a low-frequence dynamics model, Physical Review E 111 (1), 014212:1-6 (2025).
linkarXiv link
New! M. Kobayashi, K. Nakai and Y. Saiki, Lyapunov analysis of data-driven models of high dimensional dynamics using reservoir computing: Lorenz-96 system and fluid flow, Journal of Physics: Complexity 5, 025024 (2024).
link
N. Tsutsumi, K. Nakai and Y. Saiki, Constructing low-dimensional ordinary differential equations from chaotic time series of high/infinite-dimensional systems using radial function-based regression, Physical Review E 108, 054220 (2023).
link,
arXiv link
N. Tsutsumi, K. Nakai and Y. Saiki, Constructing differential equations using only a scalar time-series about continuous time chaotic dynamics, Chaos 32, 091101 (2022).
link,
arXiv link
M. Kobayashi, K. Nakai, Y. Saiki, and N. Tsutsumi,
Dynamical system analysis of a data-driven model constructed by reservoir computing,
Physical Review E 104, 044215:1-7 (2021).
link,
arXiv link
K. Nakai and Y. Saiki,
Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable,
Discrete and Continuous Dynamical Systems Series S 14, 3 (2021).
link,
arXiv link
K. Nakai, Direction of Vorticity and a Refined Regularity Criterion for the Navier--Stokes Equations with Fractional Laplacian, Journal of Mathematical Fluid Mechanics 21, 21 (2019).
link
K. Nakai and Y. Saiki, Machine-learning inference of fluid variables from data using reservoir computing,
Physical Review E 98, 023111:1-6 (2018).
link,
arXiv link
■ Preprints/Papers in preparation
New! Takuya Jinno, Takahito Mitsui, Kengo Nakai, Yoshitaka Saiki and Tsuyoshi Yoneda,
Long-term prediction of El Niño-Southern Oscillation using reservoir computing with data-driven realtime filter, ArXiv
arXiv link
New! Kengo Nakai, Yoshitaka Saiki,
Data-driven modeling from biased small training data using periodic orbits, ArXiv
arXiv link
Tamaki Suematsu, Kengo Nakai, Tsuyoshi Yoneda, Daisuke Takasuka, Takuya Jinno, Yoshitaka Saiki, and Hiroaki Miura,
Machine learning prediction of the MJO extends beyond one month, ArXiv
arXiv link
K. Nakai, "ローレンツ方程式に対する機械学習によるモデリング", 京都大学学術情報メディアセンター全国共同利用版[広報] Vol.20 No.1, pp.18--19, 2021 (ISSN: 1347-3581).
K. Nakai, "流体の一変数時系列データに対する機械学習によるモデルの構成", 京都大学学術情報メディアセンター全国共同利用版[広報] Vol.19 No.1, pp.18--19, 2020 (ISSN: 1347-3581).
K. Nakai, "3次元流体変数の予測", 京都大学学術情報メディアセンター全国共同利用版[広報] Vol.18 No.1, pp.25--26, 2019 (ISSN: 1347-3581).
K. Nakai, "Direction of Vorticity and a Refined Blow-up Criterion for the Navier--Stokes Equations with Fractional Laplacian" RIMS Kokyuroku, No. 2070, pp.25--31, 2018.
K. Nakai, "高周波分数冪ラプラシアンNavier--Stokes方程式のエネルギースペクトルの考察", 京都大学学術情報メディアセンター全国共同利用版[広報] 17(1), pp.45--46, 2018 (ISSN: 1347-3581).
N. Kishimoto, K. Nakai, Y. Saiki, and T. Yoneda "粘性項を変形した流体方程式に対する大域解の有界性と Energy Cascade の考察"Hokkaido university technical report series in mathematics, No.173, pp.403--406, 2018.
K. Nakai, "分数冪Navier--Stokes方程式の解の延長と渦度の方向ベクトルの関係について,Hokkaido university technical report series in mathematics, No.168, pp.263--267, 2017.
Tateyama Dynamics Workshop 2024, "Construction of a data-driven model by periodic orbits" Tateyama, March 10th 2024.
(Invited)20th Prediction Science Seminar, "Implementing Reservoir Computing in Practice" RIKEN, November 24th 2023.
XLIII Dynamics Days Europe, "Constructing a data-driven model of intraseasonal weather time-series using machine learning" Università degli Studi di Napoli Federico II, (Italy), September 6th 2023.
10th International Congress on Industrial and Applied Mathematics (ICIAM2023), "Evaluation of a data-driven model using reservoir computing from dynamical system point of view" Waseda University, August ***th 2023.
(Invited)International Workshop on Ergodic Theory, Dynamical Systems, and Climate Sciences, "Constructing a data-driven model of intraseasonal weather time-series using machine learning" Hokkaido University, March 09th 2023.
(Invited)Hirosaki University Workshop on Nonlinear Science 2022, "Dynamical system analysis of a data-driven model constructed by reservoir computing" Hirosaki University, Nov. 14th 2022.
Dynamics days europe 2022, "Evaluation of a data-driven model using reservoir computing from dynamical system point of view" The University of Aberdeen, (United Kingdom), Aug. 22nd 2022.
Japan Geoscience Union Meeting 2022,
"Subseasonal prediction of Madden-Julian Oscillation using machine learning", TOKYO BIG SIGHT, May 25th 2022.
(Invited)Differential Equations for Data Science 2022 ,
"Constructing differential equations using only a chaotic time-series", Online, Mar.23th 2022.
(Invited)Differential Equations for Data Science 2021 ,
"Dynamical system analysis of a data-driven model constructed by reservoir computing" Online, Mar.10th 2021.
(Invited)SOI Asia,
"Machine Learning for Time Series Data" Keio University, Jan.20th 2021.
(Invited)NOLTA2019,
"Machine-learning inference of variables of a chaotic fluid flow from data using reservoir computing" Kuala Lumpur, (Malaysia), Dec.2019.
(Invited)RIMS Seminar, "Machine-learning construction of a model for a macroscopic fluid variable by using reservoir computing" Hokkaido Niseko, Sep.7th--10th, 2019.
(Invited)Recent topics on well-posedness and stability of incompressible fluid and related topics,
"Machine-learning construction of a model for a macroscopic fluid variable" Berkeley, California, (U.S.), July.2019.
(Invited)A3 Workshop at Kobe & Naruto,
"Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable" Kobe & Naruto, Mar.2019.
ICMMA 2018 -Data Science, Time Series Modeling and Applications-,
"Machine-learning Inference of Fluid Variables from Data by using Reservoir Computing" Nakano Campus, Meiji University, February 11-13, 2019.
Dynamics Days 2019,
"Machine-learning Inference of Fluid Variables from Data by using Reservoir Computing" Evanston, IL (U.S.), January 4-6.2019(flash talk).
(Invited)Analysis of Fluids and Related Topics, "Machine-learning inference of fluid variables from data using reservoir computing"
Princeton University (U.S.), Sep.2018.
Czech-Japanese Seminar in Applied Mathematics 2018, "Machine-learning inference of fluid variables from data using reservoir computing"
Ishikawa, July 13--16 2018.
EASIAM2018, "Machine-learning prediction of fluid variables from data using reservoir computation"
University of Tokyo, June 22--25, 2018.
(Invited)Sun Yat-sen University seminar, "Regurarity of General Navier-Stokes equations and Energy Cascade" Sun Yat-sen University (China), Nov.2017.
(Invited)Princeton-Tokyo Fluid Mechanics Workshop, "Mathematical and numerical analysis of the energy cascade for the Navier-Stokes Equations with partial hyperviscosity"
Princeton University (U.S.), Nov.2017.
(Invited)Mathematical Analysis in Fluid and Gas Dynamics, "Direction of vorticity and a refined blow-up criterion for the Navier-Stokes equations with fractional Laplacian"
RIMS (Japan), Jul.2017.
(Invited)Freshman Seminar of Applied Mathematics 2018, "機械学習による流体変数の予測" 京都大学, 2018年11月12--13日.
日本流体学会2018, "Machine-learning prediction of fluid variables from data using reservoir computing" 大阪大学, 2018年9月3--6日.
(Invited)Mathematics and Phenomena, "Machine-learning inference of energy functions for fluid flow from data using reservoir computing" 明治大学, 2018年8月29--31日.
力学系-理論と応用の融合-, "Machine-learning prediction of fluid variables from data" RIMS, 2018年6月4--8日.
2017 年度年会日本数学会, "Global mild solution to Navier-Stokes Equations with partial hyperviscosity" 東京大学, 2018年3月18--21日.
2017 年度年会日本数学会, "Direction of vorticity and a refined blow-up criterion for the Navier-Stokes equations with fractional Laplacian" 首都大学東京, 2017年3月24--27日.
2017 年度年会日本数学会, "Disturbance of the direction vector of vorticity in Hatakeyama-Kambe turbulence model" 首都大学東京, 2017年3月24--27日.
dynamics days us 2025,
"Reservoir computing of chaotic dynamics from biased small training data using periodic orbits" Denver, (U.S.), January 3rd-5th, 2025.
Fourth Symposium on Machine Learning and Dynamical Systems,
"Data-driven modeling from biased small training data using periodic orbits" Toronto, (Canada), July 8th-12, 2024.
Dynamics Days 2023 Kagurazaka,
"Lyapunov analysis of data-driven models constructed by reservoir computing", Dec.4th-8th, 2023.
NOLTA2019,
"Machine-learning inference of variables of a chaotic fluid flow from data using reservoir computing" Kuala Lumpur, (Malaysia), Dec.2rd-6th, 2019.
Dynamics Days 2019, "Machine-learning Inference of Fluid Variables from Data by using Reservoir Computing", Evanston, IL (U.S.), January 4th-6th, 2019.
16TH SCHOOL ON INTERACTIONS BETWEEN DYNAMICAL SYSTEMS AND PARTIAL DIFFERENTIAL EQUATIONS, Centre de Recerca Matematica, "Machine-learning prediction of Energy functions from data using reservoir computation" (Spain), Jun.2018.